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(western Algeria) region: seismotectonic implication
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Abstract
Northwestern Algeria, Tell Atlas chain, belongs to the converging Africa-Eurasia plate boundary. Several active
faults have been previously identified and several earthquakes occurred in the past. In the present study, seismites
are observed in the Quaternary deposits. The identified seismites include injection sand dykes, pillar structures,
pillow structures, load-cast structures, water escape structures, sismoslumps, thixotropic wedges, and thixotropic
bowls. The following arguments support their seismic origin: (i) presence of active faults able of producing strong
earthquakes, (ii) the granulometric characteristics of the deposits are favorable to liquefaction, (iii) the observed
features, mainly those related to water escape structures, are comparable to those observed in modern earthquakes.
Therefore, such features are evidence of the occurrence of earthquakes of M > 5.5 magnitude in this study area,
which may occur in the future.
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Introduction

Seismites are soft-sediment deformation structures
(SSDS) induced by seismic shocks (Seilacher 1969), in
recent, not yet compacted deposits (Plaziat and
Ahmamou 1998; Montenat et al. 2007; Owen and
Moretti 2008; Ezquerro et al. 2015). In some cases,
these deformations may also affect the hardened rocks
by means of hydro-fracturing (Montenat et al. 2007).
Seismites can be found in different geological ages;
nevertheless, Quaternary seismites are interesting to
study because they can be used in seismic hazard stud-
ies (Sims 1975; Obermeier et al. 1985; Obermeier 1996;
Marcos et al. 1996; Mc Calpin and Nelson 1996;
Hibsch et al. 1997; Bowman et al. 2001; Ken-Tor
et al. 2001; Jewell and Ettensohn 2004; Owen and
Moret t i 2011; Owen et a l . 2011) . In Alger ia ,

liquefaction features were reported for the historical
Djidjeli earthquake of 1856 (Mokrane et al. 1994;
Harbi et al. 2011) and were observed during the El
Asnam 1980 earthquake (surface wave magnitude,
Ms = 7.3) and the Zemmouri 2003 earthquake (moment
magnitude, Mw = 6.8) (Philip and Meghraoui 1983;
Bouhadad et al. 2004; Bouhadad 2007). Study of
seismites in Algeria is relatively recent. In the Algiers
region, Djediat et al. (1995, 2011) described seismites in
the Tyrrhenian marine terrace deposits. Bouhadad et al.
(2009) observed Holocene liquefaction-induced features
in the epicentral area of the Zemmouri earthquake
(Mw = 6.8) occurred on 21 May 2003. In western
Algeria, seismites were described in several works
(Bouhadad 2006, 2007, 2013a; Boukhedimi et al.
2016) while in Eastern Algeria, seismites and
paleoliquefaction features were described in the Jijel
r e g i o n b y Benh amou c h e e t a l . ( 2 0 1 3 ) a n d
Benhamouche (2016). Sand escape and intrusion struc-
tures, related to liquefaction, are the most known forms
of seismites throughout the world (Estevez et al. 1994;
Munson et al. 1995; Obermeier 1996; Alfaro et al.
2001; Bezerra et al. 2005). The seismites can also be
found in nodules and concretion form (Bachmann and
Aref 2005; Merriam and Neuhauser 2009) as well as in
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Table 1 List of earthquakes
occurred in northwestern Algeria
(Benouar 1994; Mokrane et al.
1994; Ayadi and Bezzeghoud
2015)

Location Date (dd/mm/yyyy) Lat (° N) Long (° E) I (intensity) M/Mw

Mitidja 03/02/1716 36.70 3.10 X –

Oran 09/10/1790 35.70 − 0.70 X 6.5–7.5

Mascara --/03/1819 35.4 − 0.1 X –

Blida 02/03/1825 36.40 2.80 X–XI –

Mascara 22/11/1851 35.4 − 0.1 VIII –

Blida 15/05/1854 36.4 2.7 VII 7

Mouzaia ville 02/01/1867 36.42 2.68 X–XI –

El Affroun 23/03/1876 36.5 2.6 VII 7

El Kalaa (Relizane) 29/11/1887 35.6 0.3 IX–X –

Gouraya 15/01/1891 36.50 1.80 X 7.5

Moudjebeur 23/09/1903 36.00 2.8 VIII 5.6

Blida 04/03/1931 36.4 2.7 VIII –

Orleansville 09/09/1954 36.29 1.52 X 6.7

Chiffa 09/01/1957 36.4 2.7 VI –

Oued Djer 07/11/1959 36.40 2.5 VIII–IX 5.6

Sig (Mascara) 13/07/1967 35.5 − 0.1 VIII 5.1

El asnam 10/10/1980 36.16 1.41 X 7.3

Tipaza 29/10/1989 36.61 2.33 VIII 6.0

Mascara 18/08/1994 35.40 − 0.03 VIII 5.7

Ain Temouchent 22/12/1999 36.93 3.58 VII 5.8

Tadjena (Chlef) 16/12/2006 36.28 1.22 VI 5.2

Oran 06/06/2008 36.06 − 0.64 – 5.5

Chlef 18/06/2008 36.21 1.16 – 4.5

Mostaganem 22/05/2014 35.725 0.259 – 4.9

Fig. 1 Seismotectonic setting of the studied area. Seismicity is from
Ayadi and Bezzeghoud (2015) and active faults are from Meghraoui
et al. (1988), Bouhadad (2001), and Belabbès et al. (2009). Focal mech-
anisms (a), (b), and (h) are from Global CMT (centroid-moment tensors)

catalog (c) from Mednet; (d) from McKenzie 1972 (in Maouche 2010);
(e) from Abbouda et al. 2018; (f) and (g) Beldjoudi 2011; (i) from
Espinoza and Lopez-Arroyo 1984 (in Maouche 2010). The transparence
rectangle indicates the studied area
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dish structure form (Plaziat and Ahmamou 1998).
Empirical relationship of liquefaction occurrence versus
fault distance has been proposed by several authors
(Kuribayashi and Tatsuoka 1975; Youd 1977; Youd
and Perkins 1978; Ambraseys 1988; Papadopoulos and
Lefkopoulos 1993).

Seismic effects on sediments may be subdivided into sev-
eral classes: (i) sedimentary perturbations which result from
gravitational phenomena (Seed 1968; Cita and Ricci Lucchi
1984; Keefer 1984; Mutti et al. 1984; Sauret and Bousquet
1984; Kleverlaan 1987; Montenat et al. 1987; Montenat et al.
2007; Bouhadad et al. 2010), (ii) fracturing and filled cracks in
hardened rocks such as broken stalactite and stalagmites, (iii)
soft-sediment deformation in loose sediments due to seismic
shocks known as senso stricto seismites. On the other hand,
seismites are modeled by shaking table tests to understand the
triggering mechanism (Moretti et al. 1999).

The seismites can be useful to assess seismic poten-
tial of active geological structures because they

correspond to indirect induced effects of historical earth-
quakes. The aim of this work is to describe and place
the seismites observed in Mostaganem and Relizane re-
gions, located in northwestern Algeria, in their
seismotectonic context.

Seismotectonic and geological setting

Northwestern Algeria is a part of the Tell Atlas chain of
Algeria that belongs to the Africa-Eurasia tectonic plate
boundary that forms a deformed band of about 100 km width.
The amount of NW-SE shortening amount is estimated at 6–
8 mm/year (De Mets et al. 1990; Nocquet and Calais 2004).
The strongest earthquakes known in this region are the
October 9, 1790, Oran earthquake (I0 = X); the 1819 (I0 = X)
and 1851 (I0 = VIII) Masacra earthquakes; and the 1887 El
Kalaa earthquake (I0 = IX–X) (Table 1 Philip and Meghraoui
1983; Vogt and Ambraseys 1991; Meghraoui et al. 1988;

Fig. 2 Extract geological map of Algeria (2nd ed. 1952) sheet Oran—North at 1:50,0000 and the active faults are from Meghraoui et al. (1988)
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Mokrane et al. 1994; Bouhadad 2013b; Ayadi and
Bezzeghoud 2015). Recently, this area was hit by moderate
earthquakes of Oran (1959, Ms = 5.6); Mascara (1994, Mw=
5.6), and Ain Temouchent (1999, Mw= 5.6) (Benouar 1994;
Bezzeghoud and Buforn 1999; Yelles-Chaouche 2001;
Belabbès et al. 2009) (Fig. 1). Several active reverse faults
related to the folds were identified in this region (Bouhadad
2001; Belabbès et al. 2009).

Quaternary deposit distribution
in the studied area

The study area deposits are from Villafranchian (Upper
Pliocene–Lower Pleistocene) to the present. They may be dis-
tinguished (Figs. 2 and 3) (Thomas 1985): (i) recent alluvial
deposits observed along rivers and lakes beds. They are repre-
sented by limons and gypsum crusts, (ii) recent coastal-dune,

Fig. 3 Lithostratigraphic log of the Quaternary deposits of the Mostaganem-Relizane region (in Hassani 1987) and Quaternary chronology by Texier
et al. (1985)
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(iii) river plain deposits (Habra and Mleta plains), formed by
brown or gray clays with calcareous intercalation, (iv) marine
Quaternary deposits represented by ancient beaches and
Tyrrhenian marine dunes that outcrop in Arzew and
Mostaganem. In Algeria, the Tyrrhenian age of marine quater-
nary deposits has been advanced by various authors (De
Lamothe 1911; Dalloni 1953; Aymé 1948, 1952 Thomas
1985). This age is attested by a fauna characteristic of the
Tyrrhenian including the Strombus (Strombus bubonius)
(Maouche 2010). Strata marine at Strombus bubonius and
Conus testutlinarius is observed in western part of the Arzew
Gulf by De Lamothe (1911), (v) marine Calabrian deposits
tilted and affected by recent folding that well developed in the
Mostaganem Plateau. They are formed by sandstone and asso-
ciated dune, (vi) outcrops of Villafranchian deposits in the
Mostaganem Plateau composed by red limon, lacustrine calcar-
eous, and clay. Most seismites observed in the field have been
found in Pleistocene marine terrace deposits.

Seismites in the studied area

Field geological work allowed us to identify various types of
seismites found in Quaternary deposits, including
Holocene alluvial and Pleistocene marine terraces de-
posits in the Mostaganem and Relizane regions (Fig. 4).
In favorable geological, hydrogeological, and geotechni-
cal site conditions, soils may liquefy during seismic
shaking (Youd and Perkins 1978; AFPS 1995; Youd
1998; CDMG 1999; Seed et al. 2003). The soil liquefac-
tion susceptibility depends on the nature and the geolog-
ical age of the deposits, geotechnical characteristics of
the deposits and the depth of the static groundwater table
(Youd and Perkins 1978; AFPS 1995; Bourenane et al.
2017). Occurrence of liquefaction needs moderate mag-
nitude (M > 5.0) earthquakes (Ambraseys 2008). The
characteristic structures of the liquefaction phenomenon
such as dykes, sills, sand volcanoes, and disharmonic

Fig. 4 Geographical location of the identified seismites (province boundary from INCT: National Institute of Cartography and Remote Sensing (Algeria)
and waterway from geological map of Algeria (2nd ed., 1952) Oran—North at 1:50,0000)
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folds result from stratification destruction by fluidization
and related settlement at the surface that causes faults and
fractures.

The fluidized sand can escape either vertically or laterally
as seen during the Zemmouri 2003 earthquake (Mw, 6.8). The
identified seismites in study area are essentially injection
dykes, pillar structures, pillow structures, load-cast structures,
water escape structures, sismoslumps, thixotropic wedges,
and thixotropic bowls.

Injection dykes

They are typical example of structures generated by overpres-
sure water (Montenat et al. 2007). The dynamics of injection
dykes result from a combination of fluidization phenomena
and hydro-fracturing (or hydraulic jacking) (Lowe and
LoPiccolo 1974; Lowe 1975, 1976; Cosgrove 1995).
Figure 5a shows an injection dykes of fine sand along the
fractures and cracks crossing the stratification in Tyrrhenian
deposits and Fig. 5b shows an injection of the liquefied fine
material through cracks and laterally spreading between the
stratification to form a sill in Holocene deposits. Pillar

structures are a category of limited extension injection dykes,
which usually affect single strata. They are formed when soft
sediments likely to be liquefied are covered with consolidated
and resistant layers. Figure 6 shows cylindrical pillar struc-
tures of a few centimeters in diameter in Holocene deposits.

Fig. 5 Injection dyke. a In the Tyrrhenian marine terrace (site 2). b In the
Holocene deposits (site 4) (dot inside the circle indicates the North is
back)

Fig. 7 Pillow structures. a In the Tyrrhenian terrace marine (site 1). b In
the Holocene deposits (site 4) (dot inside the circle indicates the North is
back)

Fig. 6 Pillar structures observed in Holocene deposits (site 4) (dot inside
the circle indicates the North is back)
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Pillow structures

These structures also known as diapir-like structures have
been extensively discussed in the literature (Pettijohn and
Potter 1964; Reineck and Singh 1980; Hempton and Dewey
1983; Allen 1986; Moretti et al. 1995; Montenat et al. 2007).
They consist of regular portions of beds, locally sheared
and deformed by sills injected upward from an underlying
liquefied level. Each part the bed looks like small pillows
which are made up of a succession of alternating sand and
silt. In the study area, pillow structures are observed in
different sites. Figure 7a shows a pillow structure in lami-
nated sandy horizon of the Tyrrhenian marine terrace while
Fig. 7b shows a pillow structure in Holocene deposits
formed by stratified sandstone.

Load-cast structures

They are a variety of deformation structures in soft sediments
of seismic origin (Sims 1975). Load cast is the expression
that refers to a load sinking into its underlying cast (mold).

The load casts can develop the pseudo-nodules, ball, and
pillow structures and they do not have regular morphology.
The size of the structures ranges between 5 and 50 cm. They
develop in sand beds overlying very clayey silt (Alfaro
et al. 1997). These structures are observed in the

Fig. 8 Load-cast structures in Tyrrhenian terrace marine (a, b site 1) (dot
inside the circle indicates the North is back)

Fig. 10 Sismoslumps. a In the Tyrrhenian terrace marine (site 1). b In the
Holocene deposits (site 4) (dot inside the circle indicates the North is
back)

Fig. 9 Water escape structures in the Tyrrhenian marine terrace (site 1)
(dot inside the circle indicates the North is back)

Arab J Geosci (2018) 11: 641 Page 7 of 13 641



Tyrrhenian marine terraces formed by fine sand forming a
succession of balls which was previously a sandy layer
interposed between two clayey beds before the seismic
shock. These structures can be between the load-cast struc-
tures and the pseudo-nodules structures (Fig. 8a, b).

Water escape structures

Water seepage, liquefaction, and fluidization are three pro-
cesses of water escape which characterize the consolidation
of silt-, sand-, and gravel-sized sediments (Lowe 1975). The
rising liquefied sand through interconnected or isolated
ground cracks is stopped by indurate layers (Lowe 1975).
Figure 9 shows water escape structure in stratified sandy ho-
rizon of Tyrrhenian marine terraces.

Sismoslumps

They represent the recumbent of folds resulting from liquefac-
tion, which generally correspond to small structures of milli-
meter to decimeter size in environments devoid of any evi-
dence of slopes (Montenat et al. 2007). These structures are
common in both the Tyrrhenian marine terraces (Fig. 10a) and
Holocene deposits (Fig. 10b).

Thixotropic wedges

These structures are developed in fine sandy to pebbly de-
posits, often including shells or shell debris, and are formed
within the sediments that are relatively close to the surface
(Montenat et al. 2007). In the Tyrrhenian marine terraces
(Fig. 11a) and in the Calabrian deposits (Fig. 11b), these

Fig. 11 Thixotropic bowls
developed in the Tyrrhenian
marine terrace (a, b site 1; c site 2)
(circle with a dot in indicates the
North is back)
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structures correspond to a mass collapse with stepped edges
that intersect the underlying stratification deformed V-shaped,
initially horizontal.

Thixotropic bowls

These features correspond to hollows with asymmetric dip-
ping related to the tilting of sediments contemporaneous with

formations of the Bbowls^ (Montenat et al. 2007). These
structures are observed in Tyrrhenian marine terraces
(Fig. 12a–c).

On the other hand, we performed a granulometric analysis
(Table 2) of the deposits where seismites (mainly those related
to liquefaction and/or fluidization) have been observed in or-
der to assess their susceptibility to liquefaction. Two samples
were collected in Tyrrhenian marine terraces, at the beaches of
Sidi Mansour (Sm) and Stidia (St) (west of the Mostaganem)
and two others were taken from the Holocene deposits of
Akboub (B1 and B2) (Fig. 4). The obtained granulometric
curves (Fig. 13) indicate that the deposits are susceptible to
liquefaction (Ishihara 1985).

Discussion and conclusion

In this work, we describe soft-sediment deformation features
observed following a field work search. Indeed, several kinds
of soft-sediment deformation structures were observed in
Quaternary deposits of the Mostaganem-Relizane (western
Algeria) regions. The observed structures include injection
dyke, pillar structures, pillow structures, load-cast structures,
fluid escape structures, sismoslump, thixotropic wedges, and
thixotropic bowls. Such features may have several origins
such as sedimentary origin, impact origin, and seismic origin
(Moretti et al. 1995, 2002; Plaziat and Ahmamou 1998; Alfaro
et al. 1999, 2002; Moretti 2000; Montenat et al. 2007; Moretti
and Sabato 2007; Spalluto et al. 2007; Moretti and Ronchi
2011). Several arguments support the seismic origin of the
various types of observed seismites including the following:
(i) the presence of active faults able to produce moderate to
strong (M > 5) earthquakes in the area, (ii) the deposits are
susceptible to liquefaction as may be suggested by the
granulometric characteristics, (iii) the observed features,
mainly those related to fluid escape structures, are comparable
to those observed in modern earthquakes (Philip and
Meghraoui 1983; Bouhadad et al. 2004). On the other hand,

Fig. 12 Thixotropic wedges developed in the Tyrrhenian marine terrace
(a site 2, b site 3) (circle with a dot in indicates the North is back)

Table 2 Granulometric analysis of samples from the study area (Sm,
SidiMansour beach; St, Stidia beach; B1, Akboub waterway;B2, Akboub
waterway)

Sieve
sizes
(mm)

Cumulative
percent
(sample: Sm)

Cumulative
percent
(sample: St)

Cumulative
percent
(sample: B1)

Cumulative
percent
(sample: B2)

1 100 100 100 100

0.500 90.23 99 98.84 98.04

0.250 44.09 36.7 86.4 80.27

0.125 10.56 5.16 18.96 20.54

0.08 1.44 1.58 0.59 9.47

0.063 1.18 1.43 0.4 7.42
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the presence of Strombus bubonius (Tyrrhenian indicator fos-
sil) cited by De Lamothe (1911) and Thomas (1985), in the
deposits where seismites were observed, suggests a deposit
depth of 15 to 20 m, which implies a supratidal to intertidal
environment which is relatively calm, protected from wave
shocks and strong turbulence that ruled out the sedimentary
(sea waves) origin. The observed seismites are, therefore, like-
ly related to the activity of the surrounding active faults.
Consequently, they can be used to assess their present-day
seismic potential.
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