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Abstract
The study of human mobility has gained much attention in recent years. To date, various models have been developed to predict
human mobility patterns for intra- and/or inter-city cases. These models incorporate the populations as proxy variables in the
place of real variables which cannot be observed easily. However, inaccuracies in predicting human mobility within cities are
usually encountered. One source of inaccuracies in intra-city scenarios arises from the fact that cities’ populations are influenced
by people from other areas. Therefore, population cannot be regarded as a good proxy variable for movement modeling. The
objectives of this article are to introduce new proxy variables for use in current models for predicting human mobility patterns
within cities, and to evaluate the accuracy of the predictions. In this study, we have introduced new proxy variables, namely,
venues and check-ins, extracted from location-based social networks (LBSNs). In order to evaluate the models, we have
compared our results with empirical data obtained from taxi vehicles, based on trip distances and destination population
distributions. The Sørensen similarity index (SSI) and R-squared measures were also used to compare the performances of
models using each variable. The results show that all models with LBSN variables can capture real human movements better
within Manhattan, New York City. Our analytical results indicated that the predicted trips using LBSN data are more similar to
the real trips, on average, by about 20% based on the SSI. Moreover, the R-squared measures obtained from regression analyses
were enhanced significantly.
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Introduction

The prediction of human mobility patterns has various appli-
cations in urban planning (Camagni et al. 2002), land use
management (Agarwal et al. 2002), traffic engineering
(Jiang et al. 2009), emergency management (Bagrow et al.
2011), the spread of biological diseases (Brockmann et al.
2009; Prothero 1977; Wesolowski et al. 2012), the spread of
mobile phone viruses (Wang et al. 2009), and location-based
services (Buhalis and Amaranggana 2013). Many researchers
have focused on the study of human mobility in different
contexts, including intra-urban (Kang et al. 2012), inter-
urban (Liu et al. 2014), individual (Gonzalez et al. 2008), or
collective (Peng et al. 2012; Zheng et al. 2015) scenarios.

Modeling trip distributions has a long history, beginning with
the introduction of the well-known intervening opportunities
(IO) model presented in the 1940s (Stouffer 1940). The
existing human mobility prediction models can be categorized
into parametric and parameter-free models. The former cate-
gory includes gravity (Zipf 1946), rank-based (Noulas et al.
2012), and IO models (Stouffer 1940). Recently, a tendency
toward modeling human mobility without the need for using
adjustable parameters has been observed. Population-
weighted opportunity (PWO) models (Yan et al. 2014) and
radiation models (Simini et al. 2012) are two examples of this
category. These models do not contain any adjustable param-
eters, and generally only need the spatial distribution of the
population as their input (Yan et al. 2014).

Parameter-free models for predicting human mobility, such
as PWO and radiation models, assume that people tend to
select a destination that has relatively more benefits or oppor-
tunities. However, because of the difficulty in measuring each
destination’s opportunities, the models assume that the num-
ber of opportunities in a destination is proportional to its
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population. The models also assume that the number of trips
departing from an origin is proportional to its population (Yan
et al. 2014). In fact, the population plays the role of a proxy
variable in the models. However, these assumptions might not
be valid, especially in the case of boroughs. Difficulties can be
mainly attributed to the interactions between neighboring bor-
oughs (Masucci et al. 2013). For example, some trips occur-
ring in Manhattan might be made by the residents of the
neighboring boroughs (e.g., Bronx). On the other hand,
place-based variables such as census tract population do
not have sufficient temporal resolution to capture the true
opportunities associated with the temporal resolution of the
real data.

In the context of humanmobility pattern prediction, models
try to capture the underlying patterns behind people’s move-
ments in a system of zones. The design of the zones in a city
should be similar to that of authority areas (e.g., census tracts),
so that the results of applyingmodels are directly applicable to
the city. In a model, when the real data for a variable are not
available, a proxy variable is used. Hence, the proxy variable
should be a good representative of the real variable. Accurate
numbers of produced and attracted trips in zones are not usu-
ally available, necessitating the use of a proxy variable, which
is commonly the population of the zone. The aim of this paper
is to evaluate the utilization of location-based social network
(LBSN) data and places of interest (POIs) as proxy variables
in the models. LBSNs are special types of social networks,
where the users are able to share their locations and activities
with each other as check-ins. POIs are the places in a city
where people routinely perform their activities. These include
stores, restaurants, airports, museums, clubs, hotels, offices,
banks, and so on. The accurate positions of these so-called
POIs or venues can also be extracted from LBSNs. The cur-
rent assumptions made about population as a proxy variable in
human mobility prediction models do not take the real condi-
tions of intra-city areas into account. In contrast with the
existing models, our study assumes that the number of oppor-
tunities in a zone is proportional to the number of places that
an individual may find useful or interesting. In addition, we
assume that the number of trips departing from an origin is
proportional to the number of check-ins located in that zone.
Considering the positive relationship between trips toward a
destination and the check-ins located in it, we believe that
LBSN data reflect statistics that are closer to reality than that
those resulting from population data. From a decision-making
process perspective, it is clear that when a person makes a
decision about going to a destination, he or she does not eval-
uate the populations of the origin and the destination. The
intervening places of interest, however, play a vital role in
his or her decision-making process. Some researchers
(Hasan et al. 2013; Li et al. 2016; Noulas et al. 2012) have
leveraged geosocial network data to understand collective or
individual human mobility patterns. Agryzkov et al. (2017)

tried to answer the question of whether the data generated by
Foursquare users are in agreement with activities within the
city. In another study by Hristova et al. (2016), Foursquare
data were used to analyze the social media footprints of at-
tendees of sports games, in order to identify temporal, spatial,
and microeconomic patterns. Noë et al. (2016) utilized
Foursquare data to study the relationships between the person-
alities of users and the way they choose a place to visit. They
concluded that people with a similar personality are more
likely to visit a specific category of places. Despite vast and
emerging research on LBSN data and mobility, the direct use
of LBSN data as an alternative to population in human mobil-
ity pattern prediction models has not been evaluated, especial-
ly in intra-city scenarios where the interactions among many
parts of the city are remarkable. Abbasi et al. (2017) used
geosocial data as proxy variables within a rank-based model
and concluded that they have good potential for utilization in
this field. However, their results should be validated against
other, more established models of human mobility prediction,
such as gravity and IO models.

One of the most challenging issues in modeling trip distri-
bution in the case of parameterized models is the availability
of accurate data. Numerous studies on the subject have used
various kinds of data sources, such as cellular networks
(Caceres et al. 2007), GPS-enabled taxis (Peng et al. 2012),
vehicle identification data (Zhou and Mahmassani 2006), and
Bluetooth technology (Barceló et al. 2010). Wireless location
technologies (WLTs) have also been used in several studies
(Caceres et al. 2007). These data sources generally involve
some issues, such as privacy concerns, low accuracy of posi-
tioning techniques, sample size, matching the region of anal-
ysis with regions used in the positioning method, and so on.
For instance, positioning using a set of connected Bluetooth-
enabled devices should be done only with the prior consent of
users. The sample size is also a major issue in these data
collection techniques. As the proxy variable is an alternative
for use when real data are unavailable, the proxy data should
be easy to collect. Since the LBSN data can be categorized as
volunteered geospatial information (VGI), collecting them is a
relatively easy task. In this study, check-in data have been
extracted from the Foursquare social network through its ap-
plication programming interface (API). According to its
website,1 more than 50 million people use Foursquare every
month, so the penetration rate of its check-ins is higher than
that of other LBSN services such as GeoLife and Loopt.
Moreover, the positioning technique used in the LBSN is
based on the built-in GPS sensors of smartphones.
Therefore, the platial accuracy of such data is higher than that
of the other sources.

In this study, we have computed four models for predicting
human mobility, using both population (the standard proxy

1 https://www.foursquare.com
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variable) and LBSN data (the proposed proxy variable), in
Manhattan. We have evaluated the models via real data ob-
tained from taxi vehicles, using destination constraints (e.g.,
trip distances and destination population distributions) and
some numerical measures (e.g., Sørensen similarity index
(SSI), R-squared, and cosine similarity index).

The remainder of this article is organized as follows. In the
following section, the materials and methods used in the study
are introduced and the details of methods used in our evalua-
tion section are presented. Then, results are provided, together
with some discussion. The final section concludes the article
and outlines future work.

Materials and methods

Study area

Manhattan is the most densely populated borough of New
York City (NYC) and is one of the world’s major commer-
cial and financial centers. More than 1.5 million people
live in Manhattan, which has a land area of about
60 km2. The high density, the presence of various land
uses, and huge interactions with neighboring boroughs
(The Bronx, Brooklyn, Queens, and Staten Island) result
in high mobility in Manhattan. In addition, there is a huge
influx of daily commuters from New Jersey, Connecticut,
and NYC suburbs such as White Plains and Long Island,
who are surely making various trips within Manhattan
throughout the day. It is worth noting that these people
are not considered to be residents of Manhattan, and there-
fore, they are not reflected in population statistics reports.

Therefore, we considered Manhattan as our study area for
predicting human mobility patterns. Manhattan and its
neighboring boroughs are shown in Fig. 1. In this article,
we considered 288 census tracts within Manhattan as ori-
gin and destination zones for trips.

Data sets

In this study, we have used the US census counts made in
April 2010 by the USCensus Bureau, to extract the population
distribution of Manhattan. For the sake of compatibility, the
census tracts were also selected as trip zones.

In order to predict human mobility using LBSN data,
check-in data for 18 months (from April 2012 to September
2013) from the Foursquare social network were used (Yang
et al. 2015). This data set includes two large text files in which
the data on check-ins and venue locations are stored. There are
more than 33 million check-ins for 3.7 million venues within
the files. The venue data set contains the venue ID used by the
Foursquare system, the venue location, and the venue catego-
ry name. The check-in data set contains the ID for the venue
where the check-in occurred, an anonymous user ID and time
information. To extract Manhattan data from the data set, a
point-in-polygon analysis was performed. The data set con-
tains 333,819 check-ins for Manhattan. Moreover, the loca-
tions of the POIs for which check-ins occurred, were
extracted.

We used travel records for taxi passengers to evaluate
the prediction accuracy of the models. The data set was
collected and provided to the NYC Taxi and Limousine
Commission (TLC) by technology providers authorized
under the Taxicab and Livery Passenger Enhancement

Fig. 1 Manhattan and its
neighboring boroughs
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Programs (TPEP/LPEP). The data set contains pick-up and
drop-off times and locations, passenger counts, trip dis-
tances, and some other fields relating to payment. These
data were collected throughout September 2013 and in-
cluded about 800,000 trips. This data set includes both
yellow and green taxis in Manhattan. Green taxis are
allowed to pick up passengers only in Upper Manhattan
and other boroughs. Therefore, in order to capture a more
complete pattern, we merged data from green and yellow
taxis. However, because only trips starting and ending in
Manhattan should be accounted for, all the trips to (from)
Manhattan from (to) other regions were filtered out.
Usually, finer-resolution data sets suffer from having many
zero counts. About 40% of our taxi data set consisted of
zero counts.

Models

All models predicting human mobility patterns try to capture
the decision-making process of travelers. This process is sim-
ulated in terms of the probability of going from one zone to
another. This section introduces the models used in this study
and outlines their relationships and the differences between
them.

Gravity model

Analogous to Newton’s law of gravity, the gravity model is a
well-known framework with applications in various fields,
particularly in spatial economics (Matyas 1998). As it is a
parameterized model, it relies on the ground truth data for
calibrating its parameters. The gravity model assumes that
the flow between an origin and a destination is proportional
to their attractions (in the literature, population is assumed to
be a good representative of attraction), and decreases as the
distance between them increases. The following equation is a
common version of gravity model, called the doubly
constrained gravity model:

Tij ¼ AiT iB jT j f rij
� �

; ð1Þ

where Ti is the total number of trips departing from location i,
Tj is the total number of trips arriving at location j, f(rij) is a
function of the distance rij, and Ai = 1/∑jBjTjf(rij) and Bj = 1/
∑iAiTif(rij) are balancing factors that are dependent on each
other. The balancing factors are calculated via an iterative
procedure, which demands high computational effort. To
simplify the calculations, one of the balancing factors can
be set equal to one. This leads to a simpler form of gravity
model, known as a singly constrained gravity model. In
this study, we used a power distance decay function and a

singly constrained (origin-constrained) gravity model, in
which the trip distribution is described as:

Tij ¼ Ti
mjr

−β
ij

∑
N

k≠i
mkr

−β
ik

; ð2Þ

where β is an adjustable parameter, mj is the population of
the destination zone, N is the total number of zones in the
city and the other variables are the same as in Eq. (1). In
order to determine the parameter β of the model, we used
taxi passenger trips as the ground truth data. The parameter
β should be assigned a value that yields the best fitted
distribution to the ground truth data. For this purpose, sev-
eral numerical algorithms (Easa 1993; Evans 1971; Hyman
1969; Openshaw 1976; Williams 1976) have been devel-
oped. Due to its higher efficiency (Celik 2010), Hyman’s
calibration algorithm (Hyman 1969) was employed as the
method for calibrating the model. Hyman’s method aims to
minimize the difference between the average cost of travel
predicted by the model and the observed average cost of
travel. The cost of travel in the gravity model is the dis-
tance between the origin and the destination. Therefore, the
following equation should be minimized (Yan et al. 2014):

E βð Þ ¼ r βð Þ−r
��� ��� ¼ ∑i∑ jT ij βð Þrij

∑i∑ jT ij βð Þ −
∑i∑ jT ijrij
∑i∑ jT ij

�����
����� ð3Þ

where r βð Þ is the average distance of predicted trips using
parameter β and r is the average distance of observed trips.
Since providing a direct solution for this equation is not
straightforward, the algorithm uses an initial approxima-
tion for the parameter and utilizes an iterative procedure
to solve the equation.

IO model

In the IO model (Stouffer 1940), unlike the gravity model,
there is no direct use of distances between origins and desti-
nations; only opportunities are considered. The IO model is
defined as:

Tij ¼ Ti
e−α Sij−m jð Þ−e−αSij

1−e−αM
; ð4Þ

whereα is, again, the adjustable parameter of the model which
should be determined using ground truth data, M is the total
population in the city, and Sij is the population within a circle
centered at the destination, with a radius equal to the distance
between the origin and the destination zone. In fact, in this
model, the effect of distance has been latently modeled by
using this variable.
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PWO model

The PWO model (Yan et al. 2014) is a parameter-free model
that requires the population distribution for predicting human
mobility in cities. It is derived from a stochastic decision-
making process and tries to predict an individual’s destination
based on opportunities. If the attractions are assumed to be
inversely proportional to the populations of destinations and
origins, the gravity model becomes a PWO model. The num-
ber of trips from location i to location j is computed as:

Tij ¼ Ti

mj
1

Sji
−
1

M

� �

∑
N

k≠i
mk

1

Skj
−
1

M

� � ; ð5Þ

where Ti is the number of trips departing from origin i and mi

and mj are the populations of the origin and the destination,
respectively. The other variables are the same as in the previ-
ous equations.

Radiation model

The IO model is based on the assumption that the probability
of traveling from one location to another is proportional to the
population of the destination. Changing this to the ratio of the
population of the destination j and the total population of the
origin i and the destination j, yields the radiation model. The

radiation model is also a parameter-free model for predicting
human mobility and is computed as Simini et al. (2012):

Tij ¼ Ti
mimj

mi þ sij
� �

mi þ mj þ sij
� � ; ð6Þ

Note that in Eq. (6), sij is the population within a circle
whose center is the trip origin and whose radius is rij. This
model originates from diffusion dynamics (Kang et al. 2015).

The flow diagram below (Fig. 2) shows the procedure re-
quired for applying human mobility models to a city.

Results and discussion

Initially, we performed some preliminary analyses on the char-
acteristics of POIs and the population distribution in
Manhattan. The distribution of POIs in each tract, together
with their populations, is presented in Fig. 3. It can be seen
from the figure that the POIs are denser in the southern parts of
the borough, possibly due to the high density of the built
environment. In addition, the center of business and govern-
ment of New York City is located in this region. However,
since Upper Manhattan is mainly a residential area, southern
parts are not as densely populated. Furthermore, Upper
Manhattan is not a major center of tourism in NYC, resulting
in lower numbers of associated trips. Therefore, the character-
istics of the POI distribution in Manhattan are dissimilar to
those of the population distribution.

Fig. 2 The flow diagram for applying a human mobility model in a city
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As shown in Fig. 4, there is a relatively high positive rela-
tionship (R-squared = 0.844) between the number of POIs and
the number of check-ins in a zone. Therefore, the more the
POIs in an area, the higher the number of check-ins, which is
analogous to the assumption that the higher the population in a
zone, the higher the number of trips departing from it (Simini
et al. 2012). Hence, it seems that our assumptions about trips
are valid. In all the models introduced in the previous section,
the number of check-ins occurring in a zone has the potential
to be a proxy for the total number of trips produced in that
zone (Ti), based on our assumptions. In a similar manner, the
numbers of POIs located in the zones can act as proxies for the
attractions of the zones. In addition, Sij is computed using the
POIs located in the aforementioned circle. To ensure that the

total predicted fluxes and the total observed fluxes are
matched, a normalization factor κ is also introduced into the
models.

In order to compare the assumptions, we performed a dis-
tance distribution analysis for the trips. The distance between
the origin and the destination is an important factor in travel-
ing. In addition, the trip distance distribution can provide im-
portant evidence to urban and regional planners and other
decision-making authorities within a city. With the help of this
analysis, the effect of trip distance on the probability of trav-
eling can be statistically studied. Figure 5 shows the probabil-
ity of traveling between two locations at a distance r, produced
by different models, using population variables and LBSN
data. The plot has a logarithmic scale.

(a) (b) (c)

# POIs # Population
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141 - 225
226 - 340
341 - 535
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1732 - 3673
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N

Fig. 3 a Color-coded map of the number of POIs in each tract, b distribution of POIs in Manhattan, and c color-coded map of population in each tract
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Fig. 4 Statistical relationship
between number of POIs and
number of check-ins in a zone
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As shown in Fig. 5, when the models are based on the
population, they show a more abrupt decay than when the
inputs are based on LBSN data, suggesting that for long dis-
tances, the original assumptions underestimate the probability
of making trips. Using LBSN data, the models predict the
probability of making long trips more accurately. Apart from
this, the other parts of the plots show no significant
differences.

As far as the managerial decision-making process in a city
is concerned, the population characteristics of the city repre-
sent aspects which have remarkable impacts on human mobil-
ity (Yan et al. 2014). We compared the probability of traveling
from an origin to a destination with populationm, produced by
the models, with the empirical data (Fig. 6). This gave us a
valuable measure of howmuch the population of a destination
is representative of its attractions.

Figure 6 reveals that our assumptions regarding the use of
LBSN data within cities are much closer to reality than the
assumptions made in existing models (i.e., the use of

population). It can be seen from Fig. 6 that the population-
based models underestimate the probability of traveling to
zones with low population. This happens very frequently at
an intra-city level. There are some zones in Manhattan (e.g.,
Central Park) which have few residents (according to the
Census Bureau’s survey, Central Park has only one resident),
but due to the land use, many trips are directed toward them.
The existing models fail to predict the trips in such regions. As
noted earlier, the northern parts of Manhattan are more popu-
lated, but trade centers are mainly located in Lower
Manhattan. Thus, when predicting mobility via population,
the probability of traveling to highly populated zones is
overestimated. However, the predictions using LBSN data
accurately match the real data for all models.

Furthermore, we conducted a test using the two-sampled
Kolmogorov-Smirnov hypothesis (KS test) to determine
whether the two samples of data could have come from the
same underlying distribution at the 5% significance level. In
essence, the KS test tries to determine if two samples differ
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Fig. 5 Probability of traveling from location i to location j with respect to the distance between them
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significantly. It is a non-parametric hypothesis test and the
underlying distribution of the samples need not be known.
Tables 1 and 2 summarize the P values resulting from the
KS test. The participating samples in the test are observed taxi
trips and the estimated trips from each model.

As can be inferred from the tables, where the null hypoth-
esis for the sample resulting from population data is accepted,
the same is true for the estimated trips from the LBSN data. In
most cases, the P values of the test for LBSN data are higher
than those for population data.

In addition to the plots given above, we completed our
evaluations using some numerical measures. The SSI is a

similarity measure which evaluates the amount of closeness
between two sample data sets. It has been used in this study to
quantify the similarity of predicted and actual trips. The index
is defined as (Lenormand et al. 2012):

SSI ¼
2∑

i

N
∑
j

N
min Tij; T

0
ij

� �

∑
i

N
∑
j

N
T ij þ ∑

i

N
∑
j

N
T

0
ij

; ð7Þ

where Tij and T
0
ij are the actual and predicted trip flows, re-

spectively, from location i to location j. The value of SSI is

Population

P
r
o

b
a
b

il
it

y

10-4

10-3

10-2

10-1

100

10-4

10-3

10-2

10-1

100

10-4

10-3

10-2

10-1

100

10-4

10-3

10-2

10-1

100

100 101 102 100 101 102

100 101 102 100 101 102

Real data

Gravity

Gravity (LBSN)

Real data

I. O.

I. O. (LBSN)

Real data

PWO

PWO (LBSN)

Real data

Radiation

Radiation (LBSN)

(a)

(c) (d)

(b)

Fig. 6 Probability of traveling from location i to location j with respect to the population of the destination

Table 1 Two-sampled KS test results for trip distribution based on distance probability distribution

KS test Gravity (LBSN) Gravity PWO (LBSN) PWO Radiation (LBSN) Radiation IO (LBSN) IO

P value 0.210 0.078 0.362 0.947 0.0442 0.0240 0.210 0.078

H0 Accept Accept Accept Accept Reject Reject Accept Accept
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between zero and one, with zero indicating complete disagree-
ment and one indicating equality. Figure 7 shows the SSI
values of the models for Manhattan.

As Fig. 7 shows, regardless of the data used, the radiation
model has the lowest index value, indicating poorer agreement
with the real data. This is consistent with the results of previ-
ous studies on the subject, suggesting that the radiation model
has limited capabilities for predicting human mobility in intra-
urban scenarios (Liang et al. 2013; Masucci et al. 2013), as is
the case in our study. The SSI value for the PWO is slightly
worse than that for gravity and IO models. However, unlike
the gravity and IO models, the PWO model requires no pa-
rameters to be determined. Nevertheless, it should also be
noted that, for planners, geographers, economists, and many
others, the parameters provide context and have explanatory
power. Results from the LBSN data are more similar to the real
data (except for the radiation model), on average, by about 20%.

The scatterplot of each model is shown in Fig. 8. These
plots have a log-log scale, so that more details can be seen
when the values are within a broad range. The blue dots in
each diagram indicate the number of modeled trips against the
number of observed trips for all origin-destination pairs. The
red line passing through the clouds of blue points is the iden-
tity line (y = x) and indicates the equality of predicted and
observed trips. As can be seen, the point clouds obtained from
the LBSN data tend toward the identity line, showing good
agreement of the results obtained from LBSN data with real

observations, whereas the upper point clouds are more dif-
fused over the plot area.

Further, we studied the performances of models based on
the R-squared measure obtained from the regression analysis
of each plot. Figure 9 demonstrates significant differences in
the two data sets used. Again, LBSN data performed much
better than the population data. Note that the relative differ-
ences between the bars in Figs. 7 and 9 in the case of LBSN
data, are preserved, showing the stability of the models when
using LBSN data.

In order to analyze the results in a more detailed man-
ner, we computed the cosine similarities between origin-
destination matrices at zone level, rather than at the level
of the whole city. Firstly, the rows and columns of each
matrix were partitioned. Then, the cosine similarities be-
tween corresponding rows and columns in each matrix
were computed. To compute cosine similarities, each
row (column) is considered asa vector in a 288-
dimensional space (i.e., the dimension of the space is
equal to the number of zones). If the angle between this
vector and the corresponding vector extracted from the
ground truth matrix in the space is equal to zero, there is
complete similarity (identity). Conversely, if the two vec-
tors are in opposite directions, the value of the index will
be − 1. Since the trip distribution matrix is a non-
negative matrix, the index ranges in practice from zero
to one, indicating parallel and perpendicular vectors,

Table 2 Two-sampled KS test results for trip distribution based on destination population probability distribution

KS test Gravity (LBSN) Gravity PWO (LBSN) PWO Radiation (LBSN) Radiation IO (LBSN) IO

P value 0.709 0.945 0.945 0.709 0.945 0.945 0.709 0.945

H0 accept accept accept accept accept accept accept accept

PWO Radiation Gravity I. O.
0
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Population
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Fig. 7 Comparison of
performances of models based on
SSI. SSI is an index to quantify
the similarity between two data
sets
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respectively. Figures 10, 11, 12, and 13 show the frequency
histograms of the cosine similarities for rows and columns.

The red line indicates the mean value of the histogram (μ)

and the blue bounds show the interval μ−
ffiffiffi
2

p
σ to μþ ffiffiffi

2
p

σ,
where σ is the standard deviation. According to Chebyshev’s
inequality, at least 50% of values lie within the blue area. The
histograms show an overall improvement in the predictions,
except for the case of the radiation model.

In order to see to what extent particular types of check-ins
are incorporated in mobility modeling in Manhattan, we

aggregated check-ins occurring at similar locations into seven
categories, i.e., eating out, shopping, religious affairs, recrea-
tional activities, educational and academic activities, job-
related activities, and other activities. The plot below (Fig.
14) shows the contribution of each category to the mobility
modeling in Manhattan. Because check-in numbers play
the role of coefficient in the models, they directly affect
the results. As shown in the figure, a significant proportion
of the check-ins in our data set relates to shopping and
eating out.
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Fig. 9 Comparison of
performances of models based on
the R-squared measure resulting
from regression analysis
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Fig. 11 Frequency histograms of cosine similarities for a rows and b columns of OD matrices from the IO model
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Fig. 12 Frequency histograms of cosine similarities for a rows and b columns of OD matrices from the PWO model
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Fig. 13 Frequency histograms of cosine similarities for a rows and b columns of OD matrices from the radiation model
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Conclusions

In this article, we used LBSN data to predict human mobility
patterns in Manhattan, NYC. Different boroughs have many
interactions with each other, and people do not generally live
and work in the same area. Thus, there are offsets in terms of
population and activities. This can result in reduced mobility
prediction accuracies. Since the LBSN data are inherently
more directly related to trips than population data, we used
data from check-ins as proxy variables to predict the human
mobility within Manhattan. In this paper, we explored the
predictive potential of the existing human mobility models
by replacing the population variable by POIs and check-ins.
In this way, we changed the possibly unrealistic assumptions
about population within cities, while preserving the simplicity
of the models. Our proposed assumptions resulted in im-
proved performance. Results from evaluation measures re-
vealed that all models using the proposed assumptions
achieved overall accuracies much better than when the origi-
nal assumptions were used. LBSN data led to patterns that
were, on average, 20% more similar to the real observations
based on SSI. Moreover, the accuracy of predictions was en-
hanced significantly according to the R-squared measure ob-
tained from regression analysis. Future work could evaluate
the applicability of such an approach on different spatial
scales, such as for inter-city mobility. Utilizing the LBSN data
can lead to more accurate predictions of human mobility with-
in cities. This study adopts some basic assumptions. For in-
stance, the comparison of the results of human mobility pre-
diction models against taxicab journeys is common in the
literature. The assumption is that taxi trips are representative
of people’s movements within the city. However, this may not
be true. It is also assumed that the reported check-ins in the
data set are genuine. The activities in LBSNs might not be
representative of all types of activities in the real world. These
considerations may have an influence on the results of our

analyses. However, LBSN data have the potential to be used
successfully as proxy variables in the models, instead of more
static variables such as population.
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