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Abstract
Slope instability phenomena in Souk Ahras region are annually causing a great amount of damage mainly to road infrastructure,
water main supply, and buildings. The main problem is that instabilities keep reoccurring despite the remedial measures brought
about every time. The fact is there is not only a single factor that is behind these instabilities rather than the interplay of a large
variety of factors pertaining to the geological, geomorphological, and hydrological characteristics of the terrain as well as human-
related activities. Consequently, a spatial database of ten landslide-related factors were identified and used to assess landslide
susceptibility and establish a model capable of predicting landslide prone areas. For this reason, three statistical methods are used
for the landslide susceptibility assessment: logistic regression, frequency ratio, and weights of evidence in a GIS platform. A
landslide inventory map was established from visual interpretation of satellite images and field survey data. Three landslide
susceptibility maps were produced using different statistical models. Each susceptibility map subdivides the study area into five
classes of landslide susceptibility: very low, low, moderate, high, and very high. These raster-based susceptibility maps were
compared and verified with both training and validating inventory data. The area under the curve values, based on success rate,
are between 82.11 and 90.57%, and those based on prediction rate are between 83.14 and 90.91%. The results showed that the
logistic regression method is more consistent and reliable than the two other techniques, and it has the best performance among
the three statistical methods.
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Introduction

Landslides are defined as all downslope movements of Earth
materials; they include earth slide, rock falls, topples, or debris
flows (Varnes 1984). Landslides have caused considerable
damage to property and human lives. Billion dollars (Brabb

1984) are lost every year throughout the world as a direct
consequence of landslides. In terms of human lives, they
caused as many as 100,000 lives in China (Li and Wang
1992) and as many as 254 persons have recently died as a
consequence of the February 17, 2017 mudslide in
Colombia. Bell (1999) stated that for the same degree of haz-
ard, losses are of higher order of magnitude in developing
countries than in developed ones. In developed countries, ad-
equate mitigation measures are very often implemented, while
in developing countries, the lack of resources prevents ade-
quate spending on landslide mitigation and research.

Mitigation against landslide incidence and taking this haz-
ard into consideration for local or regional planning requires a
deep understanding of the factors governing this process.
Landslide occurrence is the result of a simultaneous interplay
between a set of conditioning factors or quasi-static parame-
ters (Carrara et al. 1990 and 1991) and triggering ones. The
quasi-static parameters such as geology, structure, mineralogy,
slope angle, slope aspect, drainage network, lineament, land
use, land cover, and relief usually condition a given area to
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landslide. In fact, the spatial distribution to these independent
parameters defines the susceptibility to landslides in an area
(Carrara et al. 1990 and 1991).

In landslide susceptibility assessment procedure, it is cus-
tomary to use the uniformitarism principle which states that, in
the realm of landslides, actual landslides occur under the same
conditions that led to the generation of previous slides (Brabb
1984). Using this principle, landslide susceptibility assess-
ment can be dealt with using the heuristic approach, the sta-
tistical approach, or the deterministic mechanical approach.

For regional studies, the first two approaches are often used
while on comparatively larger scales, the deterministic ap-
proach is more appropriate.

Several statistical modeling techniques have been used to
study the susceptibility to landslide of every pixel of an area.
Such techniques are weight of evidence (Bonham-Carter
1994), frequency ratio (Lee and Min 2001), analytical hier-
archy process (Saaty 1980), logistic regression (McFadden
1973), and many more. These methods have been success-
fully applied for landslide susceptibility assessment by sev-
eral researchers such as Lee and Sambath (2006), Pradhan
and Lee (2010), Pradhan et al. (2010), Chen et al. (2016),
Teerarungsigul et al. (2016), Wang et al. (2016), Le et al.

(2017), Aditian et al. (2018), and Jacobs et al. (2018), using
the GIS software for handling the geospatial database.

The present research work deals with the assessment of
landslide susceptibility in Souk Ahras area. It aims to assess
landslide susceptibility on a pixel-based mapping unit in the
area using three statistical modeling tools such as logistic re-
gression, frequency ratio, and weight of evidence. The perfor-
mance and the prediction accuracy of each of the three models
will be evaluated in a part of the study area reserved for this
purpose. The model which gives the best prediction rate,
among the three, will be used to predict the potential landslide
locations in neighboring areas. Furthermore, the produced
susceptibility map will be a valuable document for city plan-
ning, infrastructure construction, and agriculture develop-
ments in the region.

General setting

The study area covers 344.78 km2 between longitudes 36° 17′
59.76″ to 36° 7′ 12.53″ N and 7° 57′ 6.31″ to 7° 37′ 22.68″ E
latitudes and includes two municipalities belonging to the ad-
ministrative district of Souk Ahras (Fig. 1). It is characterized

Fig. 1 Geo-graphical location of the study area, presented in the digital elevation model
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by hilly terrains that reach a maximum altitude of 1286 m and
scattered settlements that are sometimes located on steep
slopes. The inter-annual variations in rainfall over the period
of 1986–2015 show that 2009 is the year with maximum
precipitations with 1180 mm/year and 1993 is the driest with
391.3 mm/year. The geological setting is typical of the
Medjerda upstream basin originated from the evolution of
the tellien external zones (Vila 1980). Being part of this com-
plex domain, the study area is disturbed by Triassic uprising
diapirs and effects of the Neo-tectonic events that modified the
original sedimentary setup (Chabbi et al. 2016). The litho-
stratigraphic succession consist of a mixture of marls, clayey
marls, and limestone of the upper Cretaceous; clay marls,
yellow limestone, and marls of the Paleogene; conglomerates,
sandstones, clays, and marls of the Neogene’ and slope scree,
gravel, sand, silt, and the superficial deposits of the

Quaternary (Mahtali 2009). Hadji et al. (2014) have shown
that the fissured marls of Souk Ahras region play a fundamen-
tal role in the development of the slope failure processes.

Materials and methods

Slope instability phenomena are the interplay of a vari-
ety of factors, involving geological, geomorphological,
and hydroclimatology characteristics of the terrain and
human-related activities. Consequently, a large amount
of spatial data has to be analyzed to predict the stability
of the slopes and hillsides within the area. In this study,
a landslide database comprising a set of ten factors such
as lithology (rock type), slope angle (°), slope aspect
(°), profile curvature, plan curvature, distance to river

Fig. 2 Landslide inventory. a Landslide inventory map including
landslide training and validation data set. b Landslide occurred in
Tiffech entryway RN 81 at Pk88+00 (36° 13′ 7.5″ N, 7° 51′ 33.91″ E,
alt. 700 m). c, d two landslide in Hanancha entryway RN 81B at Pk03+00

(36° 15′ 48.32″N, 7° 52′ 10.92″E, alt. 720m). eLandslide in the northern
flank of the dam of Ain Dalia (36° 16′ 33.21″ N, 7° 49′ 34.16″ E, alt.
680 m)
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(m), proximity to road (m), distance to faults (m), ele-
vation (m), and precipitation (mm) is created. Each of
the above attributes is presented as a thematic layer of
information within the GIS software.

Landslide susceptibility assessment in the area is
elaborated over three main stages, the first being the
setting up of landslide inventory map of the study area,
generated by visual interpretation of satellite images,
dichotomous images, and field surveys. The second
one is thematic mapping of ten factors contributing di-
rectly or indirectly in the occurrence of landslides. The
third stage deals with data handling and the calculation
of the susceptibility values for each pixel within the
study area by the application of statistical methods.

All landslide conditioning factors are managed into GIS
platform using Arc GIS software, whereas the statistical pro-
cedure is done, using SPSS statistical package.

Inventory map

The landslide inventory map (Fig. 2) provides the spatial
distribution of existing landslides. It is the first and the most
important thematic layer in landslide susceptibility assess-
ment procedure. It was mapped on the basis of multisource
data such as visual interpretation of Landsat 8 images,
which is considered to be a tool for timely and large-scale
monitoring changes in land use (Chen et al. 2013), previous
works dealing with the problem of landslide in the region
and direct mapping in the field. Photographs of a few sig-
nificant phenomena that occurred at the Hanancha and
Tiffech region are shown in Fig. 2b–e.

This map includes 301 landslide polygons distributed over
13,451 pixels. The pixel size of the landslide raster is 30 m ×
30 m. The landslide inventory map was randomly partitioned
into two data sets: training data set with 10,760 pixels (80%)

Fig. 3 Lithological map: 1, fluvial alluvium; 2, gravitational formation; 3,
alluvium; 4, Diluvian formation; 5, limestone; 6, red clays, silts; 7,
conglomerates, sandstones, and clay; 8, conglomerates, gravelites,
sandstones, clays, and marls; 9 siltstones, clayey marl, sandstone; 10
sandstones, marl, conglomerates; 11, quartz sandstone, gray clays; 12
bituminous black and brown limestone with globigerina, black marl
limestone; 13, black clay marl; 14, marl, with rare intercalations of

limestone; 15, limestone with rare intercalations of marls; 16, limestone
with inocérames and marl with Globotruncana; 17, marl clay, gray marl
limestone; 18 limestone, limestone and sandstone, calcareous marl; 19,
marls and gray marl clay and past marl-limestone; 20, clay and gypsum-
sandstone; 21, dolomite; 22 gray limestone, marl, dolomite. (Digitized
from Souk Ahras, Sedrata, Abdi and M’ Daourouche geological maps 1/
50000)
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for building the landslide susceptibility models and validation
data set with 2691 pixels (20%) for validating the performance
of these models. The distribution of entire landslide data set,
training landslide data set, and testing landslide data set for
each parameter classes are shown in Fig. 13a–j.

Landslide conditioning factors

To build the landslide susceptibility model, all the preparatory
and triggering factors for landslide occurrences in the study
area need to be analyzed with the assumption that the past and
present are keys to the future (Varnes 1984). The landslide
pre-disposing factor database used is a digital elevation model
(DEM) with 30 m of spatial resolution taken from the United
States Geological Survey (USGS), type Shuttle Radar
Topography Mission (SRTM), orthophotos, geological maps,
and precipitation data (29 years of measurements). All the
landslide conditioning factors were divided into several clas-
ses based on frequency analysis of landslide occurrences in
the study area spread over a total of 383,081 pixels (30 ×
30 m) with 679 rows and 988 columns.

Geology plays an important role in landslide incidence
process as different geological units have different suscepti-
bilities to active geomorphological processes (Lee and Talib

2005; Yesilnacar and Topal 2005; Lee and Evangelista 2006;
García-Rodríguez andMalpica 2010). The geological features
were digitized on the basis of four (1:50,000) geological maps
covering the study area (Souk Ahras, M’ Daourouche,
Sedrata, and Abdi) (Fig. 3). The 22 lithological units occupy-
ing the study area have been grouped into eight categories to
simplify their management (Table 1).

Tectonic features play a significant role in landslide occur-
rence. Usually, rocks adjacent to fault zones are heavily frac-
tured and weathered, which produce favorable geological con-
ditions for landslides to occur (Fig. 4). The 74.6% of all the
landslide events in the study area occurred in a distance less
than 500 m from faults. To assess the relationship between
lineaments and landslides initiation, buffer zones were drawn
on both sides of the existing faults (< 50, 50–200, 200–500,
500–1000, and > 1000 m).

The road construction is one of the most important anthro-
pogenic factors in triggering slope instabilities. To take into
consideration the influence of the proximity of roads in the
landslides occurrence, buffer zones on both sides of the roads
were created. The study area was divided into six buffer zones
around the roads using multiple buffer analysis in GIS to cat-
egorize this layer into six different classes such as < 50, 50–
150, 150–250, 250–500, 500–1000, and > 1000 m (Fig. 5).

Table 1 Classification of lithological units in the study area

No. Lithology Code Geological age Lithological class

1 Fluvial alluvium Af Actual LC2

2 Gravitational formation Ag Actual LC 2

3 Alluvium q3 Recent Quaternary LC 2

4 Diluvian formation q2dp, q
2
dg Middle Quaternary LC 2

5 Limestone q1c Ancient Quaternary LC 8

6 Red clays, silts q1ar Ancient Quaternary LC 1

7 Conglomerates, sandstones and clay Pq Plio-Quaternary LC 5

8 Conglomerates, gravelites, sandstones, clays and marls P Pliocene LC 5

9 Siltstones clayey marl, sandstone m2–3 Upper and middle Miocene LC 5

10 Sandstones, marl, conglomerates m1–2 Lower and middle Miocene LC 5

11 Quartz sandstone, gray clays g3m1 Lower Miocene and upper Oligocene LC 5

12 Bituminous black and brown limestone with Globigerina,
black marl limestone

et
4–5 Upper Eocene LC 6

13 Black clay marl et
6 Lower and middle Eocene LC 3

14 Marl, with rare intercalations of limestone e1–3 Paleocene LC 3

15 Limestone with rare intercalations of marls C6a Lower Maastrichtian LC 8

16 Limestone with inocérames and marl with Globotruncana C5–6 Lower Maastrichtian Upper Campanian LC 6

17 Marl clay, gray marl limestone Cm
5b Upper Campanian LC 4

18 Limestone, limestone and sandstone, calcareous marl C5b Upper Campanian LC 6

19 Marls and gray marl clay and past marl-limestone C4b-5a Lower Campanian and Upper Santonian LC 4

20 Clay and gypsum-sandstone t Upper Trias LC 1

21 Dolomite td Upper Trias LC 7

22 Gray limestone, marl, dolomite t2 Middle Trias LC 7
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Rainfall is one of the main triggering factors for landslides,
particularly, in mountainous areas. In general, water in pore
spaces and cracks causes an increase in hydrostatic pressures
and subsequently a reduction of the shear strength. The mean
annual precipitation map (1986–2015) (Fig. 6) has been inter-
polated from precipitation data of six meteorological stations
located inside and in the vicinity of the study area.

Slope angle is the principal conditioning factor in land-
slide incidence that is frequently used by researches in land-
slide susceptibility mapping (Bui et al. 2012; Nourani et al.
2014). As a generalized concept, with the increase in slope
angle, the destabilizing force component of the land mass
increases while the normal component decreases.
Consequently, the resisting force decreases which directly
leads to instability when the critical angle is reached. The
slope map of the study area was derived from the digital
elevation model (Fig. 1). It was classified into six different
classes with an interval of 5° (Fig. 7). The dominant terrain
units in the study area (70%) have slope angles between 5°
and 20°.

The elevation is found to be one of the factors influencing
stability (Regmi et al. 2010). It varies from 512 to 1287m, and
the elevation decreases from the northeast to the southwest
direction. The elevation values were divided into eight classes

such as 521–600, 600–700, 700–800, 800–900, 900–1000,
1000–1100, 1100–1200, and 1200–1287 m (Fig. 8).

The slope aspect map (Fig. 9) of the study area is also
derived from DEM. It gives information on the exposure of
the slope relative to the north. Less sunny slopes are less
exposed to evaporation and therefore contain more moisture
which contributes to reducing soil shear resistance.
Consequently, the slope covering materials become more sus-
ceptible to slide downwards (García-Rodríguez and Malpica
2010). Its values indicate the direction of the cell’s slope faces
to north, northeast, east, southeast, south, southwest, west,
northwest, or flat land (Avtar et al. 2011).

Plan curvature differentiates between the concavity and the
convexity of slopes. Positive values indicate that the surface is
upwardly convex in that cell, and negative ones shows that the
surface is upwardly concave. A zero value represents a flat
surface (Lee and Evangelista 2006). In this study, the plan
curvature has been divided into three classes namely conver-
gence, flat, and divergence curvature (Fig. 10).

The profile curvature indicates the curvature of the surface
in the direction of slope (Wilson and Gallant 2000). It affects
the flow velocity of water draining the surface and influences
erosion and deposition. The profile curvature was reclassified
into three classes namely concave (−), flat (0), and convex (+)

Fig. 4 Distance to fault map of the study area
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Fig. 5 Distance to roads map of the study area

Fig. 6 Rainfall map of the study area
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Fig. 8 Elevation map of the study area

Fig. 7 Slope angle map of the study area
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(Fig. 11). In convex profile curvature, the erosion will prevail
while depositions occur in concave ones.

The hydrographic network influences the distribution
of unstable areas by creating and maintaining fresh slopes
as a consequence of erosion by ravines at the break of the
slopes which cause soil movements. Hence, there is a
need to designate buffer zones by measuring the distance,
separating the drain from the vulnerable zone. Multiple
buffers were applied to categorize this factor into six clas-
ses such as < 50, 50–100, 100–150, 150–200, 200–250,
and > 250 m (Fig. 12).

Landslide susceptibility assessments

The frequency ratio model

The frequency ratio method (Lee and Min 2001) is one
of the simplest probabilistic models based on the spatial
relationships between the distribution of landslides and
landslide conditioning factors (Youssef et al. 2015;
Chen et al. 2016; Aditian et al. 2018) (Fig. 13). The
frequency ratio (FR) of a particular parameter class is
defined as the ratio of landslide percent area of the

class to the total percent area of that particular class.
The frequency ratios of different parameter classes are
given in Table 2.

A weight value less than 1 indicates a low probability of
landslide occurrence, while a weight value greater than 1 in-
dicates a greater susceptibility to the phenomenon.

In order to combine all the weight values of the n parame-
ters, an overall landslide susceptibility index (LSI) is calculat-
ed by summing all the weights of the parameters using the
following formula (Lee and Talib 2005):

LSI ¼ FR1 þ FR2 þ…:þ FRn ð1Þ

The LSI values were mapped on a landslide susceptibility
map (Fig. 14a).

Weights of evidence model

Weights of evidence (WoE) method is the Bayesian probabil-
ity model in a log-linear form using prior and posterior prob-
ability and is applied where sufficient data are available to
estimate the relative importance of evidence by statistical
means (Bonham-Carter 1994).

Fig. 9 Slope aspect map of the study area
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Fig. 10 Plan curvature map of the study area

Fig. 11 Profile curvature map of the study area
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This method was originally developed for a nonspatial
application of medical diagnosis (Spiegelhalter and Knill-
Jones 1984). Afterwards, it was applied to assess mineral po-
tential mapping with GIS (Bonham-Carter et al. 1989,
Bonham-Carter 1994), and then, this method has also been
implemented to assess landslide susceptibility (Neuhäuser
and Terhorst 2007; Dahal et al. 2008; Regmi et al. 2010;
Khosravi et al. 2016; Teerarungsigul et al. 2016). A detailed
description of the mathematical formulation of the method is
available in Bonham-Carter (1994), Bonham-Carter et al.
(1989) Dahal et al. (2008), and Pradhan et al. (2010).

In the present study, we have used the weights of
evidence modeling for landslide susceptibility evaluation
and mapping. According to the method, positive and
negative weights (W+ and W−) are assigned to each
landslide causative factor (U) based on the presence or
absence of the landslides (A) within the area (Eqs. 2
and 3). Hence, this method utilizes the landslide inven-
tory data for weighting the factors (Bonham-Carter et al.
1989).

Wþ ¼ ln
P A=Uf g
P A=U
n o ð2Þ

W− ¼ ln
P A=U
n o

P A=U
n o ð3Þ

whereW+ andW− are the weights for the presence or absence
of landslides within a certain class of a causative factor map, P
is the probability, and ln is the natural log. A is the presence of
potential landslide causative factor, Ā is the absence of a po-
tential landslide causative factor, U is the presence of land-
slide, and Ū is the absence of a landslide.

The weights measure a correlation between evidence (predic-
tive variable) and event (response variable). The weights for the
binary predictor factor are defined (Pradhan et al. 2010) as fol-
lows: a positive weight (W+) indicates that the causative factor is
present at the landslide location, and themagnitude of this weight
is an indication of the positive correlation between presence of
the causative factor and landslides. A negative weight (W−) indi-
cates an absence of the causative factor and shows the level of
negative correlation (Dahal et al. 2008; Xu et al. 2012).

The difference between the two weights is known as the
weight contrast or the final weight (Dahal et al. 2008), which
is expressed as follows (Xu et al. 2012):

C ¼ Wþ−W– ð4Þ

Fig. 12 Distance to river map of the study area
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Fig. 13 The relationship between
landslide occurrence (entire
landslide data set, training
landslide data set, and training
landslide data set in percentage)
and each factor
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Table 2 Spatial relationships between landslide conditioning factors and landslide events using frequency ratio and logistic regression models

Causative factor Classes Pixels in
classes

% of pixels in
classes (a)

Landslide
pixels in
classes

% of
landslides
Pixels in
classes (b)

Frequency
ratio (b/a)

Regression
coefficients

Elevation (m) 521–600 m 4352 1,13 204 1.88 1.65 0.073089321975
600–700 m 23,042 6,01 689 6.34 1054
700–800 m 74,347 19,41 1681 15.48 0.79
800–900 m 111,393 29,08 2568 23.64 0.81
900–1000 m 115,074 30,04 4028 37.08 1.23
1000–1100 m 48,542 12,67 1586 14.60 1.15
1100–1200 m 5342 1,40 106 0.98 0.7
1200–1287 m 989 0,26 0 0.00 0

Topographic slope (°) < 5° 86,636 22,62 1315 12.11 0.53 0.241.084.809.732
5°–10° 122,096 31,87 3133 28.84 0.90
10°–15° 81,623 21,31 2737 25.20 1.18
15°–20° 46,020 12,01 1748 16.09 1.34
20°–25° 23,505 6,13 985 9.07 1.48
> 25° 23,201 6,06 944 8.69 1.43

Topographic aspect (°) Flat (− 1) 407 0,12 0 0.00 0 0.051630073777
North 55,142 14,39 1624 14.95 1.04
Northeast 38,758 10,12 885 8.15 0.80
East 49,252 12,86 1030 9.48 0.74
Southeast 56,099 14,64 1663 15.31 1.04
South 62,436 16,30 1598 14.71 0.9
Southwest 40,179 10,49 1241 11.43 1.09
West 39,639 10,34 1444 13.29 1.28
Northwest 41,169 10,74 1377 12.68 1.18

Profile curvature Concave (−) 189,946 49,58 5267 48.49 0.98 0.112478991710
Flat (0) 166,245 43,40 4447 40.94 0.94
Convex (+) 26,890 7,02 1148 10.57 1.50

Plan curvature Convergence 206,068 53,79 5662 52.13 0.97 0.011739997814
Flat 165,337 43,16 4743 43.67 1.01
Divergence 11,676 3,05 457 4.21 1.38

Distance to river (m) < 50 m 93,844 24,50 2492 22.94 0.94 − 0.00305615436
50–100 m 81,596 21,30 2187 20.13 0.94
100–150 m 68,945 18,00 2014 18.54 1.03
150–200 m 52,839 13,79 1589 14.63 1063
200–250 m 36,512 9,53 1213 11.17 1.17
> 250 m 49,345 12,88 1367 12.59 0.98

Geology (rock type) LC 1 48,816 12,74 1793 16.51 1.29 − 0.03580589923
LC 2 56,417 14,73 1169 10.76 0.73
LC 3 13,564 3,54 224 2.06 0.58
LC 4 66,014 17,23 2346 21.60 1.25
LC 5 125,485 32,76 3457 31.83 0.97
LC 6 34,516 9,01 966 8.89 0.99
LC 7 263 0,07 5 0.05 0.67
LC 8 38,006 9,92 902 8.30 0.84

Proximity to road (m) < 50 m 16,012 4,18 947 8.72 2.08 − 0.11167225408
50–150 m 31,123 8,12 1161 10.69 1. 31
150–250 m 29,797 7,78 617 5.68 0.73
250–500 m 67,879 17,72 1291 11.88 0. 67
500–1000 m 110,014 28,71 3044 28.02 0.97
> 1000 m 128,256 33,48 3802 35 1.04

Distance to faults (m) < 50 33,631 8,78 936 8.62 0.98 − 0.09979018356
50–200 94,233 24,6 3010 27.71 1.13
200–500 124,738 32,56 4157 38.27 1.17
500–1000 89,602 23,39 2071 19.07 0.81
> 1000 40,877 10,67 688 6.33 0.59

Precipitation < 500 mm 110,465 28,84 3153 29.03 1.01 − 0.13323703649
500–600 mm 207,027 54,04 5953 54.81 1.01
600–700 mm 55,774 14,56 1546 14.23 0.98
> 700 mm 9815 2,56 210 1.93 0.75
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Fig. 14 Landslide susceptibility maps. a Using frequency ratio model. b Using weights of evidence model. c Using logistic regression model
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The magnitude of the contrast reflects the correlation be-
tween a causative factor class and the occurrence of land-
slides. For a spatial association, the value of C is positive,
and when a spatial association is lacking, the value is negative
(Kayastha et al. 2012). The standard deviation of W is calcu-
lated as follows:

S Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Wþ þ S2W−

p
ð5Þ

Whereas S2W+ is the variance of the positive weights,
S2W−is the variance of the negative weights. The standardized
contrast C/S(C) gives a measure of confidence (Neuhäuser
and Terhorst 2007). The result is given in Table 3. All negative
and/or decimal weights of the contrast values (C) are trans-
formed into integers by addition and multiplication in the sta-
tistical package for their use in the production of the landslide
susceptibility map of the study area.

Logistic regression model

Logistic regression, one of the multivariate analysis
methods developed by McFadden (1973), forms a multi-
variate regression relation between a dependent variable

and several independent variables (Lee 2005) by the use
of a nonlinear relationship (Yesilnacar and Topal 2005).
The detail descriptions of the logistic regression tech-
nique can be found in the literature (Hosmer and
Lemeshow 2000).

In the logistic regression approach, the dependent vari-
able is dichotomous and the independent variables can be
either continuous or discrete or any combination of both
types and they do not necessarily have normal distributions
(Lee and Sambath 2006; Bai et al. 2010; Jacobs et al.
2018).

In this paper, we have used LR method for landslide sus-
ceptibility mapping, in order to find the best fitting model to
describe the relationship between the dependent variable
which is a binary variable representing the presence or ab-
sence of landslides (1 or 0) and ten independent parameters.
Logistic regression model applies maximum likelihood esti-
mation after transforming the dependent variable into a logit
variable (Bai et al. 2010). The logistic model can be expressed
as follows:

P ¼ 1

1þ e−z
ð6Þ

Fig. 14 (continued)
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where P is the probability of landslide occurrence, and it
varies from 0 to 1 on an s-shaped curve; z represents the linear
combination of the predictive variables, and it varies from −∞
to +∞. It is defined as follows:

Z ¼ B0 þ B1X 1 þ B2X 2 þ…BnX n ð7Þ

where B0 is the intercept of the model, B1, B2… Bn represents
the coefficients of the LR model, and X1, X2… Xn represent
the independent variables.

For the analysis, we have produced a map showing the area
affected by landslides, with a total of 10,761 landslide pixels
and an equal proportion of non landslides pixels that were
randomly chosen from the landslide-free area to represent
the dependent variables (1 for landslide presence) or (0 for
landslide absence). The spatial database of each factor was
converted into raster format with a pixel resolution of 30 ×
30 m. The conversion of parameters from nominal to numeric
is done through the creation of dummy variables for all the
categories of each independent variable. The raster landslide
and the factor maps were converted into dbf format for their
use in SPSS Version 20 statistical software, and the correla-
tions between the landslide event and each factor are calculat-
ed, in order to have a landslide susceptibility map. Using
Eq. (7) and the coefficients shown in Table 2, the final equa-
tion predicting the landslide occurrence is obtained as follows:

Z ¼ −0:2694042891986þ 0:073089321975� elevationð Þ
þ 0:051630073777� slope aspectð Þ
þ −0:09979018356� distance to faultsð Þ
þ −0:00305615436� distance to riverð Þ
þ −0:035805899229� lithologyð Þ
þ 0:011739997814� plan curvatureð Þ
þ −0:13323703649� precipitationð Þ
þ 0:112478991710� profile curvatureð Þ
þ −0:11167225408� proximity to roadð Þ
þ 0:241084809732� slope angleð Þ:

The three susceptibility maps based on FR, WoE, and
LR statistical models have been divided into five classes
as very low, low, moderate, high, and very high, using the
natural break method (Fig. 14a–c). The susceptibility class
and the percentage of landslide area in each class are shown
in Table 4 and Fig. 15.T
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Validations of landslide susceptibility maps

The prediction models constructed by many methods will
have no scientific significance without validation (Bui et al.
2012). In this paper, the validation of landslide susceptibility
models is checked using the area under the curve (AUC)
method. The landslide susceptibility maps constructed by the
FR, WoE, and LR models were compared with both the train-
ing and validation data sets. The AUC values obtained repre-
sent respectively the success rate and the prediction rate of the
used models. The success rate describes how well the model
fits with past events, and prediction rate describes how well
the model predicts the occurrence of landslide events in the
future. The receiver operating characteristic (ROC) curves
were plotted using the cumulative percentage of decreasing
susceptibility index on the horizontal axis and the cumulative
percentage of observed landslide occurrence on the vertical
axis (Fig. 16a, b). In this study, the success rate curves of the
models, tested with 80% landslide data, showed that the AUC
values were 0.8350 (83.50%), 0.8211 (82.11%), and 0.9057
(90.57%) for FR, WoE, and LR models, respectively
(Fig. 16a), and the prediction rate curves tested with 20%
landslide data showed that the AUC values were 0.8412
(84.12%), 0.8314 (83.14%), and 0.9091 (90.91%) respective-
ly (Fig. 16b). The modeling results of the AUC values of the

ROC curve obtained for FR, WoE, and LR methods show that
all the three models used in this study have reasonably high
prediction accuracy and can be used for the spatial prediction
of landslide. While comparing them with each other based on
AUC values, the map produced by LR model presented the
best result for landslide susceptibility evaluation. As a result,
the LR method was found to be the most successful one.

Table 4 The five susceptibility
zones Susceptibility

class
LR model FR model WoE model

% area
covered

% landslide
area covered

% area
covered

% landslide
area covered

% area
covered

% landslide
area covered

Very low 16.13 9.27 14.06 8.13 13.85 7.88

Low 28.49 21.57 25.43 20.3 23.13 17.01

Moderate 27.39 27.58 30.81 29.58 28.93 27.44

High 19.2 24.45 20.73 25.28 22.3 26.94

Very high 8,79 17.13 8.97 16.71 11.79 20.73
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Discussion and conclusions

Souk Ahras area is as stated earlier characterized by mountain-
ous type of relief. It shows high hills (1286 m) and deep wide
valleys. It can be observed that side hill slopes are the subject of
a very active mass wasting and erosion phenomena. All types
of landslide, i.e., rotational slides, planar slides, mud flow,
creep, and rock fall occur throughout the study area. They
touch, to a different degree, all the rock types and occur on
almost all slope angles suggesting the simultaneous interplay
of several parameters in the process of landslide occurrence.

A total of 301 landslides were identified and mapped, and
ten landslide conditioning factors were considered as the input
data for a statistical based landslide susceptibility evaluation
and modeling. The statistical techniques used herein are logis-
tic regression, weight of evidence, and frequency ratio
methods. The analysis is carried out using GIS technology
as it facilitates storing, processing, and display of results in
very efficient manner.

The work has resulted in three landslide susceptibility
maps. Each one of them is classified into five hierarchic zones
of susceptibility, very high susceptibility to very low suscep-
tibility. The most prone sites to the phenomenon occurrence
are concentrated in the northwest, central, and southeast parts
of the study area. These zones are mainly distributed on the
Triassic units: clay and gypsum-sandstone, marls and gray
marl clay of lower Campanian-Upper Santonian, siltstones
clayey marl, sandstone of upper and middle Miocene, and
on cut slopes or embankments alongside roads.

The predictive capacities of the used statistical approaches
have been validated by means of the ROC analysis.

The results of landslides susceptibility assessment show
that all the three landslide models (Fr, WoE, and LR) have
good performance and reasonably high success and prediction
rate accuracies. The LSM produced using LR method gives
the highest success and prediction rate with an AUC value of
90.57 and 90.91%, respectively, followed by the Fr and the
WoE models.

Our work has led to conclude that LRmodel can give better
results compared to WoE and FR models which are close to
one other. It is one of the best models used in the landslide
susceptibility assessment; it uses a sequence of convergence
criterions to maximize the likelihood function for predicting
landslide occurrences. The produced susceptibility maps
could be a basic pre-requisite for any proposed developmental
projects and will be quite useful to find suitable locations for
implementing new developments.
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