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Abstract
Cerchar abrasion index (CAI) value is one of the most important test parameters for determining the abrasion value of a cutter or
drilling bit. This study aims to present the relation between CAI and various geomechanical properties of building stones. Herein,
single and multiple regression analyses were performed to determine the best measure of the relation between CAI and three
geomechanical properties. The CAI value is strongly related to the Shore hardness. However, the correlation coefficient increases
when we jointly consider the Shore hardness, porosity, and uniaxial compression strength of rock. On the contrary, the analyses
results show that the significance level of the CAI value is lower when the CAI value is less than 1. The correlation between CAI
and Shore hardness is higher when the CAI values greater than 1 are considered. Also, the R2 value increases from 0.843 to 0.946
in multiple regression analysis.
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Introduction

Natural stones are commonly used building materials, and
the cutting operation is very important in the processing
and production of natural stones. The Cerchar abrasivity
index (CAI) value is well known as a crucial factor for
determining the cutting process performance of natural
building stones, particularly the selection of cutting mate-
rials. Additionally, to determine rock abrasiveness, the
CAI value is commonly used.

Abrasion influences the wear life of cutting tools in
any rock excavation operation, where small holes are
drilled for blasting large-diameter tunnels, which are
bored by tunnel boring machines (TBMs). Abrasion and
wear are vital parameters for determining the lifetime of

the drilling rods/bits or cutter in mining and industrial
applications. Various rock abrasion measures have been
introduced over the years to help engineers estimate tool
life. As the wear life of rock cutting tools often has a
linear relation with the degree of rock abrasion, any var-
iation in these measurements will have a direct and pro-
portional impact on the estimated tool life, operational
duration, and related costs (Rostami et al. 2014). The fac-
tors affecting rock abrasivity are as follows: mineral com-
position, grain shape and size, hardness of rock minerals,
type of matrix material, and the physical and mechanical
properties of rocks, such as strength, hardness, and tough-
ness (Singh and Ghose 2016). CAI is one of the easiest,
most convenient, and most reliable tests for determining
the abrasiveness of rocks (Tripathy et al. 2015), and the
performance of excavators and cutting machines can be
predicted using the CAI value.

CAI was developed in the 1970s by the Centre d’Etudes et
Recherches des Charbonages (CERCHAR) de France, and the
test procedure was first published in 1986 (Cerchar 1986).
Currently, two types of testing devices are used to determine
CAI values: CERCHAR apparatus and the West apparatus. In
both devices, a rock specimen is held in a vise and a stylus
with a 90° conical tip loaded with a static force of 70 Nmoves
over the rock surface at a velocity of 10mm/s while scratching
it. This procedure is repeated for at least five times on each
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surface. The length of the wear flat is measured with a micro-
scope, and the CAI value is calculated using Eq. 1 as follows:

CAI ¼ 1

10
∑
5

1
di; ð1Þ

where di is the diameter of the abraded flat area measured in
0.1-mm units (ASTMD7625 2010; Alber et al. 2014). Table 1
shows the CAI-based classification of abrasivity established
by the International Society for RockMechanics (ISRM) 2015
(Alber et al. 2014).

CAI continues to be studied by many researchers. One of
the earliest CAI studies was conducted by Suana and Peters
(1982), where the CAI values were predicted on the basis of
the equivalent quartz content, as determined in thin-section
analyses. West (1989) studied the relation between the quartz
content and CAI value of rocks and reported that the quartz
content is the main parameter influencing the CAI value. Al-
Ameen andWaller (1994) reported the CAI value to be broad-
ly related to rock strength. Plinninger et al. (2004) studied the
correlation between the CAI and other wear-relevant parame-
ters. The authors determined that although CAI is a quick and
simple testing method for rock abrasivity classification, the
Cerchar test has some weaknesses with respect to predicting
wear. Alber (2008) demonstrated the effect of stress on CAI
and proposed a new approach for estimating tool wear life
based on the determination of the stress-dependent CAI value.
Lassnig et al. (2008) reported the CAI value to be independent
of grain size. Yaralı et al. (2008) investigated the relations
between the CAI and petrographic properties of coal and
found a linear relation between the CAI values of rocks and
their quartz content, degree of cementing, equivalent quartz
content, and quartz grain size. Kahraman et al. (2010) used a
number of indirect methods to predict the uniaxial compres-
sion strength and elastic modulus of Misis Fault Breccia, as
well as the CAI, using regression and artificial neural
networks analysis. Deliormanli (2012) revealed the relation
between the CAI value, strength, and wear properties of
marble stones. Moradizadeh et al. (2013) studied the relation
between the CAI value and the equivalent quartz content,
grain content, and several geomechanical properties, such as
the point load strength index, slake durability index, and

moisture content in sandstone rocks in Iran. Kahraman et al.
(2015) used the CAI and other non-destructive methods as
well as regression analysis to investigate the predictability of
differential stress values (Δσ) in Misis Fault Breccia. The
authors determined that applying a multiple regression model
that included the CAI value increases the model reliability for
predicting Δσ in Misis Fault Breccia. Er and Tuğrul (2016)
used a simple regression method to examine the relation be-
tween the CAI and the physico-mechanical properties of dif-
ferent granitic rocks. A strong relation between the CAI and
the mean quartz size and content was found. Further, positive
correlations between the CAI and the Shore hardness,
Schmidt hardness, uniaxial compression strength, and tensile
strength and a negative correlation between the CAI and the
Bohme abrasion strength in granitic rocks were also found. Ko
et al. (2016) noted the inadequacy of a single parameter in
predicting the CAI value and highlighted the positive influ-
ence of the uniaxial compression strength (UCS) and the brit-
tleness index in the CAI prediction model for igneous rocks
and the UCS and the Brazilian tensile strength on the CAI
prediction model for metamorphic rocks. Capik and Yilmaz
(2017) investigated the relation between CAI and uniaxial
compressive strength (UCS), point load strength, Brazilian
tensile strength, Schmidt rebound hardness, and equivalent
quartz content (EQC). Also, the relation between drill bit life-
time and CAI was examined. They revealed positive relation
between CAI and uniaxial compressive strength (UCS), point
load strength, Brazilian tensile strength, Schmidt rebound
hardness, and equivalent quartz content.

In this study, the correlation between three geomechanical
properties and the CAI value of building stones, as well as the
reliability of the CAI values, was investigated. Abrasivity is
strongly related to the hardness, strength, and porosity of
rocks. UCS, porosity, and Shore hardness tests were conduct-
ed to build a predictive model for the CAI index. The corre-
lation between these geomechanical properties and the CAI
was determined using simple and multiple regression
analyses.

Materials and methods

Experimental works

Tests were conducted on samples that were primarily taken
from the western region of Turkey. In this study, 30 different
types of building stone specimens were used and all tests,
related to the UCS, porosity, Shore hardness, and CAI, were
conducted according to ISRM and ASTM standards (ASTM
D7625 2010; Alber et al. 2014; ISRM 1979a, b; Altindag and
Guney 2007).

The UCS tests on cylindrical core specimens were conduct-
ed with a height-to-diameter ratio between 2.5 and 3.0. A

Table 1 Classification of
CAI (Alber et al. 2014) Mean CAI Classification

0.1–0.4 Extremely low

0.5–0.9 Very low

1.0–1.9 Low

2.0–2.9 Medium

3.0–3.9 High

4.0–4.9 Very high

≥ 5.0 Extremely high
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loading rate of 150 kg/s was chosen to ensure that the stress
rate ranged between 0.5 and 1.0 MPa/s. The tests were repeat-
ed on five samples for each rock type.

The porosity of the rocks was determined using saturation
and caliper techniques. Tests on cubic samples were per-
formed and the dimensions of the samples were measured
using a digital Vernier caliper with an accuracy of 0.01-mm.
Caliper measurements were measured several times on each
side. The bulk volume (V) of the specimens was calculated by
multiplying the dimensions of three sides. Then, the samples
were immersed in water and they saturated in a day. After
removing the saturated samples from the water, the surfaces
were dried and the saturated-surface dry mass (Msat) was de-
termined. Next, the samples to were dried to a constant mass at
105 °C, cooled in a desiccator, and the dry mass (Ms) of the
samples was then determined. The porosity of the rocks was
calculated as follows:

Pore volume : Vv ¼ Msat−Ms

ρw
; ð2Þ

Porosity %ð Þ : n ¼ 100 Vv

V
; ð3Þ

where ρw is the density of water.
Next, the Shore hardness of the specimens was determined,

which is a widely used scale for measuring rock hardness,
using a standard C-2 type Shore scleroscope (Fig. 1a). One
surface of the cubic samples was polished and a 1-cm margin
from was taken the sample edges. On each sample, 30 mea-
surements were performed and the average values were taken
as the Shore hardness of the rock.

CAI tests were performed using a modified West apparatus
(Fig. 1b) with styluses (HRC 55 ± 1) loadedwith 70Nmoving

over a distance of 10 mm in 10 s. The tip of each stylus has a
conical angle of 90°. These tests were performed on the cubic
samples, and five styluses were used for each sample. For the
test result, the average value of five measurements was used.
The styluses were inspected before each test to ensure the
accuracy of the wear flat. A side-view wear-flat measurement
method was used to measure the wear surface of the styluses.
The wear surface of each stylus was measured using a Nikon
SMZ 1500 stereoscopic zoom microscope with 0.01-mm ac-
curacy. Table 2 lists the results of the above tests.

Data analysis

Next, regression modeling techniques were used to evaluate
the relation between the CAI and other parameters, using both
simple and multiple regression models to establish the
relations.

Simple linear regression is a statistical method that summa-
rizes and examines the relation between two continuous var-
iables. One variable, denoted as x, is regarded as the predictor,
(independent) and the other, denoted as y, is the response
(dependent) variable. A simple regression is defined as fol-
lows:

Y ¼ Aþ B1X þ ε; ð4Þ
where

A is the constant and B1 is the x coefficient representing the
slope of the equation.

These parameters in the equation were calculated using
the least squares method. The analysis, which is supported
with the correlation coefficient (r), is a parameter showing

Fig. 1 Test equipments. a Shore
scleroscope. b Cerchar apparatus
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the degree of the linear relation between two variables,
usually labeled as X and Y. The value of r can range
between 1 and − 1. A correlation coefficient value close
to 1 indicates a strong positive linear relation. A value
close to − 1 indicates a strong negative linear relation. A
value close to 0 indicates the absence of any linear rela-
tion, although there could be a nonlinear relation between
the variables.

Multiple linear regression is the most commonly used form
of linear regression analysis. As a predictive analysis method,
multiple linear regression is used to explain the relation be-
tween one continuous dependent variable and two or more
independent variables.

The multiple linear regressionmodel relating a y variable to
x variables is written as follows:

Y
0 ¼ Aþ B1X 1 þ B2X 2 þ B3X 3: ð5Þ

The result indicates the relation between a dependent or
criterion variable of interest (Y) and a set of k independent
variables or potential predictor variables (X1, X2, X3, …, XN),
whereby the scores of all the variables aremeasured forN cases.

These calculations are reasonably complicated. Therefore,
in this study, the statistical software programMinitab v13 was
used for multiple regression analysis. Then, the analysis re-
sults were evaluated by determining the correlation coeffi-
cients and performing F tests (Afifi and Azen 1979; Natrella
1963; Neter and Wasserman 1974).

Analysis of variance (ANOVA) is a well-known statis-
tical method for analyzing quantitative data. It computes
the probability that differs among the observed means
could simply be induced by chance. ANOVA is indeed a
more specific and constrained example of the general ap-
proach employed in multiple regression analysis. ANOVA
results are depicted in an ANOVA table, which contains

Table 2 Physico-mechanical
properties of the rock specimens Rock Porosity (%) (PR) Uniaxial compression

strength (MPa) (UCS)
Shore hardness
index (SH)

Cerchar abrasivity
index (CAI)

Marble-1 0.12* 51.68* 52* 0.52 ± 0.06

Marble-2 0.12* 56.50* 46* 0.53 ± 0.07

Marble-3 0.26* 22.96* 37* 0.63 ± 0.04

Marble-4 0.10* 44.76* 42* 0.73 ± 0.06

Marble-5 0.17* 54.86* 49 0.28 ± 0.05

Marble-6 0.29 92.84 59 1.27 ± 0.05

Marble-7 0.19 89.61 57 1.15 ± 0.07

Marble-8 0.22 105.00 59 1.75 ± 0.04

Marble-9 0.11 125.00 69 2.13 ± 0.05

Marble-10 0.19 59.61 53 0.95 ± 0.10

Limestone-1 0.36* 179.92* 66* 0.67 ± 0.06

Limestone-2 0.26* 80.36* 62* 0.32 ± 0.04

Limestone-3 0.69* 63.31* 61* 0.13 ± 0.04

Limestone-4 1.54* 37.64* 62* 0.48 ± 0.08

Limestone-5 0.37* 132.02* 59* 0.59 ± 0.06

Limestone-6 0.42* 146.87* 65* 1.60 ± 0.06

Limestone-7 0.17* 166.49* 65* 0.89 ± 0.08

Limestone-8 4.27* 118.03* 47* 0.92 ± 0.03

Limestone-9 0.28* 152.09* 63* 1.59 ± 0.03

Limestone-10 0.25* 73.99* 61* 1.23 ± 0.07

Limestone-11 8.67* 60.36* 28* 0.57 ± 0.04

Limestone-12 0.14* 81.53* 60* 0.24 ± 0.04

Basalt-1 5.56* 97.20* 58* 0.99 ± 0.12

Granite-1 0.68* 152.88* 99* 3.41 ± 0.11

Granite-2 1.10* 109.76* 90* 3.33 ± 0.08

Granite-3 0.60* 115.64* 101* 3.58 ± 0.14

Granite-4 0.15 130.41 96 4.35 ± 0.16

Granite-5 0.21 99.21 88 3.81 ± 0.12

Granite-6 0.18 117.98 98 4.01 ± 0.17

Granite-7 0.12 122.04 93 4.18 ± 0.11

*Yenice et al. (2018)
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columns labeled BSource,^ BSS or sum of squares,^ Bdf
for degrees of freedom,^ BMS for the mean square,^ BF or
F ratio,^ and BP, prob., probability, sig., or sig. of F.^ F
ratio (Fc) is computed by dividing the mean squares be-
tween by the mean squares within.

The proposed hypotheses were tested using an F test in
each ANOVA, as follows:

A null (H0) hypothesis means that no relation exists
between the dependent variable Y and the independent
variable Xi. The other hypothesis, H1, is the opposite of
null and the tested hypothesis is always denoted by H0.
This concept can be described in this way: if the Ftable

value is smaller than Fc (Ft < Fc), null (H0) is declined, or
in other words, H1 is accepted instead (Gunst and Mason
1980).

Results and discussions

All the statistical evaluations were performed using Minitab
V13 statistical software. First, a simple linear regression anal-
yses was conducted for each parameter and a correlation ma-
trix was constructed, as shown in Table 3. Figure 2 shows a
scatterplot of the related parameters.

During the statistical analysis of CAI and porosity (%), the
functional relation between the two groups was determined.
This function was derived using the least squares method, as
shown in Fig. 2a, where it can be seen that there is no linear
relation between the CAI and porosity (R = − 0.234).

During the statistical analysis of CAI and UCS, a function
that defines the relation between the CAI and UCS values was
obtained. This function was also derived using the least

Table 3 Data correlation matrix
Cerchar abrasivity
index

Shore
hardness

Porosity Uniaxial
compressive strength

Cerchar abrasivity index 1

Shore hardness 0.901 1

Porosity − 0.234 − 0.354 1

Uniaxial compressive strength 0.388 0.556 − 0.118 1

Fig. 2 Relations between CAI and a porosity, b UCS, and c Shore hardness
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squares method, as shown in Fig. 2b. As can be seen from the
plot, a low value of R = 0.388 is consistent with the absence of
any linear relation between the CAI and UCS.

During the statistical analysis of the CAI and Shore hard-
ness, a functional relation was obtained, as shown in Fig. 2c,
which suggests that there is a strong positive relation between
the CAI and Shore hardness values (R = 0.901).

After evaluating the porosity, UCS, and Shore hardness
with respect to CAI, a multiple linear regression analyses
was performed to estimate the CAI. UCS, porosity, and
Shore hardness were used as independent variables to predict
the CAI value and multiple regression analyses were per-
formed using two and three variables.

In the first multiple regression analysis, the predictability of
the CAI was examined on the basis of UCS and porosity
values. The analysis results for UCS versus CAI and porosity
versus CAI indicate that there is no linear relation in either
case (R = 0.432 and R2 = 0.187). The adjusted R2 value indi-
cates that this model accounts for 18.7% of variance in the
CAI–no significance model (Fig. 3).

Second multiple regression analysis was performed for
Shore hardness and UCS versus CAI; the results are listed in
Table 4. The significance of this model was noted by citing the
R (0.911) and adjusted R2 (0.831) values, which show the
strength of the model. For the final results, we can say that
the Fc ratio (in the ANOVA results shown in Table 4) is 66.60

Fig. 3 Calculated versus
predicted CAI for the regression
model with UCS and porosity

Table 4 Analysis of variance for the model with two parameters (Shore
hardness, UCS)

DF Sum of squares Mean square F value P value

Regression 2 44.2078 22.1039 66.60 0.000

Shore 1 36.1749 36.1749 109.00 0.000

UCS (MPa) 1 0.9695 0.9695 2.92 0.099

Error 27 8.9607 0.3319

Total 29 53.1685

Fig. 4 Calculated versus
predicted CAI values for the
regression model with UCS and
Shore hardness
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and is significant at P < 0.001. The Ft ratio from the F distri-
bution table (for α = 0.05) is 3.35. The Ft < Fc and P < 0.05
result shows that the null (H0) hypothesis is rejected. This
yields a strong proof for a linear relation between the response
(CAI) and two explanatory variables (Shore hardness and
UCS; Fig. 4). The proposed model for estimating the CAI
based on Shore hardness and UCS is given below:

CAI ¼ −2:443þ 0:06995 SH−0:00542 UCS R2

¼ 0:831 ð6Þ

Third multiple regression analysis was conducted for the
predictability of the CAI based on the Shore hardness and
porosity values; the results are listed in Table 5. According
to the multiple regression analysis, the Shore hardness versus
CAI and the porosity versus CAI results indicate that there
may be a linear relation (R = 0.906, R2 = 0.822). The adjusted
R2 value shows that this model accounts for 82.2% of the
variance in the CAI, which is significant. In Table 5, when
df1 = 2 and df2 = 27, the Ft value from the F distribution table
(for α = 0.05) decreases to 3.35, whereas the calculated Fc

value is 62.30. In other words, Ft is significantly smaller than
Fc. Additionally, the P value is smaller than 0.05, which sup-
ports proof for a linear relation between the CAI and the two
explanatory variables (reject the H0). It can be concluded that

the multiple regression equation used to determine the results,
as listed in Table 5, can be used for predicting the CAI (Fig. 5).
The model is as follows:

CAI ¼ −2:789þ 0:06609 SHþ 0:0710 PR %ð Þ R2 ¼ 0:822 ð7Þ

It was found that the three-parameter multiple linear regres-
sion was the best model for CAI estimation. Table 6 shows the
ANOVA results for the model with three parameters. The sum
of squares values reflects the partitioning of the total variance
in the criterion by the regression effect due to intelligence and
residual. To compute the F ratio, the sum of squares regression
and sum of squares residual are divided by their respective
degrees of freedom, which result in mean square values.
Then, the mean square regression value is divided by the mean
square residual value. The resulting F ratio is then compared
to those in an F table of critical values to determine whether
the observed F ratio is greater than would be expected on the
basis of chance. The critical value of the F ratio with (3, 26)
degrees of freedom and an alpha level of.05 is 2.97. Here, the
F ratio in Table 6 is 46.55, which is greater than the critical
value of 2.97. The P column in Table 8 also reflects the fact
that our observed critical F value is less than the F ratio
(P < 0.05). Therefore, we can conclude from this analysis that
the regression effect for intelligence is greater than zero and
thus intelligence alone is a good predictor of CAI (Fig. 6). The
best model developed for estimating the CAI with three pa-
rameters is as follows:

CAI ¼ −2:698þ 0:07338 SHþ 0:0825 PR %ð Þ−0:00587UCS

R2 ¼ 0:843

ð8Þ

CAI values range from less than 0.5 for soft rocks to more
than 5.0 for hard rocks. Soft rocks are known to generate a
little wear on the CAI testing pin, which makes determining

Table 5 Analysis of variance for the model with two parameters (Shore
hardness, porosity)

DF Sum of squares Mean square F value P value

Regression 2 43.6989 21.8495 62.30 0.000

Shore 1 40.7997 40.7997 116.33 0.000

Porosity (%) 1 0.4606 0.4606 1.31 0.262

Error 27 9.4695 0.3507

Total 29 53.1685

Fig. 5 Calculated versus
predicted CAI for the regression
model with Shore hardness and
porosity
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the CAI value very hard (Deliormanli 2012). For this reason,
the samples were classified according to CAI value and simple
regression analysis was carried out separately for the CAI
value higher and lower than 1. Figure 7a–c shows scatterplot
of the related parameters for the CAI value lower than 1.
According to the results, no significant linear relation was
found between CAI and porosity and UCS or Shore hardness
for the samples with CAI value lower than 1. When the sam-
ples with a CAI value higher than 1 were considered (Fig. 7d–
f), a high correlation between Shore hardness and CAI (R =

Table 6 Analysis of variance for model with three parameters

DF Sum of squares Mean square F value P value

Regression 3 44.8226 14.9409 46.55 0.000

Shore 1 34.8875 34.8875 108.69 0.000

Porosity (%) 1 0.6148 0.6148 1.92 0.178

UCS (MPa) 1 1.1237 1.1237 3.50 0.073

Error 26 8.3459 0.3210

Total 29 53.1685

Fig. 6 Calculated versus
predicted CAI for the regression
model with porosity, UCS, and
Shore hardness

Fig. 7 Classified simple regression analyses between CAI and porosity, UCS, and Shore hardness (Purple dotted lines indicate %95 prediction interval,
Green dotted lines indicate %95 confidence interval, red lines indicate regression)
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0.946, R2 = 0.895) was found. After simple regression analy-
sis, multiple regression analysis for samples having a CAI
value higher than 1 was performed.

For CAI values higher than 1, a multiple regression
analysis was performed to determine the predictability of
the CAI using UCS and porosity values; the results are
listed in Table 7. According to these results for CAI ver-
sus UCS and porosity, there is no linear relation (R = 0.17,
R2 = 0.031). The adjusted R2 value indicates that this
model accounts for 0.05% of variance in the CAI–no sig-
nificance model (Fig. 8).

Second multiple regression analysis was performed to de-
termine the predictability of CAI using Shore hardness and
UCS; the results are given in Table 8. According to these

results, the Shore hardness versus CAI and UCS versus CAI
could have a strong linear relation (R = 0.955, R2 = 0.913).
The adjusted R2 value indicates that this model accounts for
91.3% of variance in the CAI–a significance model (Fig. 9) In
Table 8, we can see that when df1 = 2 and df2 = 11, the Ft value
from the F distribution table (for α = 0.05) decreases to 3.98
and the calculated Fc value is 57.99. In other words, Ft is
smaller than Fc (Ft < Fc). Also, when the P value is smaller
than 0.05, it supports a proof for a linear relation between the
CAI and the two explanatory variables (reject the H0). Based
on these results, we can conclude that the results for the mul-
tiple regression analysis, as listed in Table 8, can be used to
predict the CAI. The model for this CAI prediction is as fol-
lows:

CAI ¼ −2:027þ 0:00638 SH−0:00594 UCS R2 ¼ 0:913

ð9Þ
We performed a third multiregression analysis for Shore

hardness and porosity versus CAI, the results of which are
shown in Table 9. The significance of the model was noted
by citing the multiple R (0.957) and adjusted R2 (0.916)
values, which display the strength of the model. The results
of the model prediction are given in Table 9. For the final
results, it can be seen that the Fc ratio (in the ANOVA;
Table 11) is 60.21 and is significant at P < 0.001. The Ft ratio
from the F distribution table (for α = 0.05) is 3.98. Therefore,
Ft < Fc and P < 0.05 indicate that the null (H0) hypothesis is
rejected. This situation supplies proof for a linear relation be-
tween the response (CAI) and the two explanatory variables
(Shore hardness and porosity; Fig. 10). The equation for this
model is as follows:

CAI ¼ −2:489þ 0:06856 SH−0:621 PR %ð Þ R2 ¼ 0:916 ð10Þ

Next, correlation and multiple regression analyses were
conducted to examine the relation between the CAI and

Table 7 Analysis of variance for the model with two parameters
(porosity, UCS, CAI > 1)

DF Sum of squares Mean square F value P value

Regression 2 0.6207 0.3104 0.18 0.839

Porosity (%) 1 0.1433 0.1433 0.08 0.780

UCS (MPa) 1 0.5451 0.5451 0.31 0.587

Error 11 19.1816 1.7438

Total 13 19.8023

Table 8 Analysis of variance for the model with two parameters (UCS,
Shore hardness, CAI > 1)

DF Sum of squares Mean square F value P value

Regression 2 18.087 9.0435 57.99 0.000

UCS (MPa) 1 0.3572 0.3572 2.29 0.158

Shore 1 17.6095 17.6095 112.39 0.000

Error 11 1.7153 0.1559

Total 13 19.8023

Fig. 8 Calculated versus
predicted CAI for the regression
model with UCS and porosity
(CAI > 1)
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the potential predictors Shore hardness, porosity, and
UCS. Table 10 summarizes the descriptive statistical and
analysis results, where it can be seen that each of the
predictors is positively and significantly correlated with
the CAI. The multiple regression model using all three
predictors produced R = 0.972, R2 = 0.946, Ft < Fc (3.70
< 57.90), and P < 0.05. These results indicate that Shore

hardness, porosity, and UCS have significance in
predicting the CAI (Fig. 11). The best model developed
for estimating the CAI with three parameters for the sam-
ples having CAI values higher than 1 is as follows:

CAI ¼ −1:803þ 0:07303 SH–0:790 PR %ð Þ−0:00834UCS

R2 ¼ 0:946
ð11Þ

Models developed from multiple regression analyses and re-
gression coefficients are listed in Table 11. It is obviously seen
that samples with CAI value is higher than 1 have higher relation
between CAI and other tested geomechanical properties.

Previous studies related to CAI have been carried out as
three main groups. Some researchers have focused on CAI
values predicted on the basis of petrographic properties such
as equivalent quartz content, average grain size, and grade and
type of cement (Suana and Peters 1982; West 1989; Lassnig
et al. 2008;Moradizadeh et al. 2013), while many studies have

Fig. 9 Calculated versus
predicted CAI for the regression
model with UCS and Shore
hardness (CAI > 1)

Table 9 Analysis of variance for the model with two parameters
(Porosity, Shore hardness, CAI > 1)

DF Sum of squares Mean square F value P value

Regression 2 18.1449 9.0725 60.21 0.000

Porosity (%) 1 0.4151 0.4151 2.76 0.125

Shore 1 18.0693 18.0693 119.93 0.000

Error 11 1.6574 0.1507

Total 13 19.8023

Fig. 10 Calculated versus
predicted CAI for the regression
model with Shore hardness and
porosity (CAI > 1)
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investigated equipment used and test conditions (Plinninger
et al. 2003; Rostami 2005; Rostami et al. 2005; Käsling and
Thuro 2010; Hamzaban et al. 2012; Aydın et al. 2016;
Hamzaban et al. 2018). Others have studied correlations be-
tween CAI and geomechanical properties of the rock (Al-
Ameen and Waller 1994; Plinninger et al. 2004; Yaralı et al.
2008; Kahraman et al. 2010; Deliormanli 2012; Ko et al.
2016; Er and Tugrul 2016).

In this study, relations between three geomechanical
properties and CAI values of building stones were inves-
tigated. Unlike previous studies, the results of the study

showed that CAI is strongly related to the Shore hardness
of the rock. Moreover, the relation can be determined
more strongly with UCS and porosity values using multi-
ple regression analyses.

Another difference with previous studies is that, for CAI
values higher than 1, the results obtained frommultiple regres-
sion analysis are positively and significantly correlated with
CAI, but not with UCS and porosity versus CAI.

Conclusion

Correlations between the CAI and three geomechanical prop-
erties of sedimentary, igneous, and metamorphic rocks were
investigated in this study. Using simple and multiple regres-
sion analyses, the degree to which CAI values can be predict-
ed was determined based on results obtained from rock test
measurements. The results are profoundly discussed in the
following paragraphs.

Based on simple regression analysis, it was found that
Shore hardness has a strong relation with the CAI index,
whereas the porosity and uniaxial strength of rocks have no
positive correlation. We determined the relation between the

Table 10 Analysis of variance for the model with all three parameters
(CAI > 1)

DF Sum of squares Mean square F value P value

Regression 3 18.7243 6.2414 57.90 0.001

Porosity (%) 1 0.6373 0.6373 5.91 0.035

UCS (MPa) 1 0.5794 0.5794 5.37 0.043

Shore 1 18.1035 18.1035 167.930 0.000

Error 10 1.0780 0.1078

Total 13 19.8023

Fig. 11 Calculated versus
predicted CAI for the regression
model with porosity, UCS, and
Shore hardness (CAI > 1)

Table 11 Models developed for estimating CAI

General CAI > 1

Variable Equation R2 Equation R2

UCS, porosity – 0.187 – 0.031

Shore hardness, UCS CAI = − 2.443 + 0.06995 SH − 0.00542 UCS 0.831 CAI = − 2.027 + 0.00638 SH − 0.00594 UCS 0.913

Shore hardness, porosity CAI = − 2.789 + 0.06609 SH + 0.0710 PR(%) 0.822 CAI = − 2.489 + 0.06856 SH − 0.621 PR (%) 0.916

Shore hardness, porosity,
UCS

CAI = − 2.698 + 0.07338 SH + 0.0825
PR(%) − 0.00587 UCS

0.843 CAI = − 1.803 + 0.07303 SH–0.790 PR
(%) − 0.00834 UCS

0.946
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geomechanical properties and CAI using multiple regression
analysis. Strong multiple correlation values were obtained
from these analyses, except for UCS and porosity versus CAI.

For rocks with CAI values higher than 1, the obtained
multiple regression analysis results indicate that each of the
three parameters is positively and significantly correlated with
the CAI but not UCS and porosity versus CAI.

The simple regression analysis results show that there is a
positive correlation between CAI and UCS and negative cor-
relation between CAI and porosity. These correlations are not
strong, but there is a strong positive relation between the CAI
and Shore hardness values. For these reasons, multiple regres-
sion analysis results in Tables 4, 5, 6, 7, 8, 9, and 10; F values
of UCS and porosity are quite low. At the same time, their
effects are very limited in Eqs. 6, 7, 8, 9, 10, and 11.

The CAI is a major factor used in evaluating natural stones
to be used as building materials. The results indicate strong
correlations between the CAI and geomechanical properties of
rocks, which can be used to predict the CAI.

References

Afifi AA, Azen SP (1979) Statistical analysis, computer oriented ap-
proach. Academic Press, New York

Al-Ameen SI, Waller MD (1994) The influence of rock strength and
abrasive mineral content on the Cerchar abrasivity index. Eng
Geol 36:293–301

AlberM (2008) Stress dependency of the Cerchar abrasivity index (CAI) and
its effect on wear of selected rock cutting tools. Tunn Undergr Space
Technol 23:351–359. https://doi.org/10.1016/j.tust.2007.05.008

Alber M, Yarali O, Dahl F, Bruland A, Kasling H, Michalakopoulos TN,
Cardu M, Hagan P, Aydın H, Ozarslan A (2014) ISRM suggested
method for determining the abrasivity of rock by the CERCHAR
abrasivity test. Rock Mech Rock Eng 47:261–266

Altindag R,Guney (2007) A ISRM suggestedmethod for determining the
shore hardness value. In: Ulusay R, Hudson JA (eds) The complete
ISRM suggested methods for rock characterization, testing and
monitoring: 1974–2006, pp 109–112

ASTM D7625 (2010) Standard test method for laboratory determination
of abrasiveness of rock using the CERCHAR method, American
Society for Testing and Materials, West Conshohocken, United
States, p. 1–6 10–1520/D7625-10

Aydın H, Yaralı O, Duru H (2016) The effects of specimen surface con-
ditions and type of test apparatus on Cerchar abrasivity index.
Karaelmas J Sci Eng 6(2):293–298

Capik M, Yilmaz AO (2017) Correlation between Cerchar abrasivity
index, rock properties, and drill bit lifetime. Arab J Geosci 10(15).
https://doi.org/10.1007/s12517-016-2798-7

Cerchar (1986) The Cerchar abrasiveness index Centre d’Etudes et
Recherches de Charbonnages de France, Verneuil

Deliormanli AH (2012) Cerchar abrasivity index (CAI) and its relation to
strength and abrasion test methods for marble stones. Constr Build
Mater 30:16–21. https://doi.org/10.1016/j.conbuildmat.2011.11.023

Er S, Tugrul A (2016) Correlation of physico-mechanical properties of
granitic rocks with Cerchar abrasivity index in Turkey.
Measurement 91:114–123. https://doi.org/10.1016/j.measurement.
2016.05.034

Gunst RF, Mason RL (1980) Regression analysis and its application.
Marcel Dekker Inc, New York

Hamzaban M-T, Memarian H, Rostami J, Ghasemi-Monfared H (2012)
Study of rock–pin interaction in Cerchar abrasivity test. Int J Rock
Mech Min Sci 72:100–108. https://doi.org/10.1016/j.ijrmms.2014.
09.007

Hamzaban M-T, Memarian H, Rostami J (2018) Determination of
scratching energy index for Cerchar abrasion test. J Min Environ
9(1):73–89. https://doi.org/10.22044/jme.2017.5738.1389

ISRM (1979a) Suggested methods for determining water content, poros-
ity, density, absorption and related properties and swelling and slake-
durability index properties. Int J Rocks Mech Min Sci Geomech 16:
141–156

ISRM (1979b) Suggested methods for determining the uniaxial compres-
sive strength and deformability of rock materials. Int J Rocks Mech
Min Sci Geomech 16:135–140

Kahraman S, Alber M, Fener M, Gunaydin O (2010) The usability of
Cerchar abrasivity index for the prediction of UCS and E of Misis
Fault Breccia: regression and artificial neural networks analysis.
Expert Syst Appl 37:8750–8756. https://doi.org/10.1016/j.eswa.
2010.06.039

Kahraman S, Alber M, Gunaydin O, Fener M (2015) The usability of the
Cerchar abrasivity index for the evaluation of the triaxial strength of
Misis Fault Breccia. Bull EngGeol Environ 74:163–170. https://doi.
org/10.1007/s10064-014-0618-4

Käsling H, Thuro K (2010) Determining abrasivity of rock and soil in the
laboratory. In: Williams et al (eds) Geologically active. Taylor &
Francis Group, London, pp 1973–1980

Ko TY, KimKT, Son Y, Jeon S (2016) Effect of geomechanical properties
on Cerchar abrasivity index (CAI) and its application to TBM
tunnelling. Tunn Undergr Space Technol 57:99–111. https://doi.
org/10.1016/j.tust.2016.02.006

Lassnig K, Latal C, Klima K (2008) Impact of grain size on the Cerchar
abrasiveness test. Geomech Tunn 1(1):71–76. https://doi.org/10.
1002/geot.200800008

Moradizadeh M, Ghafoori M, Lashkaripour G, Azali TS (2013) Utilizing
geological properties for predicting Cerchar abrasiveness index
(CAI) in sandstones. Int J Emerg Technol Adv Eng 3(9):99–109

Natrella MG (1963) Experimental statistics. National Bureau of
Standards, Washington DC

Neter J, Wasserman W (1974) Applied linear statistical models. R.D.
Irwin Inc., Homewood

Plinninger R, Kasling H, Thuro K, Spaun G (2003) Testing conditions
and geomechanical properties influencing the CERCHAR abrasive-
ness index (CAI) value. Int J Rock Mech Min Sci 40:259–263.
https://doi.org/10.1016/S1365-1609(02)00140-5

Plinninger R, Kasling H, Thuro K (2004) Wear prediction in hardrock
excavation using the CERCHAR abrasiveness index (CAI). In:
Proceedings of the Eurock 2004 and 53rd Geomechanics
Colloquium, p 599–604

Rostami J (2005) CAI testing and its implications. Tunnels Tunn Int
37(10):43–46

Rostami J, Ozdemir L, Bruland A, Dahl F (2005) Review of issues related
to Cerchar abrasivity testing and their implications on geotechnical
investigations and cutter cost estimates. In: Hutton JD, RogstadWD
(eds) Proceedings of the 2005 Rapid Excavation and Tunnelling
Conference (RETC) in Seattle. Society for Mining, Metallurgy and
Exploration, Littleton

Rostami J, Ghasemi A, Gharahbagh AE, Dogruoz C, Dahl F (2014)
Study of dominant factors affecting cerchar abrasivity index. Rock
Mech Rock Eng 47:1905–1919. https://doi.org/10.1007/s00603-
013-0487-3

Singh RN, Ghose AK (2016) Engineered rock structures in mining and
civil construction. Taylor & Francis/Balkema, Netherlands

604 Page 12 of 13 Arab J Geosci (2018) 11: 604

https://doi.org/10.1016/j.tust.2007.05.008
https://doi.org/10.1007/s12517-016-2798-7
https://doi.org/10.1016/j.conbuildmat.2011.11.023
https://doi.org/10.1016/j.measurement.2016.05.034
https://doi.org/10.1016/j.measurement.2016.05.034
https://doi.org/10.1016/j.ijrmms.2014.09.007
https://doi.org/10.1016/j.ijrmms.2014.09.007
https://doi.org/10.22044/jme.2017.5738.1389
https://doi.org/10.1016/j.eswa.2010.06.039
https://doi.org/10.1016/j.eswa.2010.06.039
https://doi.org/10.1007/s10064-014-0618-4
https://doi.org/10.1007/s10064-014-0618-4
https://doi.org/10.1016/j.tust.2016.02.006
https://doi.org/10.1016/j.tust.2016.02.006
https://doi.org/10.1002/geot.200800008
https://doi.org/10.1002/geot.200800008
https://doi.org/10.1016/S1365-1609(02)00140-5
https://doi.org/10.1007/s00603-013-0487-3
https://doi.org/10.1007/s00603-013-0487-3


SuanaM, Peters TJ (1982) The Cerchar abrasivity index and its relation to
rock mineralogy and petrography. Rock Mech 15(1):1–8. https://
doi.org/10.1007/BF01239473

Tripathy A, Singh TN, Kundu J (2015) Prediction of abrasiveness index
of some Indian rocks using soft computing methods. Measurement
68:302–309. https://doi.org/10.1016/j.measurement.2015.03.009

West G (1989) Rock abrasiveness testing for tunnelling. Int J Rock Mech
Min Sci Geomech Abstr 26(2):151–160

YaralıO, Yasar E, Bacak G, Ranjith PG (2008) A study of rock abrasivity
and tool wear in coal measures rocks. Int J Coal Geol 74:53–66.
https://doi.org/10.1016/j.coal.2007.09.007

Yenice H, Ozdogan MV, Ozfirat MK (2018) A sampling study on rock
properties affecting drilling rate index (DRI). J Afr Earth Sci 141:1–
8. https://doi.org/10.1016/j.jafrearsci.2018.01.015

Arab J Geosci (2018) 11: 604 Page 13 of 13 604

https://doi.org/10.1007/BF01239473
https://doi.org/10.1007/BF01239473
https://doi.org/10.1016/j.measurement.2015.03.009
https://doi.org/10.1016/j.coal.2007.09.007
https://doi.org/10.1016/j.jafrearsci.2018.01.015

	The correlations between the Cerchar abrasivity index and the geomechanical properties of building stones
	Abstract
	Introduction
	Materials and methods
	Experimental works

	Data analysis
	Results and discussions
	Conclusion
	References


