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Abstract
This paper presents an investigation on source identification of mine water inrush using a geochemical technique. The
hydrogeochemistry characteristics can reflect water–rock interaction processes; therefore, the results of hydrochemical analysis
could indicate the groundwater occurrence. Although hydrochemical analysis has been reviewed in previous studies, the selec-
tion of the evaluation index and the choice of units have seldom been studied. Statistical methods, hierarchical cluster analysis
(HCA) and principal component analysis (PCA), were used for analysis by SPSS 21.0. Piper, Durov, and Stiff diagrams were
used to identify the four types of water sources. Four types of water samples were used to perform this research, and the major
purpose of the present research is to examine the results obtained under different conditions. The results show that the situations
arising from the selection of different identification indices, units, and identification methods can lead to great differences. The
results are as follows: The selection of trace ions for identification indices can largely affect the discriminant results. In this study,
identification results with fewer indicators are poor than results withmore indicators as a whole. The unit milliequivalents per liter
(mEq/L) is not useful for better identification results according to this study. The data is appropriate for PCA (the Kaiser–Meyer–
Olkin measure of sampling adequacy is > 0.5, and the significance value for Bartlett’s test is < 0.01), but its application to reduce
dimensions cannot work under all conditions.

Keywords Source identification . Hydrochemical analysis . Hydrogeochemistry characteristics . Principal component analysis
(PCA) .Minewater

Introduction

Environmental protection has gained considerable importance
in the background of the negative impact of harmful environ-
mental changes on humans. Anthropogenic activities have led
to the worldwide deterioration of not only air quality but also
water quality (Li et al. 2014; Purushotham et al. 2011). The
carbon emission is caused by coal burning including indoor
and outdoor, which accelerates the greenhouse effect. It leads

to climate change on the environment as well as on forest area,
coastal area, and urban area (Cetin 2016; Cetin et al. 2017;
Sevik et al. 2017). In recent years, considering the severe
pollution arising from the use of coal, its use has been reduced
all over China, in particular in several cities. However, mining
cannot be completely stopped, and the hazards encountered
during mining, such as mine collapse, water inrush, discharge,
and contamination, should be dealt with carefully. Among
these hazards, inrush, discharge, contamination, and solution
methods are closely linked to water sources.

Various methods are available for solving problems related
to water sources based on element characteristics.
Hydrochemical analysis is usually the first step in dealing with
water problems, such as the source identification of water
inrush and contamination and the assessment of water quality.
Examples of these methods are fuzzy evaluation, multivariate
statistical methods, distance discriminant, Bayes discriminant,
and isotope tracking (Aravena et al. 1993; Dinka et al. 2015;
Wang et al. 2016; Wu et al. 2017; Zhang et al. 2009).
Hierarchical cluster analysis (HCA) is a powerful tool for
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grouping samples into significant clusters. Hence, this method
was used to test water samples and check whether the samples
could be grouped into specific groups. The main function of
PCA is to reduce a large number of variables into a few un-
derlying factors to explain the variability of group character-
istics (Yang et al. 2016a, b).

Geochemistry characteristics of water depend on water–rock
interaction processes, which are controlled by groundwater dy-
namics and lithology, etc. (Wolkersdorfer 2008). Therefore,
chemical analyses are commonly utilized for water-related re-
search such as water quality assessment, water-contaminant
source identification, and mineral water studies. Among such
analyses, hydrochemical analysis is the fundamental method
because hydrochemical characteristics can reflect the occurrence
conditions. The need for a greater understanding of the chemical
composition of water sources, particularly for elements that are
not monitored on a regular basis, is the key issue for defining
their quality. Hydrochemistry is widely used for water source
identification and water quality assessment, for example the use
of stable isotopes and radioisotopes (Ji et al. 2017; Tallini et al.
2014), studies on the hydrogeochemical processes in groundwa-
ter (Armengol et al. 2017; Yang et al. 2016a), studies on the
spatiotemporal variety of groundwater (Singh et al. 2015), and
identification of pollution sources of groundwater or surface
water (Datta et al. 2011; Telci and Aral 2011; Yang et al.
2016b). Piper trilinear diagrams and ion ratios are commonly
used for these studies.

Mine water inrush may originate from a variety of sources
such as sand water, limestone water, surface water, and
stratifugic water. The coal-bearing strata belong almost
completely to the Permo-Carboniferous system in North
China, and with the increase in deep mining, the main control-
ling factors of water hazards related to limestone water become
more important (Meng et al. 2012; Tripathy and Ala 2018; Wu
et al. 2017). Hydrogeochemical characteristics vary with rock–
water reactions such as leaching and mixing; therefore, these
characteristics are directly related to the lithology (Ghesquière
et al. 2015; Frape et al. 1984). If the hydrochemical method is
used for water source identification, different lithologies can be
identified, but water originating from similar lithologies (such as
limestone water, particularly) cannot be as easily identified.
Hence, the choice of the method for water source identification
is crucial to mine safety.

The selection of parameters in hydrochemical analyses
plays an important role in solving water-related problems.
PCA can be combined with other methods to solve research
problems such as water source identification (Zhang et al.
2012; Lu et al. 2012).Moreover, the unit or parameter selected
differs from various studies (Howladar 2017; Huang et al.
2017; Wen et al. 2014; Zhou et al. 2010). Although different
methods have been compared, no comparison of the results
obtained using different units is available. Unlike the unit
milliequivalents per liter (mEq/L), the unit milligrams per liter

(mg/L) indicates absolute concentration. Therefore, theoreti-
cally, usingmilliequivalents per liter is more appropriate when
solving certain problems as it can also indicate the character-
istics of other elements present.

This study focuses on the research results obtained using
a hydrochemical analysis method, either by itself or in com-
bination with PCA, and the selection of parameters and
units. The major objective is to study the identification ac-
curacy of similar limestone water or similar sandstone water.
Descriptive statistics, contrastive analysis, and statistical
methods are used in this study to determine the influence
of different methods, parameters, and units on identification
results. PCA was used to reduce the number of chemical
parameters, and HCA was used to test the sample grouping.
The hydrochemical analysis result shows that the Piper and
Stiff diagrams are useful for presenting sample characteris-
tics, and the hydrogeochemical types are SO4-Na·Ca, SO4-
Na, SO4·HCO3-Na, and HCO3-Na. Further, other conclu-
sions were drawn to explain the results under different
conditions.

Methods and materials

Study area

The Xinwen coalfield is located in Tai’an, Shandong Province,
China (Fig. 1). It lies on the axis of the Xinwen syncline; there-
fore, the faults are well developed here. Statistically, there are 23
medium–large faults in this area and numerous small faults. The
strata in the study area are terrestrial and oceanic mutual coal-
bearing deposits of North China Permo-Carboniferous type. The
average thickness of the confined limestone aquifers is less than
10 m, but the Ordovician limestone is about 800 m. The lime-
stone serves as the roof aquifer or the floor aquifer and can easily
act as direct water inrush sources. Some water flow records of
the Ordovician limestone over the past 4 years are presented in
Table 1.

Water sampling and hydrology analysis

Limestone water was sampled from the Ordovician limestone
and Xujiazhuang limestone aquifers, and sandstone water was
sampled from the Lower Jurassic sandstone and the roof sand-
stone of the lower seam no. 3 in the Jining coalmine. The
physical parameters and major ions were determined for sta-
tistical evaluation.

The water samples were collected and scattered the re-
search aquifers based on the drilling distribution in mine area.
Some physical and chemical indices such as water tempera-
ture, pH, and conductivity can be measured on the spot by
sensors. And then, the filtered water samples were sent to
the testing center for sample analysis. The anions were tested
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by an ion chromatograph, and the cations were tested by an
inductively coupled plasma emission spectrometer.

The Piper trilinear diagram (Piper 1944) is one of the most
useful graphical representations in groundwater quality stud-
ies. This diagram helps one to understand the geochemical
characteristics of groundwater. The Durov diagram improves

upon the Piper trilinear diagram and incorporates total dis-
solved solids (TDS) and pH. The geochemical characteristics
of groundwater can be clearly seen by plotting the cation and
anion concentrations in the Piper trilinear diagram.

The Stiff diagram is also a graphical representation of
chemical analyses (Stiff 1951). It is used to display the major

Fig. 1 Geographic location of the Zhaizhen coalmine

Table 1 Water flow records over 2010–2013

Sources of water inflow Position

7th panel Central water sump No. 1 Ordovician limestone hole No. 3 Ordovician limestone hole
Sand water of roof
and floor (m3/min)

Gravel or sand
water (m3/min)

Ordovician limestone
water (m3/min)

Ordovician limestone
water (m3/min)

January 2010 0.20 0.59 0.95 3.14

June 2010 0.19 0.64 0.83 2.85

December 2010 0.19 0.65 0.89 2.94

June 2011 0.18 0.65 52.80 176.20

December 2011 0.19 0.64 50.69 170.99

June 2012 0.18 0.63 51.72 177.36

December 2012 0.18 0.61 51.30 173.28

January 2013 10.32 36.97 52.07 174.36
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ion composition of a water sample. A polygonal shape is
created from four parallel horizontal axes extending on either
side of a vertical zero axis. Cations and anions are plotted on
each side of the zero axes. Stiff diagrams are useful in making
a rapid visual comparison of different water sources. They can
help in determining flow paths or showing changes in the
ionic composition of a water body over space or time.

Statistical analysis

The multivariate method was used to deal with sample data
and compare four types of water. To compare the water groups
and different methods, PCA and HCAwere used. With HCA,
the samples can be grouped into significant clusters effectively
based on the data of chemical parameters. Therefore, HCA
was used to test the water samples in this study. PCA is useful
for dimensionality reduction and was used to determine the
various sources between parameters. SPSS 21.0 was used to
analyze water samples and perform HCA and PCA calcula-
tions. The details of PCA are given below.

Step 1: Normalize the original dataset by computing x−x,
where x is a d × 1-dimensional vector representing

one sample data and x is the d × 1-dimensional mean
vector of the whole dataset.

Step 2: Compute the covariance matrix of the normalized
whole dataset.

Step 3: Compute the eigenvectors (ν1, ν2,…, νd) and the
corresponding eigenvalues (λ1, λ2,…, λd) for the
covariance matrix such that ∑v = λv.

Step 4: Sort the eigenvectors by decreasing the eigenvalues
and choose the top k eigenvectors to obtain a d × k-
dimensional matrix V consisting of the chosen
eigenvectors.

Step 5: Project the original dataset into the new subspace by
computing y = V′x, where y is the transformed k × 1-
dimensional sample in the new subspace.

Results

Hydrochemical characteristics

The hydrochemical characteristics of Ordovician limestone
water (I), Xujiazhuang limestone water (II), Lower Jurassic
sand water (III), and sand water in the roof of the lower

Table 2 Hydrochemical characteristics of limestone water

Item Ordovician limestone water (I) Xujiazhuang limestone water (II)

Mean Max Min SD CV Mean Max Min SD CV

Na 285.26 655.30 212.03 101.33 0.36 265.81 291.27 233.37 16.29 0.06

12.41 28.5 9.22 4.41 0.35 11.6 12.9 10.2 0.77 0.06

K 31.70 72.81 23.56 11.26 0.36 29.53 32.36 25.93 1.81 0.06

0.81 1.86 0.60 0.28 0.35 0.76 0.83 0.66 0.05 0.06

Ca 326.67 1847.93 164.13 409.57 1.25 203.18 236.93 165.99 21.94 0.11

16.3 92.2 8.19 20.43 1.25 10.14 11.8 8.28 1.10 0.11

Mg 53.14 79.8 4.78 19.44 0.37 56.73 84.61 26.90 13.84 0.24

4.37 6.57 0.39 1.60 0.36 4.67 6.69 2.21 1.14 0.24

Fe 0.45 1.00 0 0.35 0.75 0.44 0.9 0 0.35 0.79

0.016 0.036 0 0.01 0.75 0.02 0.03 0 0.01 0.79

NH4 0.025 0.09 0 0.02 0.98 0.02 0.08 0 0.02 1.07

0.001 0.005 0 0 0.98 0.001 0.004 0 0.001 1.15

Cl 91.55 136 71.43 19.36 0.21 94.33 140.00 76.75 1931 0.20

2.58 3.84 2.01 0055 0.21 2.66 3.95 2.16 0.55 0.21

SO4 1173.65 2291.79 988.57 327.01 0.28 1106.55 1211.75 1008.32 73.39 0.07

24.42 47.7 20.6 6.80 0.28 23.03 25.2 21 1.53 0.07

HCO3 124.60 224.92 81.28 32.09 0.26 116.17 138.88 94.83 14.37 0.12

2.04 3.69 1.33 0.53 0.26 1.90 2.28 1.55 0.24 0.12

pH 7.59 8.40 6.00 0.68 0.89 7.34 8.30 5.35 0.868 0.12

TDS 2024.75 3663.94 1613.08 622.45 0.31 1814.68 1965.83 1667.23 101.96 0.06

The units for ion concentration are mg/L (upper) and mEq/L (lower), and for TDS, mg/L

SD standard deviation, CV coefficient of variation

58 Page 4 of 12 Arab J Geosci (2019) 12: 58



seam no. 3 (IV) as obtained using the descriptive statistical
method are listed in Tables 2 and 3. Graphical representa-
tions of the chemical analyses of the four types of water are
shown in Fig. 2, which contains the Piper, Durov, and Stiff
diagrams.

The listed data and analyzed results show that the major
cations of Ordovician limestone water and sand water are
dominated by Na and Ca. The major anion of the two types
of limestone water is dominated by SO4. The major anions of
Lower Jurassic sand water are SO4 and HCO3, and the leading
anion of sand water in the roof of the lower seam no. 3 is
HCO3. The major cations contribute 28.53%, 25.85%,
19.81%, and 26.99% of the total dissolved solids of water
types I–IV, respectively. The major anions contribute
59.18%, 60.95%, 59.53%, and 65.58% of the total dissolved
solids of water types I–IV, respectively. The standard devia-
tion and coefficient of variation reflect the dispersion degree
of the data.

There is a slight difference between the two types of lime-
stone water. Limestone is a carbonate deposition, and the

water–rock interactions are closely related to the lithology, such
as dolomitic limestone or simply limestone. Comparison of the
two types of sand water shows that the two differ even though
they originate from sand aquifers. The differences arise depend-
ing on time, channels, temperature, etc., and these differences
can affect the rock–water interactions. The percentage of sodi-
um and the sodium adsorption ratio can be used to assess water
quality.

To identify the four types of water clearly, Table 4 presents
the sample analysis results: water type, conductivity, salinity
hazard, sodium adsorption ratio (SAR), and exchangeable so-
dium ratio (ESR). Table 4 also lists the features of the four
types of water: the two limestone water samples differ in water
type and conductivity, and the two sandstone water samples
have clearly different water types, SAR, and ESR. Thus, the
two sandstone water types are easily distinguished, whereas
discriminating between the two limestone water types is com-
paratively difficult. Limestone water and mixed water identi-
fication still remains a challenge for mine water inrush source
identification.

Table 3 Hydrochemical characteristics of sandstone water

Item Sand water of the Lower Jurassic (III) Sand water in the roof of the lower seam no. 3 (IV)

Mean Max Min SD CV Mean Max Min SD CV

Na 298.93 504.15 219.38 82.26 0.28 532.73 618.22 465.3 62.19 0.12

13.00 21.9 9.54 3.58 0.28 23.18 26.90 20.20 2.71 0.12

K 33.21 56.02 24.38 9.14 0.28 59.192 68.692 51.70 6.91 0.12

0.85 1.43 0.62 0.23 0.28 1.52 1.76 1.32 0.18 0.12

Ca 71.16 209.78 7.56 60.99 0.90 3.91 4.80 2.13 0.83 0.21

3.37 10.50 0.38 3.04 0.91 0.20 0.24 0.11 0.04 0.21

Mg 15.92 47.02 5.16 12.49 0.78 1.86 3.64 0.95 0.93 0.50

1.31 3.87 1.43 1.03 0.78 0.17 0.30 0.08 0.08 0.45

Fe 0.20 0.32 – 0.07 0.38 0.55 1.10 – 0.55 1.00

0.007 0.09 – 0.02 2.61 0.01 0.04 – 0.02 1.41

NH4 0.22 0.4 0.04 0.10 0.45 0.298 1.00 0.02 0.34 1.13

0.01 0.06 0 0.01 1.04 0.02 0.06 0 0.03 1.41

Cl 39.24 63.17 18.75 8.85 0.23 60.19 71.91 41.71 10.97 0.18

1.11 1.78 0.53 0.25 0.23 1.70 2.03 1.18 0.31 0.18

SO4 569.30 1626.9 273.51 440.44 0.77 12.84 21.81 2.50 7.08 0.55

11.85 33.9 5.69 9.16 0.77 8.92 52.00 0.17 19.26 2.15

HCO3 351.51 587.18 138.16 141.61 0.40 1299.54 1617.30 1077.72 230.03 0.18

5.76 9.62 2.26 2.32 0.40 21.32 26.5 17.70 3.75 0.18

NO3 0.69 1.42 0.07 0.42 0.61 0.88 3.52 – 1.30 1.47

0.01 0.06 0 0.02 1.47 0.01 0.06 – 0.02 1.47

NO2 0.03 0.06 – 0.02 0.49 0.10 0.40 – 0.17 1.73

0 0.03 – 0.01 1.74 0 0.03 – 0.01 1.74

pH 7.90 8.30 7.40 0.23 0.03 8.30 8.50 8.20 0.10 0.01

TDS 1532.19 3089.85 1021.13 635.17 0.41 1972.79 2273.42 1707.98 218.518 0.11

The units for ion concentration are mg/L (upper) and mEq/L (lower), and for TDS, mg/L

SD standard deviation, CV coefficient of variation
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Fig. 2 Graphical representation
of chemical analyses. a Piper, b
Durov, and c Stiff diagrams
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The data in Tables 3 and 4 cannot provide any visual infor-
mation about the water samples. The hydrochemical analysis
results presented in Fig. 2 clearly show the differences be-
tween the water types. The water quality of different sand-
stone aquifers is different. It is also more easily distinguished
from the water quality of limestone aquifers. Limestone water
from different limestone aquifers can be distinguished on the
basis of the Durov and Stiff diagrams.

Hierarchical cluster analysis

HCA is used to group all the water samples into several sig-
nificant different clusters. As it is known that there are four
types of water, HCA can be used to test the water sample data
and determine whether the samples can be grouped into
hydrochemical groups. Therefore, samples that are improper
can be filtered before analysis to reduce the errors caused by
improper data.

Figure 3 shows the dendrogram generated using HCA.
There are five exceptional water samples (1, 3, 30, 41, and
43): samples 1 and 3 should belong to I, and samples 30, 41,
and 43 should belong to III. Furthermore, the following infor-
mation is derived: group 1 includes all six water samples of
type IV, group 2 includes 17 water samples of type III, and the
other three samples, namely 30, 41, and 43, are excluded. For
the limestone water samples, four samples are displaced and
error grouped.When the cluster standards of HCA are known,
samples 1, 3, 30, 41, and 43 can be removed from the total
water samples for hydrochemical analysis.

Principal component analysis

PCA is a statistical technique useful for finding patterns in
data represented in high dimensions, and the main process of
PCA is to find the directions that maximize the variance in the
dataset (Oh and Hildreth 2016; Verma 2013). As a multivari-
ate data analysis technique that mainly studies the inter-
structure of the correlation matrices of parameters, its funda-
mental purpose is compressing the original data to achieve
dimensionality reduction. Therefore, combinations of PCA
and other mathematical methods are used to solve a variety
of problems.

PCA was used to reduce the number of water chemical
parameters and to choose the principal component as a new

evaluation index system for hydrochemical analysis. One ob-
jective of the study is to check whether the results differ from
each other when different parameters are chosen. Therefore,
two parameter standards are chosen to conduct PCA. An ex-
ample of one case with parameters was used to understand the
process. Two components were extracted from this process.
The eigenvalues were 3.97 and 1.07, and the cumulative var-
iance explained by the two components was 84.03%, and
these two components explain 66.18% and 17.85% of the total
variance, respectively. The component matrix and the rotated
component matrix are presented in Table 5.

The first component was correlated with the ion concentra-
tions of Ca, Mg, and SO4. The second component was corre-
lated with the ion concentrations of Na + K and HCO3. The
eigenvector of the principal component was constructed based
on a component matrix, and then the expression of principal
components was derived.

Discussion

Identification with different parameters

In this study, two parameter groups were chosen to study the
influence of parameter selection on the analysis results. One
group (G1) contained seven major ions (Na + K, Ca, Mg, Cl,
SO4, and HCO3), and the other group (G2) contained param-
eters of Na + K, Ca, Mg, Cl, SO4, HCO3, Fe, NH4, TDS, and
pH. Samples that excluded the four particular cases were used
to carry out the contrastive analysis. The comparative results
are presented in Table 6.

Table 6 shows that two types of sandstone water were cor-
rectly classified by the method using different identification
indices, and six and three limestone water samples were
misidentified, respectively. According to the analysis results,
the return discriminant ratios of G1 and G2 are 88% and 94%,
respectively. Further, an analysis using parameters different
from G1 and G2 was conducted, and the result shows that
the classification results are the same as those for G1 when
using Na + K, Ca, Mg, Cl, SO4, HCO3, pH, and TDS as the
identification indices. The analysis results provide further
proof that sandstone water can be identified clearly. The re-
sults also show that some significant trace ions can affect the
classification to a certain extent.

Table 4 Data analysis of the four
types of water Item I II III IV

Water type SO4-Na·Ca SO4-Na SO4·HCO3-Na HCO3-Na

Conductivity (μmhos/cm) 2689.17 2432.45 1630.97 1724.38

Salinity hazard Very high Very high High Very high

Sodium adsorption ratio (SAR) 4.31 4.26 9.71 56.5

Exchangeable sodium ratio (ESR) 0.77 0.78 4.08 69.53
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Fig. 3 Dendrogram generated
from the HCA of water chemistry
data
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Identification with different units

Milligrams per liter and milliequivalents per liter are different
forms of ion concentration: the former indicates the absolute
concentration of ions, and the latter is a relative concentration.
Hence, the latter can better reflect the other trace ions. Two
units can be used to analyze water characteristics, but no com-
parative analysis has been studied. One objective of this study
is to check whether the units lead to different or similar re-
search results.

According to the analysis results, using parameters in G1

without TDS, the return discriminant ratios of milligrams per
liter and milliequivalents per liter, which are two different
forms of concentration, are 94% and 84%, respectively.
Table 7 lists that two types of sandstone water were all cor-

Table 5 Component matrix and varimax rotated component matrix

Variable Component matrix Rotated component matrix

1 2 1 2

Na + K − 0.551 0.775 − 0.067 0.948

Ca 0.934 0.216 0.910 − 0.302

Mg 0.905 0.255 0.906 − 0.253

Cl 0.632 0.360 0.727 − 0.022

SO4 0.912 0.168 0.866 − 0.331

HCO3 − 0.863 0.448 − 0.503 0.832

Table 6 Comparative results with different identification indices

Actual water source Sample ID Return discriminant results

G1 G2

Misidentified sample ID Prediction group Misidentified sample ID Prediction group

I 1–13 2 II* 2 II*
5 II*

9 II*

11 II*

II 14–24 20 I* 20 I*

21 I* 21 I*

III 25–44 – – – –

IV 45–50 – – – –

En dash indicates that all samples were correctly classified

* indicates the incorrect group

Table 7 Comparative results with different units

Actual water source Sample ID Return discriminant results

Units of mg/L (G3) Units of mEq/L (G4)

Misidentified sample ID Prediction group Misidentified sample ID Prediction group

I 1–13 2 II* 2 II*

5 II*

11 II*

12 II*

13 II*

II 14–24 20 I* 18 I*

21 I* 19 I*

20 I*

III 25–44 – – – –

IV 45–50 – – – –

En dash indicates that all samples were correctly classified

* indicates the incorrect group
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rectly classified, whereas three and eight limestone water sam-
ples were misidentified. Further, analysis with the unit
milliequivalents per liter but without the parameters of Fe
and NH4 was performed. The results obtained were identical
to those of G4. In this case, the use of milliequivalents per liter
appears inappropriate.

Identification with different combined methods

PCA can be combined with other mathematical methods for data
preprocessing and because of its function of parameter reduction.
In this study, PCAwas researched to know whether it is suitable
for hydrochemical analysis, and further analyzed when a combi-
nation of PCAwith other methods is suitable. With regard to the
return discriminant ratios of G1, G2, G3, andG4 and the correlation
of the identification indices, the data inG1were used to present this
study item. Ten identification indices (Na + K, Ca, Mg, Cl, SO4,
HCO3, Fe, NH4, TDS, and pH) were labeled as × 1, × 2, × 3, × 4,
× 5, × 6, × 7, × 8, × 9, and × 10, respectively. Table 8 presents the
comparative results of the different methods.

Table 9 presents the results of the Kaiser–Meyer–Olkin
(KMO) test and Bartlett’s test of sphericity, which indicates
whether the sample size used for the factor analysis was
adequate. The value of KMO is 0.5. Because the signifi-
cance value (p value) of Bartlett’s test is 0, which is < 0.01,

the value is significant, and the correlation matrix is not an
identity matrix. Thus, it may be concluded that the factor
model is appropriate. According to the operating steps men-
tioned in the section “Principal component analysis,” three
principal components are extracted, and the principal com-
ponent expressions are derived as shown in Eqs. (1)–(3).
The analysis results are presented in Table 8. The table
shows that the return discriminant ratio of the combined
PCA method is 88%, and that of the method without
PCA is 94%.

X 1 ¼ −0:18x1 þ 0:31x2 þ 0:45x3 þ 0:32x4

þ 0:41x5−0:38x6 þ 0:21x7−0:27x8

þ 0:21x9−0:29x10 ð1Þ
X 2 ¼ 0:60x1 þ 0:20x2 þ 0:09x3 þ 0:20x5 þ 0:25x6

þ 0:01x7 þ 0:37x8 þ 0:60x9 þ 0:04x10 ð2Þ
X 3 ¼ 0:17x1−0:19x2 þ 0:08x3 þ 0:43x4−0:21x5

þ 0:37x6 þ 0:68x7−0:25x8−0:08x9 þ 0:17x10 ð3Þ

Limitation of the work and future study

In this paper, the identification results of water sources under
different conditions are given to make a comparison. The ma-
jor purpose is to study the identification accuracy of similar
limestone water or similar sandstone water. Descriptive statis-
tics, contrastive analysis, and statistical methods are used in
this study to determine the influence of different methods,
parameters, and units on identification results. And, the re-
search shows that these differences can really cause changes
in identification results. PCA is the most common method

Table 8 Comparative results of the different methods

Actual water source Sample ID Return discriminant results

Method without PCA Method combined with PCA

Misidentified sample ID Prediction group Misidentified sample ID Prediction group

I 1–13 2 II* 3 II*

6 II*

7 II*

12 II*

II 14–24 20 I* 16 I*

21 I* 21 I*

III 25–44 – – – –

IV 45–50 – – – –

En dash indicates that all samples were correctly classified

* indicates the incorrect group

Table 9 KMO and Bartlett’s test

KMO measure of sampling adequacy 0.493

Bartlett’s test of sphericity

Approx. chi-square 514.579

df 45

Sig. 0.000
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used to eliminate the linear correlation between the parame-
ters, but it was not always appropriate to analyze the data.
Besides, the choice of original data and its representation are
also important to the results. Different methods and discrimi-
nation index are used to do the study but seldom probe into
whether it is appropriate. And, this study may bring a discus-
sion on it.

In this study, three conditions are considered to discuss the
discriminationmodel, but there must be some other reasons that
caused the different results. Although lots of methods have been
used quite mature, its application condition should make deep
research all the time. Water problems account for most of the
mine hazards, and its research has always been the focus.
Basically, the hydrochemical analysis is necessary for dealing
with such issues. Therefore, how to make the analyzing results
more accurate should be considered in the future study.

Conclusions

To study the application of hydrochemical analysis in water
source identification, especially for similar water, samples of
limestone water from the Ordovician limestone and
Xujiazhuang limestone aquifers and samples of sandstone wa-
ter from the Lower Jurassic sandstone and the roof sand water
of the lower seam no. 3 were obtained and analyzed.
Graphical representations are used to show the hydrochemical
characteristics of the four types of water. HCA was used to
group several clusters and test the water samples. PCA was
used to reduce the number of water chemical parameters and
compare the different parameters.

According to the results of hydrology analysis, limestone
water can be easily distinguished from sandstone water
based on the Piper and Stiff diagrams, and the two types
of sandstone water (III and IV) differ from each other more
clearly than the two types of limestone water (I and II).
Further, the hydrochemical types of the four types of water
are SO4-Na·Ca, SO4-Na, SO4·HCO3-Na, and HCO3-Na,
respectively.

HCA is an effective method for sample grouping and was
used to test the water samples. The cluster results show that
most of the water samples are correctly grouped. Several cases
were excluded in the analysis to reduce errors.

The three groups of the contrastive analysis show that trace
ions can affect the discriminant results. Although the unit
milliequivalents per liter indicate relative concentration, this form
does not have useful effects on the discriminant results. Data
used in this paper are appropriate for factor analysis, which is
based on KMO and the significance value of Bartlett’s test, but it
has an inverse result compared to the original data.
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