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Abstract
The complex nature of hydrological phenomena, like rainfall and river flow, causes some limitations for some admired soft
computing models in order to predict the phenomenon. Evolutionary algorithms (EA) are novel methods that used to cover the
weaknesses of the classic training algorithms, such as trapping in local optima, poor performance in networks with large
parameters, over-fitting, and etc. In this study, some evolutionary algorithms, including genetic algorithm (GA), ant colony
optimization for continuous domain (ACOR), and particle swarm optimization (PSO), have been used to train adaptive neuro-
fuzzy inference system (ANFIS) in order to predict river flow. For this purpose, classic and hybrid ANFIS models were trained
using river flow data obtained from upstream stations to predict 1-, 3-, 5-, and 7-day ahead river flow of downstream station. The
best inputs were selected using correlation coefficient and a sensitivity analysis test (cosine amplitude). The results showed that
PSO improved the performance of classic ANFIS in all the periods such that the averages of coefficient of determination, R2, root
mean square error, RMSE (m3/s), mean absolute relative error, MARE, and Nash-Sutcliffe efficiency coefficient (NSE) were
improved up to 0.19, 0.30, 43.8, and 0.13%, respectively. Classic ANFIS was only capable to predict river flow in 1-day ahead
while EA improved this ability to 5-day ahead. Cosine amplitude method was recognized as an appropriate sensitivity analysis
method in order to select the best inputs.

Keywords ANFIS . Hybrid models . Evolutionary algorithms . Ant colony optimization for continuous domains . Genetic
algorithm . Particle swarm optimization

Introduction

The accurate and sustainable usage of water resources depends
on modeling techniques applied in hydrological processes.
Also, observation of natural phenomena is needed primarily
in modeling the hydrological events (Kisi et al. 2017). In order
to estimate hydrological phenomena, some physical character-
istics of watershed are necessary (Firat 2008). So, using clas-
sical methods, prediction of hydrological phenomena cannot

be categorized as a simple process. For instance, channel
roughness, uneven bed slope, and multiple branches make
the flow routing process more complicated (Pramanik and
Panda 2009). In other way, because of the shortage of accessi-
ble fresh water resources, accurate prediction of river flow and
its fluctuations is considered as a basic rule in planning water
resources. Therefore, researchers always try to modify avail-
able methods in order to reach more accurate estimations.
During last decades, many equations as well as models have
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been utilized to predict river flow, but most of them did not
lead to an accurate results. Recently, artificial intelligence
methods (AI) have been accepted as suitable tools for model-
ing complicated nonlinear phenomena such as hydrological
ones (Taormina et al. 2015). The AI’s acceptable performance
lays probably in nothing but lack of understanding of the phe-
nomenon nature. In fact, it does not matter for AI which phe-
nomena and with what inputs are estimated. In this context,
artificial neural network (ANN) is known as one of the most
popular models.

Also, in the last decades, combination of ANN and fuzzy
logic had led to the invention of neuro-fuzzy system (adaptive
neuro-fuzzy inference system, ANFIS) which has advantages
of both fuzzy logic and ANN in a single framework, and was
widely used in order to model the hydrological phenomena
(Firat and Gungor 2007; Gopakumar et al. 2007; Sanikhani
and Kisi 2012; Gholami et al. 2017; Fotovatikhah et al. 2018).

Chang and Chen (2001) estimated real-time stream flow by
a counter propagation fuzzy neural network method. Chang
and Chang (2006) compared measured and predicted water
level in reservoirs using neuro-fuzzy techniques. Drecourt
(1999) and Savic et al. (1999) used genetic programming
(GP) for modeling rainfall-runoff process. Aytek and Kisi
(2008) concluded that GP is a superior method to predict
suspended sediment and is more accurate than sediment
rating curve and linear regression. Shiri and Kisi (2011) used
GP, ANN, and ANFIS to predict groundwater level variations.
They found GP as better model in this regard. They also com-
pared AI methods with autoregressive moving average
(ARMA), which exhibited the superiority of GP, ANFIS,
and ANN over ARMA.

Wu and Chau (2011) used ANN to model rainfall-runoff
process. They tried to eliminate the lag effect from two as-
pects: modular artificial neural network (MANN) and data
preprocessing by singular spectrum analysis (SSA). The re-
sults showed that although MANN had no significant advan-
tages over ANN, and SSA improved highly the modeling
performance. Gholami et al. (2015) used dendrochronology
(tree-rings) and ANN to model groundwater fluctuations.
Results showed tree-rings had appropriate performance.
Karimi et al. (2018) examined application of gene expression
programming (GEP) and support vector machine (SVM) for
river flow prediction. Results indicated that both GEP and
SVM were able to predict the stream flow accurately.

In neural or neuro-fuzzy systems, determining the suitable
structure of the network and selection of related parameters
are considerably important (Cheng et al. 2005). Also, success
of these networks almost depends on the accuracy and effi-
ciency of their training algorithms and optimization methods.
There are different methods to train the neural networks and
gradient-based algorithms, especially back-propagation, are
considered as the most popular ones. These methods are use-
ful in many cases, but they require lots of burdens to optimize

the system parameters when structure and parameters become
large (Shihabudheen and Pillai 2018). In such cases, the algo-
rithms face to some problems, such as trapping in local optima
as well as over-fitting (Peyghami and Khanduzi 2012, 2013;
Azad et al. 2018). Also, some algorithms such as Levenberg–
Marquardt have high computational complexity and need high
memory for calculations. Therefore, new methods are re-
quired to overcome the shortcomings of such methods. One
of the most suitable methods are evolutionary algorithms. In
this case, neuro-fuzzy system combined with evolutionary
algorithms (EA) tries to find the parameters without facing
to limitation of mentioned learning techniques. In the recent
years, hybrid approaches and evolutionary algorithms are tak-
en into consideration. But EA methods have various differ-
ences such as variety in convergence speed, computing vol-
ume, easy to implement, ability to solve problem with various
natures, continuous and discrete, etc. So, the method should
be selected with respect to the mentioned issues.

Chau (2007) used a split-step particle swarm optimization
(PSO) to train ANN for river stage forecasting. The results
showed that this method was able to benefit acceptable global
searching ability and convergence. Cheng et al. (2015) com-
bined ANN and quantum-behaved particle swarm optimiza-
tion (QPSO) to predict daily reservoir runoff of Hongjiadu
reservoir in China. They pointed out that the ANN-QPSO
had higher accuracy than the ANN. Using two hybrid fuzzy
models including ANFIS-GA and ANFIS-PSO, Jalal-Kamali
(2015) predicted groundwater quality of Kerman Province
located in center of Iran. ANFIS-PSOwas also used in another
study conducted by Basser et al. (2015) to estimate optimum
parameters of a protective spur dike. Furthermore, Rezapour-
Tabari (2016) integrated fuzzy inference system and direct
search optimization algorithm (DSOA) to predict daily runoff
in downstream of Taleghan River, Iran. The results showed
that proposed model (ANFIS-DSOA) has suitable capability
to predict mentioned parameter. Also, Svensson (2016) con-
cluded that increasing the forecast horizon from 1- to 3-month
decreased the correlation between hind casts and river flow
observations.

In modeling hydrological processes such as river flow,
rainfall, evaporation, etc. due to the nature of these phenome-
na, the possibility of increasing the forecast horizon is limited.
So, owing to the limited ability of the models, the present
study is performed to increase model accuracy in forecasting
horizon (e.g., t + 1, t + 3, t + 5, and t + 7). Converting the daily
values of river flow to monthly and yearly may lead to in-
crease the correlation coefficient of data in a period of time
and decrease severe fluctuations of river flow created by mod-
eration, rather severe precipitation. Therefore, small or aver-
age rainfall which cause small or average floods are less ob-
served or completely ignored, and as a result, modeling and
prediction will be facilitated. According to the related litera-
ture, the effects of EA and especially comparative evaluation
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of some algorithms in improving ANFIS performance to pre-
dict river flow forecasting has been studied rarely.
Consequently, investigation of EA’s application in prediction
of river flow (till next 7 days) seems suitable while severe
fluctuations of small andmoderate floods are to be considered.

In the current study, two aims have been pursued: (1) In
order to recover the problems of classical training algorithm
for predicting river flow, three evolutionary algorithms—
genetic algorithm (GA), ant colony optimization for continu-
ous domain (ACOR), and PSO—were suggested as alternative
to classic ANFIS optimization algorithm. The results of all
three suggested methods were compared and, at last, the best
one was proposed. (2) The accuracy of new methods was
investigated in increasing the ability of ANFIS in river flow
prediction for various forecasting horizons from 1 to 7 days.

Materials and methods

Study area

Zayandehrood river basin is located in the central part of Iran,
with geographical coordinates of 50° 24′ to 53° 24′ east lon-
gitude and 31° 11′ to 33° 42′ north latitude, an area of
41,500 km2 and altitude of 1466 to 3974 m (Fig. 1).
Although annual value of precipitation is approximately
140 mm, it changes from 50 mm in the east to 1500 mm in
the west. Also, average amount of annual temperature is
14.5 °C, and the lowest and highest temperatures are 12.5
and 42 °C which occur in January and July, respectively.
The basin is classified as semi-arid region and the annual
potential evapotranspiration is 1900 mm. With average dis-
charge of 900 million cubic meter (MCM), Zayandehrood
River is considered as one of the most important rivers in
the basin, and even Iran. It originates from eastern slopes of
the Zagross Mountain and ends by reaching Gavkhuni swamp
(Rezaei et al. 2013).

Adaptive neuro-fuzzy inference system

Jang and Sun (1993) proposed adaptive network based on
fuzzy inference system which is named ANFIS. To describe
the structure of ANFIS, the system comprises two inputs (x1
and x2). Also, two fuzzy Takagi and Sugeno’s type if-then
rules and one output (y) are generally considered as follows
(Shiri and Kisi 2010):

Rule 1 : if x1 isA1ð Þand x2is B1ð Þthen f 1

¼ p1x1 þ q1x2 þ r1 ð1Þ
Rule2 : if x1 is A2ð Þand x2is B2ð Þthen f 2

¼ p2x1 þ q2x2 þ r2 ð2Þ

Where A and B are the fuzzy sets, p, q, and r are conse-
quent parameters of the model obtained in the training
stage, respectively. The structure of ANFIS is composed
by five layers. Layer 1 is input variables, fuzzy sets. Every
node in this layer adapts to a function parameter. Gaussian
function is commonly utilized as the activation function.
Layer 2 multiplies any two memberships which got by the
fuzzy sets, so the output represents fuzzy rules or applica-
ble degree of intensity. In layer 3, every node is fixed, or
non-adaptive. In layer 4, every node adapts to an output.
The parameters in this layer are returned to as consequent
parameters. In the last, there is only a single node which is
a fixed or non-adaptive node. As the summation of all
incoming signals from the previous node, this last node
computes the overall output (Jang 1993).

It is notable that there has been used three methods, grid
partition (GP), subtractive clustering (SC), and fuzzy c-
means clustering (FCM), in order to generate a basic FIS.
The primary modeling showed that the FCM had better
performance than the SC and GP (Mirrashid 2014).
Therefore, the FCM was used to train classic ANFIS in
this research. Also, training algorithms of the ANFIS were
selected as back-propagation and hybrid. It is notable that
back-propagation had better performance in most of the
predictions. On the other hand, optimum number of epoch
for all models was 500, and increasing the number of
epochs had not considerable effect on the models perfor-
mance. The best value of initial step-size, step-size-de-
crease, and initial-increase were 0.01, 0.9, and 1.1, respec-
tively. One thousand one hundred available data were di-
vided into training (60%), validation (20%), and test stages
(20%). To analyze the data, Matlab r (2014) software was
used. It is notable that classic ANFIS was accepted as basic
model because of its capability for modeling hydrological
phenomena.

Application of particle swarm optimization
for optimizing ANFIS parameters

PSO is a heuristic algorithm based on the stochastic opti-
mization technique which was first introduced by Eberhart
and Kennedy (1995). Owing to some reasons, such as low
computational volume, easy implementation, independen-
cy on problem situations, high convergence speed, using
global search method, ability to solve complex issues, and
escaping from stocking in local optima points, has led PSO
to use for solving many of the optimization problems. On
the other hand, the classic ANFIS algorithms (gradient
descent-based algorithms) are not able to train mentioned
model properly to predict some phenomena with high nat-
ural complexity, such as rainfall and river flow. Poor per-
formance is due to the high computational volume, the
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probability of being trapped in local optima, and some
other problems (Salimi et al. 2018). In order to overcome
such issues, PSO is an appropriate alternative to optimize
and train ANFIS.

PSO algorithm considers each solution as a particle in
a search space. Each particle has a fitness value that is
being validated by a fitness function that is to be opti-
mized. Particle i has a position in the d-dimensional space
of the problem that is to be solved and its tth iteration is
shown as Eq. (3). The same particle has a velocity which
directs its movement and its tth iteration is shown as vec-
tor V (Eq. 4). Each particle uses a memory represented by
vector P (Eq. 5) to remember the best position in each
iteration.

X t
i ¼ xti1; x

t
i2;…; xtid

� � ð3Þ

Vt
i ¼

�
vti1; v

t
i2;…; vtid ð4Þ

Pt
i ¼ pti1; p

t
i2;…; ptid

� � ð5Þ

Each particle is updated after each iteration with two best
values. The first and second best values are the best solution
(pbest) and global best (gbest), the best position achieved
within the population, respectively. PSO pursues these values.
After determining the pbest and gbest, velocity of each particle
is updated by using Eqs. 6 and 7.

Vi t þ 1ð Þ ¼ WVi tð Þ þ C1r1;i tð Þ pi tð Þ−X i tð Þð Þ

þ C2r2;i tð Þ pg tð Þ−X i tð Þ
� �

ð6Þ

X i t þ 1ð Þ ¼ X i tð Þ þ Vi t þ 1ð Þ ð7Þ

In Eqs. 6 and 7, t is the number of iterations, and two
variables, C1 and C2, are learning factors. These two factors
control displacement of a particle (particle displacement) after
each iteration. Normally, C1 =C2 = 2. Two random numbers,
r1 and r2, have a range [0, 1]. Inertia weight shown byW gets
an initial value ranging within [0, 1].

Fig. 1 The location of study area (Safavi and Ahmadi 2015)
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In PSO, the population is initialized by random solutions.
The fitness of the population is recalculated iteratively up to
the point of reaching the termination condition with pbest,
gbest, position, and velocity updated in every iteration. The
system, finally, yields gbest and its fitness value. The termi-
nation condition may be defined, for example, as achieving
the maximum number of iterations or arriving at a certain
fitness value for gbest.

In the present study, PSO was used to optimize and train
ANFIS in order to predict the river flow at 1, 3, 5, and 7 days
ahead. The modeling of river flow by ANFIS-PSO had five
stages (Fig. 2):

1. Determining the input and output data for the system
(upstream and downstream river flow): At this stage,
ratio of training, validation, and test phases are deter-
mined. Further, the initial parameters of the algorithm,
such as the initial population size, the number of iter-
ation, the learning rate, lower and upper bound of ve-
locity, the intended error, the global and personal best

learning coefficient, and other relevant parameters, are
determined.

2. Calculating value of parameters by ANFIS in each cluster.
3. Generating a basic fuzzy system (FIS) and training it by the

PSO: At this stage, first, a FIS is generated using one of the
common methods, SC, GP, and FCM. Then, FIS is trained
and optimized by PSO according to the following steps:

a. First, according to the conditions and purpose of the
problem, an initial population was generated, and av-
erage and variance amount of river flow data were set.

b. In the following, the best experience of each particle
(pbest) and the best experience of all the particles
(gbest) were updated. The update of velocity for each
particle is calculated by the Eq. (6).

c. The new position of each particle was updated using
Eq. (7).

d. E was calculated by Eq. (8), if this value was met the
acceptable error, went to step B4^; otherwise, the sys-
tem went to the step e.

Loading data

River flow input River flow output

Generate a type of 
fuzzy system

Train system with 
PSO

Generate initial 
population 

Evaluate fitness 
value

Update personal 
best and global best

Stop

Update best velocity 
and position of each 

particle

Termination criterion satisfied?

Results

Prediction of river 
flow

Validation Test

Y

N

Fig. 2 Steps of ANFIS-PSO
model procedure

Loading data

River flow input River flow output

Generate a type of 
fuzzy system

Train system with 
GA

Generate initial 
population 

Evaluate individual 
fitness rank 

individual fitness

Achieve to Time stop 
or other criteria

Stop

Generate new 
populationSelection

Cross-Over
Mutation

Results

Prediction of river 
flow

TestValidation

Y

N

Fig. 3 Steps of ANFIS-GA
model procedure
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E ¼ QTarget−QModel ð8Þ

Where QTarget is observed river flow, QModel represents the
predicted values by the model, and E indicates difference be-
tween the observed and the predicted values.

e. Setting the counter (counter + 1): If the counter was great-
er than the maximum number of Maxiter (max-iteration),
the optimization was completed and the system went to
step 4. Otherwise, the system returned to step 1 and cal-
culated the new variance and average amount of output
river flow using some data with more potential.

4. Choosing the last values of the average and variance as
the most optimal estimation of the output parameters.

5. Using the optimal values to calculate river flow in 1, 3, 5,
and 7 days ahead.

6. Modeling the validation and test stages and evaluating the
system performance using some error indices such as R2

and RMSE (m3/s).

To determine the algorithms’ setting parameters, after try-
ing various values, max-iteration, population size, inertia
weight, and inertia weight reduction factor, personal and glob-
al best learning coefficients were fixed to 800, 78, 1, 0.98, 2,
and 2, respectively.

Application of ant colony algorithm for continuous
domains for optimizing ANFIS parameters

Ant colony is an optimization method based on how food
is searched by ants. Ant colony optimization (ACO) was
first introduced by Dorigo (1992) and has acceptable abil-
ity to solve optimization problems with high computational
complexity and voluminous computations. However, the
ability of this algorithm to solve continuous problems is
weaker than the discrete ones. Owing to this reason, Socha
and Dorigo (2008) presented ACOR to improve the ability
of the ACO to optimize continuous problems.

Using a continuous function instead of discontinuous
functions as the probability density function (PDF) is the

Loading data

River flow input River flow output

Generate a type of 
fuzzy system

Train system with 
RACO

Generate initial 
population of ants 

Find a solutionTermination 
criterion satisfied?

Stop
Launch new 

iteration of ant

Termination criterion 
satisfied?

Results

Prediction river flow

Validation Test

Pheromone depositionPheromone 
evaporation

Find new solutions

N

Y

Y

Fig. 4 Steps of ANFIS-ACOR

model procedure

Table 1 Basic statistics of measured river flow in different stations

Unit Min Max Average SD CV (%)

Eskandari (U1) m3/s 0.01 29.12 3.77 5.31 140.01

Ghaleh-Shahrokh
(U2)

m3/s 4.72 119 27.72 23.36 84.25

Sad-Tanzimi (D1) m3/s 9.09 91.25 30.47 20.83 68.42

Pol-Zamankhan (D2) m3/s 9.92 86.24 30.84 19.86 64.62

Cham-Aseman (D3) m3/s 0.012 80.21 14.53 20.15 138.12

Pol-Kale (O) m3/s 0.59 81.12 15.83 21.02 75.68

SD standard deviation, CV coefficient of variation

Table 2 Correlation matrix of measured river flow among different
stations

U1 U2 D1 D2 D3

O t − 1 0.16 0.40 0.93 0.91 0.93

t − 3 0.14 0.37 0.83 0.83 0.82

t − 5 0.12 0.34 0.72 0.72 0.71

t − 7 0.10 0.31 0.62 0.62 0.60

O, Pol-Kaleh (Output); U1, Eskandari; U2, Ghaleh-Shahrokh; D1, Sad-
Tanzimi; D2, Pol-Zamankhan; D3, Cham-Aseman
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main idea of the ACOR. In fact, in this method, the ants’
population is distributed with a continuous function in the
response domain. As a result, the ability of the algorithm to
solve continuous problems is increased. It should be noted
that in the first step of the present study, although several
continuous functions were used, the Gaussian function had
the most suitable performance. For this reason, the
Gaussian function was used as a PDF in the prediction of
river flow for all of the time periods.

Despite low convergence speed, ACOR has the features,
such as lack of trapping in local optima, use of global search
methods, ability to optimize some problems with high com-
putational complexity, and grantee to reach convergence.
These features make this algorithm as a suitable option for
training a simulation system such as ANFIS.

The ANFIS-ACOR steps in accordance with Fig. 3 be-
gin by identifying the inputs and outputs as well as the
parameters related to the algorithm, such as the initial pop-
ulation, the number of iteration, and the alpha and beta
coefficients. Then, using one of the existing methods
(i.e., GP, SC, and FCM), a fuzzy system is generated. In
the following, by providing the optimal values of the var-
iance and the mean of the data, the ACOR tries to minimize
the value of E (Eq. 8). Finally, the results are presented in
three sections which are training, validation, and test, and

performance of the model is measured by some statistical
factors like R2, RMSE, and so on. It should be noted that,
as with some other studies (Mirrashid 2014), the early
modeling indicated that the FCM had a better performance
than the GP and SC. For this reason, the results of the fuzzy
systems generated by FCM have been reported in this
study.

It is noteworthy that after trying various values, the
best amount of max-iteration, population size, conversion
ratio fitness to pheromones (Q), power factor of phero-
mones (Alpha) and heuristic (Beta), and evaporation of
pheromones (Roh) were 350, 45, 10, 2, 1, and 0.03,
respectively.

Application of genetic algorithm for optimizing ANFIS
parameters

GA is a meta-heuristic algorithm inspired by process of
natural selection and was first introduced by Holland
(1975). Owing to some reasons as the use of global search
method, the lack of trapping in local optima, non-
dependence on the problem conditions, and the suitable
performance in solving complex problems with volumi-
nous computations, GA is considered as an appropriate

Table 3 The effects of various
input groups for predicting the
river flow of Pol-kaleh station in
1, 3, 5, and 7 days ahead

Input groups 1-day ahead 3-day ahead 5-day ahead 7-day ahead

I1 (Sad-Tanzimi) R2 0.71 0.55 0.44 0.24

RMSE 1.65 2.53 3.02 3.48

I2 (I1 + Cham-Aseman) R2 0.76 0.60 0.46 0.19

RMSE 1.57 2.32 2.85 3.22

I3 (I2 + Pol-Zamankhan) R2 0.82 0.63 0.55 0.23

RMSE 1.46 2.16 2.42 2.91

I4 (I3 + Ghaleh-Shahrokh) R2 0.75 0.60 0.40 0.16

RMSE 1.65 2.42 2.92 3.16

I5 (I4 + Eskandari) R2 0.70 0.46 0.40 0.10

RMSE 1.72 2.66 3.12 3.62

Table 4 Performance indices of models for 1-day ahead river flow forecasting

R2 MAE MARE RMSE NSE

TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST

ANFIS 0.93 0.81 0.83 2.52 3.72 3.88 42.86 34.71 76.44 1.29 1.43 1.56 0.95 0.87 0.83

ANFIS-GA 0.92 0.94 0.85 3.09 2.66 3.61 53.53 54.13 78.12 1.49 1.39 1.54 0.94 0.96 0.85

ANFIS-PSO 0.91 0.95 0.87 2.71 2.28 3.60 51.75 29.91 56.73 1.32 1.25 1.53 0.94 0.97 0.87

AFIS-ACOR 0.91 0.87 0.86 3.48 3.95 4.14 81.19 93.12 90.92 1.62 1.70 1.75 0.94 0.91 0.85

TRN training, VLD validation, TST test
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option for training ANFIS, although this algorithm has a
relatively low convergence speed.

Duty of this algorithm is similar to PSO and ACOR and
tries to provide the most optimal variance and average amount
of the data. The difference of ANFIS-GA and other models
(e.g., ANFIS-PSO, ANFIS-ACOR) is how to optimize these
parameters (variance and average amount of the data for river
flow); however, they are similar in the remaining steps.
Figure 4 shows the steps of the ANFIS-GA model. After try-
ing various values, the best max-iteration, initial population,
percent of crossover, and mutation in GA algorithm were se-
lected as 550, 80, 0.7, and 0.3, respectively.

Modeling performance criteria

In the current study, five statistical criteria were used to
select the optimal model. The statistical criteria consisting
of coefficient of determination, R2, which indicates the
degree of association between the predicted and observed
values; root mean square error, RMSE (m3/s), which is
commonly used in many iterative prediction and optimi-
zation schemes; mean absolute relative error (MARE);
mean absolute error, MAE (m3/s); and Nash-Sutcliffe
model efficiency (NSE) were used to evaluate the perfor-
mance of suggested hybrid models. Equations are given as
follows:

R2 ¼ ∑
n

i¼1
xi−x

� �
yi−y

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
xi−x

� �2
∑
n

i¼1
yi−y

� �2
s" #2

ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
xi−yið Þ2

s
ð10Þ

MARE ¼
∑n

i¼1

yi−xi
yi

� �				
				

n
� 100 ð11Þ

MAE ¼ ∑n
i¼1j xi−yið Þj

n
ð12Þ

NSE ¼ 1−
∑n

i¼1 xi−yið Þ2

∑n
i¼1 xi−xi

� �2

0
B@

1
CA

2
64

3
75 ð13Þ

Where n is the number of data, xi and yi are the observed
and predicted values, and x and y are average of observed and
predicted values, respectively.
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Fig. 5 Scatter plots of observed
and predicted 1-day ahead river
flows using ANFIS-PSO model
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Fig. 6 Observed and computed
river flow values for 1-day lead
time using ANFIS-PSO model in
validation and test stage
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Data collection and analysis

The study area was divided into the upstream stations includ-
ing Eskandari (U1) and Ghaleh-Shahrokh (U2) and the down-
stream ones including Sad-Tanzimi (D1), Pole-Zamankhan
(D2), and Cham-Aseman (D3), according to the location of
Zayandehrood dam (Fig. 1). Also, for comparison of river
flows in the determined time periods (i.e., 1-, 3-, 5-, and 7-
day), the values of river flow in different stations were used as
input variables and the values of river flow in Pole-kaleh sta-
tion (O) was used as output variable (Fig. 1). Dataset com-
posed of daily river flow in 3 years was selected (totally 1100
data). These data were monitored regularly each day at six
different sites (6 × 1100). For prediction of the river flow
based on the existing measured values of different variables
(U1–U2 and D1–D3) and their correlation analysis, total river
flow values (m3/s) of five stations were identified. Statistical
measures like standard deviation (SD) and coefficient of var-
iation (CV) were used to determine dispersion of the data
(Table 1).

To determine the relationship of each input variable
(station) with output (O), a correlation analysis was applied
(Table 2). According to correlation matrix, five data groups—
I1 (Sad-Tanzimi), I2 (I1 + Cham-Aseman), I3 (I2 + Pol-
Zamankhan), I4 ( I3 + Ghaleh-Shahrokh), I5 ( I4 +
Eskandari)—were selected as model inputs candidates. River
flow of Pol-Kaleh station was then predicted for 1, 3, 5, and
7 days ahead by ANFIS. Finally, the best input group was
selected for modeling river flow by hybrid models.

Results and discussion

According to Table 3, results suggested that I3 with most
correlation coefficient had the best performance in predic-
tion of river flow in 1, 3, 5, and 7 days ahead, so this data
group has been selected as hybrid models’ input. To in-
crease the certainty about models performance in later pe-
riods, the models were also used in 8- and 10-day ahead
prediction but results did not provide required criteria and
so they were not reported.

Models for 1-day ahead river flow prediction

The performance measures of hybrid ANFIS models for
prediction of river flow at 1-day ahead are evaluated in
Table 4. Almost all the models had acceptable performance
in this forecast horizon. In this section, R2 and NSE of
hybrid models in training, validation, and test stage were
higher than 0.80. It is noteworthy that because the lag in
this step was only 1-day, classic ANFIS performance could
be comparatively satisfying. It is necessary to say that the
average performance index returns to the function of vali-
dation and test stages, which have higher importance in
models evaluation. The performance improvement of
ANFIS-PSO was the highest and it was recognized as the
most suitable model for river flow forecasting in 1-day
ahead. This improvement was considerable such that the
values of R2, RMSE (m3/s), MAE (m3/s), MARE, and NSE
of ANFIS were improved from 0.82, 1.49, 55.5, 3.12, and

Table 5 Performance indices of models for 3-day ahead river flow forecasting

R2 MAE MARE RMSE NSE

TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST

ANFIS 0.76 0.55 0.71 2.70 7.52 6.18 74.92 110.6 120.4 1.95 2.24 2.09 0.85 0.70 0.71

ANFIS-GA 0.75 0.69 0.59 5.73 6.05 6.11 123.7 178.3 142.93 1.96 1.97 2.00 0.84 0.79 0.58

ANFIS-PSO 0.75 0.86 0.75 5.89 4.94 5.87 116.18 97.26 94.35 1.96 1.93 1.95 0.82 0.91 0.72

AFIS-ACOR 0.72 0.72 0.68 5.99 6.01 6.32 129.46 104.00 120.48 2.00 1.91 2.05 0.82 0.80 0.67

TRN training, VLD validation, TST Test
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Fig. 7 Scatter plots of observed
and predicted 3-day ahead river
flow using ANFIS-PSO model
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0.84 to 0.91, 1.39, 43.3, 2.94, and 0.92 by the best hybrid
model (ANFIS-PSO), respectively.

The difference in performance of the suggested and
classic models, ANFIS-PSO and ANFIS, can be related
to the better capability of hybrid model training algorithm
in escaping from trapping in local optima points as well as
over-fitting. Also, appropriate ability of PSO compared to
classic method in optimizing continues problems seems
likely to be another reason for the obtained results. It is
noteworthy that, as it mentioned before, classic algorithms
require lots of burdens to optimize the system parameters
when structure and parameters become large (Azad et al.
2018; Shihabudheen and Pillai 2018). Therefore, because
of chaotic origin of river flow, structure and parameters
become large, and as a result, the quality of classic
ANFIS performance decreases.

PSO had better results than the GA because of its ap-
propriate capability in solving continuous problems like
river flow (Kachitvichyanukul 2012). The presented re-
sults of this study are compatible with other reports
(Rezapour-Tabari 2016). Jalal-Kamali (2015) declared that
PSO had better performance than GA on performance im-
provement of ANFIS in modeling of water quality param-
eters. Moreover, scatter diagram of ANFIS-PSO for vali-
dation and test stages is shown in Fig. 5. Note that, data
pairs closer to the 45° line represent better prediction cases.
The observed and ANFIS-PSO model predictions at 1-day

ahead in validation and test stages are shown in Fig. 6. It is
noteworthy that data from 0 to 164 days belong to valida-
tion and from 165 to the last day belongs to test stage.

Models for 3-day ahead river flow prediction

The performance of ANFIS fell significantly down with
increasing the forecast horizon from 1- to 3-day such that
the average RMSE (m3/s), MAE (m3/s), and MARE in-
creased from 0.82 to 0.63, 1.49 to 2.16, and 3.80 to 6.85
and NSE decreased from 0.84 to 0.70 in the validation and
test stages, respectively. It is because of raising the turbu-
lence in river flow data when the lag was increased from 1-
to 3-day. In fact, when the turbulence level enhances, the
classic algorithm is less capable to train the system prop-
erly, and as a result, model fails to predict extremum points
(highest or lowest river flow values). The advantage of the
hybrid models was increased compared to classic ANFIS
with increasing the forecast horizon. ANFIS-PSO as the
best model succeeded to improve error measures (R2,
RMSE (m3/s), MAE (m3/s), MARE, and NSE) respectively
by 0.18, 0.22, 1.44, 19.72, and 0.11%. This model placed
in the first rank respectively with 0.81, 1.94, and 5.4 values
of R2, RMSE (m3/s), and MAE (m3/s) (Table 5). After that,
ANFIS-ACOR also had better performance than the classic
ANFIS. It seems that better performance of GA in optimi-
zat ion of discrete data caused to poor accuracy
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Table 6 Performance indices of models for 5-day ahead river flow forecasting

R2 MAE MARE RMSE NSE

TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST

ANFIS 0.61 0.53 0.58 8.38 8.28 8.09 179.16 206.00 194.54 2.46 2.42 2.43 0.75 0.67 0.53

ANFIS-GA 0.57 0.46 0.57 8.18 8.84 8.94 192.5 190.32 198.07 2.40 2.48 2.54 0.72 0.64 0.57

ANFIS-PSO 0.74 0.70 0.73 5.55 6.58 5.57 112.8 106.7 103.1 1.91 2.06 1.88 0.85 0.78 0.73

AFIS-ACOR 0.50 0.68 0.55 9.02 8.70 8.44 207.06 204.18 216.27 2.56 2.53 2.42 0.67 0.77 0.56

TRN training, VLD validation, TST test
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(Kachitvichyanukul 2012). It is necessary to say that time
needed for training ANFIS by the PSO was significantly
less than the ACOR and GA. It is an important advantage
for PSO and is due to its simple structure. Low conver-
gence speed of ACO and GA is one of the most important
weaknesses of these algorithms. It is notable that the high
value of determination coefficient and NSE in results of
hybrid models shows that over-fitting phenomenon had
not happened during modeling process. The results are
supported by other reports. In an investigation done by
Elbeltagi et al. (2005), five evolutionary-based search
methods were compared and they generally found that
PSO performed better than GA, memetic algorithm,
ACO, and shuffled frog leaping algorithm in terms of suc-
cess rate and solution quality. Figure 7 shows the scatter
graphs of predicted and measured values in validation and
test stages of ANFIS-PSO model. The observed and com-
puted values of ANFIS-PSO model for 3-day ahead
hydrograph are exhibited in Fig. 8.

Models for 5- and 7-day ahead river flow prediction

Increasing the forecast horizon causes some difficulties for
intelligent models (Salimi et al. 2018). The results obtained
by ANFIS-PSO and other models for prediction of river
flow in next 5 and 7 days ahead were given in Tables 6
and 7, respectively. Similar to previous sections, ANFIS-
PSO showed the best performance and least error while the
results obtained by other models were in close agreement

with ANFIS. Therefore, it was difficult to select alternative
models, hierarchically. In this condition, ANFIS-PSO im-
proved ANFIS performance, considerably. The mentioned
model could optimize the values of R2, RMSE (m3/s),
MAE (m3/s), and MARE as 0.16, 0.45, 2.11, and 95.35
in 5-day time period, respectively (Table 6). Function im-
provement of ANFIS in 5-day ahead can be introduced as
the most important performance of ANFIS-PSO, because
performance evaluation criteria were evolved from an un-
acceptable value to a satisfactory value in this period
(Table 6). It is noteworthy that because of chaotic nature
of many hydrological phenomena, R2 higher than 70% is
acceptable in hydrological modeling studies. Figure 9
shows the scatter graphs of predicted and measured values
in validation and test stages of ANFIS-PSO model. The
observed and computed values of ANFIS-PSO model for
5-day ahead hydrograph are exhibited in Fig. 10.

The investigations in last time period (7-day ahead)
showed some evidences of models performance decre-
ment. As it mentioned before, it lays in nothing but
racketing up the complexity of making a useful equation
between input and output because of long gaps (7-day
lags). The performance of ANFIS-PSO in this period was
much better than the other models, similar to other periods.
In this period, the ANFIS-PSO showed the highest perfor-
mance improvement such that the average of R2 (validation
and test stages of the classic ANFIS) was increased from
0.22 to 0.53; the average of MAE (m3/s) was decreased
from 12.85 to 8.65, NSE was enhanced from 0.44 to

Table 7 Performance indices of models for 7-day ahead river flow forecasting

R2 MAE MARE RMSE NSE

TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST

ANFIS 0.57 0.28 0.19 8.18 13.17 12.54 192.57 235.22 227.04 2.49 0.57 0.28 0.70 0.31 0.57

ANFIS-GA 0.42 0.45 0.38 10.92 11.62 9.95 258.64 282.03 263.54 2.85 0.42 0.45 0.63 0.65 0.40

ANFIS-PSO 0.55 0.50 0.57 9.04 8.41 8.90 203.22 169.95 196.26 2.40 0.55 0.50 0.72 0.67 0.57

AFIS-ACOR 0.41 0.32 0.38 10.84 10.54 11.29 264.07 224.64 296.61 2.91 0.41 0.32 0.62 0.55 0.37

TRN training, VLD validation, TST test
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Fig. 9 Scatter plots of observed
and predicted 5-day ahead river
flow using ANFIS-PSO model
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0.62, and MARE fell from 231 to 183 (Table 8). However,
the obtained results are far from acceptable standards of
hydrological modeling. Therefore, it can be concluded that
5-day ahead was the last acceptable forecast horizon of
river flow that could be predicted by presented evolution-
ary algorithms.

Sensitivity analysis

In this study, sensitivity analysis has been done based on co-
sine amplitude method (CA). CA is an equation based on
input and output series data (Hasanipanah et al. 2016). CA
equation is given below.

CAij ¼
∑n

k¼1 X ik þ X jk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k¼1X
2
ik∑

n
k¼1X

2
jk

q ð14Þ

In Eq. 13, Xi and Xj are input and output parameters, re-
spectively, and data range changes from 0 to 1. Investigations
showed that results obtained by sensitivity analysis have high
overlap with correlation matrix results. Both analyses indicat-
ed that constructed dam in the bed river causes to impair in
upstream and downstream river flows. It is necessary to say
that CA equation is a trustworthy method for analysis of two
time series of parameters and can be used in analysis and

validation of results obtained by correlation matrix and non-
linear sensitivity analysis while it has this capability to be used
in many hydrological watershed. The results obtained by CA
are given in Table 9.

Conclusion

Predicting river flow fluctuations is important for planning
and constructing river structures and other industrial opera-
tions as well as integrated water resources management. In
the present study, the accuracy of classic ANFIS method
was improved to predict river flow at 1, 3, 5, and 7 days ahead.
Hybrid ANFIS models were obtained by integrating ANFIS
with GA, ACOR, and PSO algorithms. The results showed
that the mentioned algorithms were capable to improve the
ANFIS performance to predict the river flow in all periods.
PSO was introduced as the most suitable algorithm to reduce
the probability of being trapped in local optima, over-fitting,
and increasing convergence speed. Sensitivity analysis (co-
sine amplitude method) showed that the selected inputs with
respect to correlation analysis were the best inputs for model-
ing river flow in this study. Overall, it can be concluded that
the evolutionary algorithms (especially PSO) can be success-
fully used to train the ANFIS in forecasting 1-, 3-, and 5-day
ahead river flows.
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Fig. 10 Observed and computed
river flow values for 5-day lead
time using ANFIS-PSO model in
validation and test stage

Table 8 Performance indices of the best models in different time periods

R2 MAE MARE RMSE NSE

TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST TRN VLD TST

ANFIS-PSO (1-day) 0.91 0.95 0.87 2.71 2.28 3.60 51.75 29.91 56.73 1.32 1.25 1.53 0.94 0.97 0.87

ANFIS-PSO (3-day) 0.75 0.86 0.75 5.89 4.94 5.87 116.18 97.26 94.35 1.96 1.93 1.95 0.82 0.91 0.72

ANFIS-PSO (5-day) 0.74 0.70 0.73 5.55 6.58 5.57 112.84 106.78 103.1 1.91 2.06 1.88 0.85 0.78 0.73

ANFIS-PSO (7-day) 0.55 0.50 0.57 9.04 8.41 8.90 203.22 169.95 196.26 2.40 0.55 0.50 0.72 0.67 0.57

TRN training, VLD validation, TST test
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The scope of the present study is able to be modified to
improve the prediction skill in several ways, such as fol-
lows: (I) benefiting other related hydrological information
commonly used in modeling river flow, (II) trying other
appropriate EA methods to examine their performance as
well as compare with the methods presented in this study,
(III) using the suggested methods to predict other hydro-
logical phenomena, (IV) comparing the performance of
suggested hybrid method with other kinds of popular
methods, e.g., ANNs, SVR, GEP, etc.
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this investigation.
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