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Abstract
The geodetic datum transformation in-between local and global systems seen in the world are inspiring for the engineering
applications. In this context, the Egyptian geodetic network has a limited observation for the terrestrial and satellite of the
geodetic networks. Transforming the coordinates of the Egyptian datum, here we demonstrate the datum transformation in three
directions from global to local coordinates that utilized the artificial neural network (ANN) technique as a new tool of datum
transformation in Egypt. A conventional, which are the Helmert and Molodensky, and numerical, which are the regression,
minimum curvature surface, and ANN, datum transformation techniques are investigated and compared over the available data in
Egypt. The results showed an accurate transforming datum using ANN technique for both common and check points, and the
novel model improved the transformation coordinates by 37 to 72% in space directions. A comparison between the conventional
and numerical techniques shows that the accuracy of the developed ANNmodel is 20.16 cm in terms of standard deviation based
on the residuals of the projected coordinates.
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Introduction

Recently, the extension of existing geodetic control networks
using traditional terrestrial techniques has become impractical
over time. Therefore, it is a mandatory mission to combine
satellite and terrestrial networks to grasp the benefit from
modern technology measurements. The global positioning

system (GPS) networks are related to world geodetic system
1984 (WGS84) datum, while terrestrial geodetic networks are
related to national, local, or regional geodetic datums (Rabah
et al. 2015; Abou-Beih and Al-Garni 1996). To fully utilize
the system, therefore, countries using different datums for
their own coordinate bases have to either make a datum trans-
formation platform between their datum and the global geo-
detic datum or change the datum to the global one (Kwon et al.
2005; Jones 2002). For this reason, datum transformation de-
termination has become a major practice to transform the co-
ordinates from the global geodetic datum to local datum.

Geodetic datum transformation is the determination of a
mathematical relationship that is to be used in transforming
a set of coordinates from one geodetic datum to another
(Dawod and Dalal 2000; Rabah et al. 2016). Two different
types of mathematical models can be considered for transfor-
mation between any two coordinate systems. The first is the
conventional techniques, which can be considered as a math-
ematical model that addresses the problem with geometrical
explanations that are under consideration. For example, the
Hotine Krakiwsky, Thomson, Ten Parameters, Helmert,
Molodensky, Affine, Five Parameters, and Three Parameters
Models are considered as conventional ones (Herrault et al.
2013; Ziggah et al. 2013; Vandenberg 1999; Mataija et al.
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2014). The second is the numerical techniques that address the
problem by taking the mathematical model and its properties
into consideration to obtain the best result that satisfies the
accuracy that is required (Herrault et al. 2013). The numerical
models include multiple regression equation, least squares
collocations (LSC), artificial neural networks (ANN), and
minimum curvature surface (MCS) (El-Shambaky 2004;
Tierra et al. 2008). Herein, the distortion is discovered in the
old geodetic network rather than the geometrical explanation
through the transformation process. In this study, we will use
the available data in Egypt to compare the two techniques and
estimate the better one that can be applied in our case.

Herein, many studies proposed and evaluated the datum
transformation in one, two, and three directions (1D, 2D,
and 3D) using the conventional and numerical techniques
(Tierra et al. 2008; Ardalan et al. 2002; Fazilova 2017;
Mataija et al. 2014; Lwangasi 1993; Khazraei et al. 2017;
Akyilmaz et al. 2009). The following is the literature review
for the datum transformation techniques and applications:
Fang (2014) utilized the total least squares method to adjust
the datum transformation in 2 and 3Ds, and he applied the
method to transform the datum transformation. He found that
the proposed method can be applied to translation in-between
two datums at millimeter-level accuracy. Yang (1999) com-
pared the least squares and robust estimator to transform the
datum area in China, and he found that when the coordinates
contaminated by outliers, the two methods can be given rea-
sonable results. Abou-Beih and Al-Garni (1996) utilized the
polynomial technique to transform the Saudi-Arabian area,
and they found that the shift of the x, y, and z directions are
5.11, 5.46, and 6.73 cm, respectively. Ardalan et al. (2002)
applied the Molodensky technique to transform the geoid da-
tum of the east Germany, and they observed that the geoid
height transformed in-between two geoid models with accu-
racy of 3.89 cm. Civicioglu (2012) proposed and compared a
different method for the geocentric datum transformation and
he found that the computational intelligence algorithms are
good tools that can be used to transform the datums.
Kinneen and Featherstone (2004) evaluated the regression,
Molodensky, Helmert, and 3D similarity based on the
Intergovernmental Committee on Surveying and Mapping
(ICSM) parameters which is transformation datum models
over Australia network; and they found that the 3D
similarity-ICSM model accuracy is the best conformal trans-
formation for Australia. The Helmert model is adjusted using
least square to transform the France datum and found that the
local system coordinates (x,y) are well defined (Mataija et al.
2014). In addition, the ANNwas utilized to transform the 1, 2,
and 3Ds of the datum transformation and was found to be a
good numerical tool that can be used to fit and transform the
coordinate systems (Tierra and Romero 2014; Srivastava et al.
2014; Tierra et al. 2008; Akyilmaz et al. 2009; Erol and Erol
2012, 2013). For example, Ziggah et al. (2016) evaluated the

datum transformation in-between two coordinate systems
using ANN, and they found that the ANN with nonlinear
function solution is highly accurate than the linear one. Liao
et al. (2012) utilized the ANN to predict the orientation parame-
ters of the earth, and they observed that the significance is im-
proved between the ANNmodel prediction results and measure-
ments. Moreover, the ANNmodel is used to transform 2D coor-
dinate system and found that the model is optimum to transform
the datums with high accuracy (Konakoglu et al. 2016).

In Egypt, the datum transformation are studied and evaluat-
ed previously; the following are the problems and summary for
the datum transformation in Egypt. The datum transformation
problems can be concluded that the old local geodetic network
was inaccurate, limited, and inconsistent (Shaker et al. 2007),
and some of the data set used in the transformation process were
missing, such as height information (Elmaghraby et al. 2005;
Zaki 2015). Therefore, Egyptian studies approached the trans-
formation into two ways: the first approach was to readjust the
old Egyptian geodetic network as an entire block to obtain a
modified old EgyptianGeodetic Datum 1930 (EGD30) tomake
the transformation step between datums using conventional
techniques. The trails included all of the available missing data
they could obtain such as the precision of control points and
geoid undulation; these trials summarized in Shaker et al.
(2007). The second way is to accept old EGD30 coordinates
as they are and make the transformation process directly be-
tween EGD30 and WGS84. The conventional and numerical
transformation models are used and applied in this case; the
trials for that case can be found in Abd-Elmotaal (1994), El-
Tokhey et al. (2015), Dawod and Dalal (2000), Dawod and
Abdel-Aziz (2003) and Shaker et al. (2007). From these studies,
it can be concluded that the conventional transformationmodels
reveal inconsistency in the precision along the whole network
as the permanent reason that it is not easy to obtain a precise
transformation set over the Egyptian area. Therefore, there is an
opinion to adopt a regional transformation solution strategy,
which means to model WGS84/EGD30 transformation and
existing EGD30 network distortions; each regional geodetic
can produce a coordinate shift for each Egyptian governorate.
Moreover, it can be noted that the numerical models can be
applied over the Egyptian territory without a need for a trans-
formation parameter set. In addition, the datum transformation
can be applied in three directions. Moreover, the numerical
models can address the EGD30 coordinates accompanied with
their inconsistency, and finally, when those models use distor-
tion as a verification tool; and the average distortion of these
models in the 3D is observedwithin 60 cm andwithin 1.20m in
space (El-Shambaky 2004). Herein, it should be mention that
the numerical studies for the 3D datum transformation in Egypt
are limited in the polynomial and MCS models (El-Shambaky
2004; Abd-Elmotaal 1994; Dawod et al. 2010).

However, the aims of this study are to design and evaluate
the ANN, for the first time in Egypt, as a novel model to
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transform the geocentric datum transformation WGS84/
EGD30 in a 3D based on the available data of the Egyptian
networks. To achieve this, the previous conventional and nu-
merical models were applied and compared with ANN design
model over the Egypt area.

Egyptian geodetic network

In Egypt, the geodetic network can be divided into networks I
and II (El-Shambaky 2004; Shaker et al. 2007). Network I
started in the year 1907 and was finished in 1945; Network II
was constructed and observed from 1955 and was finished in
1968 (Dawod and Abdel-Aziz 2003; Shaker et al. 2007). The
geodetic observations of networks I and II were taken while the
geoid in Egypt was unknown. Thus, the gravimetric reductions
on the collected observations were neglected. Network I was
adjusted section by section, not as one block; moreover, it had
good observations and some defects in the processing and ad-
justments were found (El-Shambaky 2004). Thus, its precision
is not the same everywhere and could be more or less than
1:100,000 (El-Shambaky 2004; Shaker et al. 2007). The coor-
dinates of network II stations were computed from the collected
observations without gravimetric reductions and without any
type of adjustment; the precision of network II is less than that
of network I and could be more or less than 1:50,000 (Shaker
et al. 2007; Saad and Elsayed 2007).

In 1992, the Egyptian Survey Authority (ESA) steering com-
mittee developed a plan for the creation of a new datum for
Egypt (Rabah et al. 2015). The ESA decided to replace the
EGD30 and the associated projection system, Egyptian
TransverseMercator (ETM), with theWGS84 and the associated
projection system, Universal Transverse Mercator (UTM). In
addition, the ESA proposed a new projection system called the
Modified Transverse Mercator (MTM) that is related to the
WGS84 (El-Tokhey et al. 2015). In 1995, the ESA announced
the new datum for EGD30 geodetic first-order control points of
Egypt entitled BHigh Accuracy Reference Network (HARN)^;
this network was tied to the international geodetic network (IGS)
and the GPS data were processed using the precise ephemeris
(Mina 2006). The HARN network is divided into two sub-net-
works: HARN order-A and HARN order-B. The HARN order-
A network consists of 30 stations covering the Egyptian territory
with an average spacing of approximately 200 km. Its relative
accuracy estimate is 1:10,000,000 or 0.10 part per million (ppm)
(Rabah et al. 2015, 2016). Few stations from the old Egyptian
first-order triangulation network have been utilized as GPS sta-
tions in this network. HARN order-B network, also called the
National Agricultural Cadastral Network (NACN), consists of
140 stations. The NACN covers the Nile valley and delta with
a spacing of approximately 30–40 km (Rabah et al. 2015). The
relative accuracy estimate of this network is 1:1,000,000 or
1 ppm (Dawod and Abdel-Aziz 2003). The results of analyzing

both networks were defined in International Terrestrial Reference
Frame 1994 (ITRF1994) epoch 1996; more review for the
HARN and NACN network can be found in Rabah et al.
(2015); Abd-Elmotaal (1994); and Dawod (2009).

In this study, the available first-order control points (14 points)
are used as common points. These points belong to HARN
order-A and EGD30 networks and 11 check points are utilized
to validate the transformation datum model; these points belong
to HARN order-B and EGD30 networks. Figure 1 shows the
distribution of common and check points. From Fig. 1, it can
be seen that the model design cannot be considered for the whole
area of Egypt, while the west area is not covered.

Methods

As mentioned above, the transformation models can be divid-
ed into conventional and numerical transformation models;
therefore, in this study, we utilized the common methods that
are applied in Egypt to compare it with a novel model design,
the ANN model.

Previous common models

The following is the summary of the effectively utilized
methods for the three directions’ datum transformation in
Egypt. For conventional transformation, two transformation
models are widely used to transform the datums from collo-
cated coordinates, which are the Bursa–Wolf similarity and
Molodensky models.

In the well-known Bursa–Wolf similarity 3D, seven param-
eter transformation (Helmert) model can be presented as fol-
lows (Deakin 2006; Závoti and Kalmár 2016):

Si ¼ T þ kRPi ð1Þ
where Si and Pi (i = 1, . . . n) are two column vector sets of
collocated 3D coordinates in two different systems, n repre-
sents the number of points used, T = (ΔX,ΔY, ΔZ)T denotes
three translation parameters, k refers the scale parameter, and
the 3 × 3 rotation matrix R contains three rotation parameters
(Abd-Elmotaal 1994). Obviously, to determine the seven pa-
rameters, the number of collocated coordinates Si, and Pi

should be greater than or equal to three (Shen et al. 2006).
The Molodensky model describes the relationship between

any two different 3D coordinate systems by seven unknown
parameters, and it is given by Deakin (2006):

Si ¼ T þ Po þ kRΔPoi ð2Þ
where Po defines the position vector of the initial point of the
network. In this case, the rotations and the scale are only
applied on the vector ΔPoi between any terrain point (Pi) and
the initial point (Po) (El-Shambaky 2004).
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For numerical transformation, two transformation models
are utilized in this study, which found a high performance for
the datum transformation in Egypt; these are the second-
degree regression and MCS models (Abd-Elmotaal 1994;
El-Shambaky 2004; Dawod et al. 2010).

The coordinate shift of datum components (Xo, Yo, Zo) for
the x, y, and z directions, respectively, of n stations in the
polynomials of degree k, in this study, where the second de-
gree is applied, can be calculated as follows (Abd-Elmotaal
1994; El-Shambaky 2004):

X o ¼ ∑k
i¼0∑

i
j¼0aijλ

i− jϕ j ð3Þ

where ϕ and λ are the geodetic latitude and longitude in ra-
dians, respectively. The aij is the regression coefficients and it
can be estimated by a least squares fitting technique. Similar

can be calculated for the shift components Yo and Zo (Abd-
Elmotaal 1994).

The MCS is an old and ever-popular approach for con-
structing a smooth surface from irregularly spaced data (El-
Shambaky 2004). This model is approved to be used as a tool
for datum transformation in 1 and 3D in Egypt (El-Shambaky
2004). The surface can be interpolated by MCS with bi-
harmonic splines or can be gridded with an iterative finite
difference scheme. The mathematical formula for MCS looks
for a 2D surface f(x, y) in region D, corresponding to the min-
imum of the Laplacian power (El-Shambaky 2004):

∬
D

∇ 2 f x; yð Þ�� ��2dxdy ð4Þ

where ∇2 denotes the Laplacian operator. Alternatively, seek-
ing f(x, y) as the solution of the biharmonic differential

Fig. 1 Distribution the available of common and check points
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equation(∇2)2f(x, y) = 0, the solution of this differential equa-
tion can be solved using Taylor’s theorem to linearize the
nonlinear biharmonic differential equation to have a simple
mathematical form in one variable as in Eq. (5) and Fig. 2.

∂2ϕ
∂x2

� �
0

¼ 1

h2
ϕ1 þ ϕ3−2ϕ0½ �

∂2ϕ
∂y2

� �
0

¼ 1

k2
ϕ2 þ ϕ4−2ϕ0½ � ð5Þ

where ϕ0 is the known observed value, and {ϕ1, ϕ2, ϕ3, ϕ4}
represent the unknown values in two directions (x and y) in a
grid system as shown in (Fig. 2). The distance between the
observed value and the unknown values on the grid is indicat-
ed by the arm of grid length h and k. All of the details about
how Eq. 4 is used to solve the Egyptian datum transformation
problem can be found in El-Shambaky (2004).

Artificial neural network design transformation
model

Recently, an artificial neural network (ANN) has been used in
transformation between Cartesian coordinates, geodetic coor-
dinates, or plane coordinate systems related to two different
systems (Tierra and Romero 2014; Tierra et al. 2008). When
the ANN is properly designed and trained, it can be used for
spatial datum transformation as an alternative tool in datum
transformation for geographic information system (GIS) ap-
plications; it is practically applicable. More accurate spatial
datum transformation based on ANNs can be expected with
large and high-quality spatial data and with improved geo-
graphical coverage (Ziggah et al. 2016; Tierra and Romero
2014). The following is the ANN model design. Three layers
are the component of the ANN; these are input, hidden, and
output layers; each layer contains one or more neurons

(Ziggah et al. 2016; Haykin 1994; Hagan et al. 1995), as
presented in Fig. 3. An ANN structure can be modeled as in
Eq. 6 (Ziggah et al. 2016).

Slk ¼ ∑n
i¼1X iW l

i þ blo ð6Þ

where Xi is a vector contains the input data, Wi represents the
connection weight vector from the previous layer of neurons,
bo is the bias weight that corresponds to an additional inde-
pendent input, n is the number of input data, l is the number of
hidden layers, and k is the number of destination neuron of
ANN. The result from Eq. 6 is applied in a transfer function
f(S) that gives an output according to Eq. 7.

alk ¼ f Slk
� � ð7Þ

where f Slk
� �

represents the transfer function, and alk is the
output of the transfer function. The activation function deter-
mines the amplitude of the data coming from the previous
layers of the neuron; this is the same function that is respon-
sible for activating or deactivating the data that is being issued
to subsequent layers of the network. Although many different
functions could be a successful transfer function, usually a
differentiable and bounded function is used (Haykin 1994;
Hagan et al. 1995). This study uses an ANN based on sigmoid
and linear functions to represent the shift in the three direc-
tions between common points at the two datums EGD30/
WGS84 according to Eq. 8.

P ϕ;λð ÞEGD30 ¼ P ϕ;λð ÞWGS84 þ T ð8Þ

where P(ϕ, λ)EGD30 and P(ϕ, λ)WGS84 are the curvilinear co-
ordinates of the common point on EGD30 and WGS84, re-
spectively, and T is a vector of the true target shift in the three
directions (Δx,Δy,Δz) where every component represents the
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Fig. 3 Typical designed four hidden layer neural network

Fig. 2 Unit of a grid system used in the MCS solution
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difference between Cartesian coordinates at the common
points. A multilayer neural network has been used to simulate
the relationship between the curvilinear coordinates of the
common point on EGD30 and every shift component of the
vector T separately. The designed network that is used is a
two-layer feed-forward network with a sigmoid transfer func-
tion in the hidden layer and a linear transfer function in the
output layer. The network structure is presented in Fig. 3.

This network is used in two stages; the first stage is used to
train the network, and the training process is an iterative pro-
cedure. This iterative process defines the parameters, calcu-
lates the error, and updates the parameters by propagating
back the effect of the error to each parameter. The training
process continues until the network error reaches an accept-
able value or has a stable state of estimated unknown param-
eters (Haykin 1994; Hagan et al. 1995).

The steps in the first training stage process can be summa-
rized as follows. First, the input vectors contain curvilinear
coordinates of the common points based EGD30
P(ϕ, λ)EGD30, and the target response vector contains the true
shift in Cartesian coordinates T =Δx, orΔy, orΔz. Therefore,
the network is solved for every true target shift component
separately. In the second step, the neural algorithm will use
initial values of the unknown weights and biases as mentioned
in Eq. 6. The results will be transferred to the second hidden
layer according Eq. 7 and using the sigmoid function as a
transfer function that is depicted in Eq. 9. In the third step,
the neural algorithm will again add the initial values of the
unknown weights and biases belonging to the hidden layer no.
2 to the outputs from hidden layer no. 1 as shown in Fig. 3.
Then, the resultant will be transferred to the output layer using
the linear transfer function as shown in Eq. 10 to estimate the
shift transformation values.

f 1 Slk
� � ¼ eS

l
k−e−Slk

eS
l
k þ e−S

l
k

ð9Þ

T̂ ¼ f 2 Slk
� � ¼ S2k ð10Þ

The neural algorithm will calculate the residuals between
the target response value and the estimated response. Then,
the Levenberg–Marquardt algorithm adaptively varies the un-
known parameters (weights and biases) between the gradient
descent update and the Gauss–Newton update according to
Eq. 11 (MathWorks Inc. 2015), until the algorithm reaches a
stable state, which means that there is no significant change in
the estimated unknown parameters. At this point, the algo-
rithm adopts the latest estimated parameters (weights and
biases) of the model.

ΔRk ¼ − JT J þ μkI
� �−1

JT T−T̂
� � ð11Þ

where ΔRk is the theoretical difference between successive
estimations of the same unknown parameter; it is also called
a performance index. JTis the transpose Jacobian matrix with

respect to the unknown parameters ∂R
∂W ; ∂R

∂W

� �T
, μk is a scalar

value used to help the Hessian matrix (JTJ) to be invertible, I is
an identity matrix with dimensions equal to the number of

unknown parameters, and T and T̂ represent the target and
output response data. From the solution of the network for a
specific shift component, it is easy to obtain both connected
and bias weights as mentioned in Eq. 6. In the second stage,
the same network with previous calculated weights and biases
can be used to simulate the shift transformation of the check
points. Figure 4 illustrates the x direction process to estimate
the datum shift in this direction; in addition, the parameters
used and estimated are presented in the figure.

From the estimated shift vector, the distortion between the
true shift and the estimated shift can be calculated
(D = [δx δy δz]), while D is the distortion vector in three direc-
tions, and δx δy δz are the vectors of distortion for the x, y, and
z directions, respectively. The average resultant distortion in
the space is used to evaluate the model design, which can be
calculated as follows:

Dave ¼ 1

n
∑n

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2xi þ δ2yi þ δ2zi

q
ð12Þ

Herein, it should be mentioned that to study the impact of
the data errors on the ANNmodel, the assuming errors will be
studied, while the Egyptian data errors are not available as
presented previously. Meanwhile, the input data errors on
the neural network model are investigated through error prop-
agation rules; to show that impact, Eq. 9 can be reformed as
follows:

f l S
l
k

� � ¼ tanh Slk
� � ð13Þ

where tanh Slk
� �

is the hyperbolic tangent function of Slk ,
substitute from Eq. 6 in Eq. 13 to get Eq. 14, as follows:

f l S
l
k

� � ¼ tanh ∑n
1X iWl

i þ b1ο
� � ð14Þ

Substituting Eq. 14 in the Eq. 6, the estimated shift can be
formed in a linear form as in Eq. 15, as follows:

T̂ ¼ ∑m
i Wk

i



∑n

1tanh X iWl
i þ b1ο

� �þ bkο

� �
ð15Þ

where m represents the number of first hidden layer’s output
neurons, and k represents the output layer index. After that, ap-
plying Eq. 16 to estimate the error propagation for Eq. 15 pro-
vided that we will consider the estimated weights and biases as
constants and geodetic coordinates (ϕ,λ) as independent
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observations in radian units, and there is no correlation between
them (Mikhail 1976).

σ2
T̂ ¼ JΣxx J T ð16Þ

where σ2
T̂
represents the variance of the estimated shift, Jis the

Jacobian matrix relative to the geodetic coordinates, and Σxx

represents the variance–covariance matrix for observations.
The elements of the Jacobian matrix can be calculated based
on Eqs. 17 and 18, as follows:

∂T̂
∂φ

¼ ∑m
i Wk

i •W
l
i φð Þ∑

n
1 I m;1ð Þ−tanh2 X iWl

i þ b1ο
� �� �þ bkο

n o

ð17Þ

∂T̂
∂λ

¼ ∑m
i Wk

i •W
l
i λð Þ



∑n

1 I m;1ð Þ−tanh2 X iWl
i þ b1ο

� �� �þ bkο

� �

ð18Þ

where subscript i(ϕ), i(λ) means the weight vector associated
to geodetic coordinates (ϕ,λ), respectively, and I represents an
identity vector with dimension (m,1) .

The model evaluation and assessment

To assess the performance of the previous and design models,
the following statistical evaluation are utilized. A linear re-
gression model between both true and estimated transformed
coordinates of the points is used according to the following
equation in the three directions.
ŷ ¼ αyþ β ð19Þ
where ŷ and y are estimated and true coordinates on EGD30,
and (α, β) represent the regression factors. A value closer to
(1,0) means that the estimated transformed coordinates have a
strong correlation with the true coordinates, and the transfor-
mationmodel has the ability to map the original coordinates in
the new geodetic datum perfectly without residuals.
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Additionally, to determine the strength of the correlation, three
statistics will be calculated. These statistics are the sum of
squares due to errors or residuals (SSE); this statistic measures
the total deviation of the transformed coordinates against the
true coordinates and can be calculated as follows:

SSE ¼ ∑n
i¼1 yi−ŷið Þ2 ð20Þ

Avalue of SSE closer to 0 indicates that the transformation
model has a smaller random error component and that the fit
will be more useful for prediction. The second statistic is R2;
this statistic measures how successful the transformation
model explains the variation of the data, and it can be cal-
culated by:

R2 ¼ 1−
SSE

SST
ð21Þ

where SST represents the sum of squares about the mean

(SST ¼ ∑
n

i¼1
yi−yð Þ 2 ), where y is the mean of the true coor-

dinates. This statistic can take a value between 0 and 1, with
a value closer to 1 indicating that a greater proportion of
variances for the model. The last statistic is the root-mean-
square error (RMSE); a RMSE value closer to 0 indicates a
fit that is more useful for prediction.

Results and discussions

Development of the ANN model design

In this study, the standard multilayer feedforward network
with a sigmoid transfer function in the hidden layer and a
linear transfer function in the output layer is used because of
its ability to approximate any measurable function to any de-
sired degree of accuracy provided sufficiently many hidden
units; in other word, it is a universal mapping tool (Hornik
et al. 1989; Hagan et al. 1995). The model is designed using
two input parameters and one output. Therefore, the neuron
number in the hidden layer is the main factor for the model
design. However, the first stage in the design of the ANN
model is designing the number of neurons. It is important to
determine a suitable number of neurons and layers. As more
neurons and more layers lead to more unknown weights and

biases to be estimated. To solve this issue, the growingmethod
is used, which means growing the number of neurons to ob-
tain proper performance (Haykin 2001). Table 1 illustrates the
average distortion in the three directions and the average re-
sultant distortion (Dave) in the space for various numbers of
neurons based on the check points. From Table 1, it is obvious
that the minimum average resultant distortion in space result-
ed from using four neurons in the designed neural network.
The second indicator is the range of distortion that is shown
smaller with four neurons. Using four neurons with almost
close values in the three direction results is shown for the
datum distortion (range within 16 cm), while with other num-
bers of neurons, this value ranges from 35 to 125 cm.

In addition, Tables 2 and 3 illustrate the RMSE for the three
directions’ distortion of check and common points, respectively.
From Table 2, it can be seen that the number of neurons 3 and 4
has shown a lower distortion than neurons 1, 2, and 5. The
calculated RMSE for both trails are found that the RMSE of X,
Y, and Z are 0.616, 0.751, and 0.317m, respectively, for the three
neurons, while the RMSE with four neurons are found as 0.406,
0.300, and 0.311 m for the X, Y, and Z directions, respectively.

From Table 3, it is clear that, with increasing the number of
neurons, the precision of the models increases while the number
of weights and biases are increased; therefore, the residual esti-
mate for the common points decrease. On the other side, the
increase of neurons results in over-fitting problem. Meanwhile,
the existence of multiple non-linear hidden layers will make the
designed neural network a very expressive model that can learn
very complicated relationships between the inputs and outputs.
With limited training data, however, as in our case in Egypt,
many of these complicated relationships will be the result of
sampling noise, so they will exist in the training set but not in
real test data even if it is drawn from the same distribution. This
leads to an over-fitting problem (Srivastava et al. 2014). Thus, it
is important to have a balance state between the ability of the
neural model to represent the common points used in the training
stage and the ability of the model to predict optimum outputs
based on the check points. According to the previous concept,
the minimum number of neurons has been chosen to avoid the
over-fitting problem based on common points, and to have min-
imumdistortionwith high precision based on check points. Thus,
the solution with four neurons gives an optimum and consistent
solution for all three directions. Therefore, the ANNmodel 2-4-1
is a better model that can be used in our case.

Table 1. Average distortion in
check points with different
numbers of neurons (unit in m)

Number of neurons Average (δx) Average (δy) Average (δz) Dave

1 0.657 1.217 0.707 1.671

2 0.788 1.712 0.471 2.293

3 0.826 0.908 0.574 1.542

4 0.455 0.398 0.292 0.744

5 0.716 1.540 0.458 2.142
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In addition, to show the impact of error propagation on the
precision of the design neural network model (ANN 2-4-1)
through the boundary of Egypt, Table 4 depicts the statistical
assessment of the estimated shift’s standard deviation in the
three directions based on the errors in the geodetic coordinates
with different amount of errors ranging from 1 to 60 s. From
Table 4, it is clear that the most affected output is shift-y com-
ponents, while both shift-x and shift-z have a small error
reached to 1 mm at 60 s level of error in geodetic position.
This is because the available distortion data in y direction is
higher than those in the other directions (El-Shambaky 2004;
Shaker et al. 2007; Rabah et al. 2015). Moreover, it can be seen
that shift-y is very sensitive to the errors in the geodetic coor-
dinates, as at 1 s level the average error in the shift component
will reach 9 mm. Unfortunately, the error in the EGD30’s ob-
servations was not available. Table 4 can be used to predict the
level of errors that can be adopted through the transformation
process in advance. Generally, from Table 4, it is obvious that
neural network model can accommodate the impact of errors in
the observed data in both x and z directions, while it is sensitive
for the distortion of the available data in y direction.

Development model validation and assessment

After the design process of a suitable neural network, a compar-
ison study between the designed neural model and previously
mentioned transformation models will be described as follows to
assess the accuracy of this model and choose a suitable transfor-
mation technique over Egypt area: In the beginning of this com-
parison, three main indicators will be selected. The first is the
amount of average residuals (AR) and the degree of correlation
between common points’ coordinates and their estimated

transformed coordinates generated by various transformation
models as mentioned before in BThe model evaluation and
assessment.^ The second indicator is the ability of transformation
models to predict transformed coordinates using a new set of
validation points (check points) associated with its precision to
show vision about the uncertainty of the those models, and the
last one shows some desirable advantages of the transformation
models when used with a map projection process such as con-
formity. To show the first indicator, the residuals of common
points related to every transformation model in each direction
are calculated. The average of residuals in every direction is listed
in Table 5. Additionally, Fig. 5 shows the space model residuals
based on every common point; it represents the space resultant of
residuals in every direction.

From Table 5 and Fig. 5, it can be noticed that the amount
of average residuals (AR) in the x direction when using a
neural network model is near to zero while it ranges from 40
to 80 cm in other transformationmodels. In the y direction, the
AR is equal to 5 cm, but in the other models, it ranges from
164 to 211 cm. Finally, in the z direction, the value of AR from
the neural network is near to zero, and in the other transfor-
mation models, it ranges from 63 to 147 cm. To explain the
zero average values that appear in Table 5, a linear regression
model between both true coordinates and estimated trans-
formed coordinates of the common points is used according
to Eq. 19 in the three directions. Moreover, the statistical eval-
uation for the models is presented in Table 5. It can be seen
that the neural model is the only model that reaches or is close
to the value of 1.0 in all directions for the α parameter of the
correlation regression; in addition, the smallest values for the
β parameter are shown also with neural model. Obviously, the
model can explain nearly 100% of the total variation in the

Table 2 RMSE of distortion in Check points with different numbers of neurons (unit in m)

Number of
neurons RMSEx RMSEy RMSEz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2

x þ RMSE2
y þ RMSE2

z

q

1 0.403 0.729 0.419 0.932

2 0.539 1.904 0.540 2.051

3 0.616 0.751 0.317 1.022

4 0.405 0.300 0.310 0.592

5 0.496 2.725 0.585 2.831

Table 3 Residuals RMSE for the common points with different number of neurons (unit in m)

Number of
neurons RMSEx RMSEy RMSEz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2

x þ RMSE2
y þ RMSE2

z

q

1 0.802 2.587 0.889 2.850

2 0.307 2.542 0.779 2.677

3 0.254 0.290 0.345 0.517

4 0.000 0.083 0.000 0.083

5 0.000 0.000 0.000 0.000
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true coordinates about the average.Moreover, according to the
RMSE statistic, the closest value to zero in all directions is
achieved by the neural model, indicating that the neural model
has the ability to predict transformed coordinates more pre-
cisely than the other transformation models. In addition, it can
be seen that the ANN model is more effective for the coordi-
nate’s transformation fitting with the available data distortion
errors in y direction than other models. As well as, the R2 and
SSE are shown equal one and close to zero, respectively, for
the neural model. From a previous comparison, it can be con-
cluded that the neural network model is more suitable to rep-
resent the inconsistent common points that existed in the old
EGD30 datum because it has a high degree of correlation
between the model used and the existing common points.
Additionally, the neural network model keeps the original

common point coordinates without changes according to the
ESA records.

Moreover, for the second indicator, transformation models
are used to predict the coordinates of the check points; the
average distortions and their precision based on standard de-
viation (σ) at check points are listed in Table 6. The distortion
vector in space (Dave), as mentioned in Eq. 12, and its space
precision are included in Table 6.

Additionally, Fig. 6 represents the space model distortion
over the check points. From Table 6 and Fig. 6, it can be
noticed that the distortions resulting from the neural network
in all directions are less than 50 cm. The average (δx) in the
neural network is the smallest distortion in this direction; the
improvement of distortion relative to other models ranges
from 0.4 to 70%. In the average (δy), the improvement value

Table 4 Impact of data errors on
the estimated shift’s precision
(unit mm)

Error in geodetic coordinates 1 s 10 s 20 s 30 s 40 s 50 s 60 s

σshift-x max 0.010 0.096 0.193 0.289 0.386 0.482 0.579

min 0.008 0.076 0.151 0.227 0.302 0.378 0.453

mean 0.008 0.082 0.164 0.246 0.328 0.411 0.493

SD 0.000 0.004 0.009 0.013 0.017 0.022 0.026

σshift-y max 10.210 102.095 204.191 306.286 408.382 510.477 612.573

min 0.112 1.119 2.237 3.356 4.475 5.594 6.712

mean 8.956 89.565 179.129 268.694 358.258 447.823 537.388

SD 2.491 24.911 49.822 74.733 99.644 124.555 149.466

σshift-z max 0.017 0.168 0.336 0.504 0.671 0.839 1.007

min 0.015 0.146 0.292 0.438 0.585 0.731 0.877

mean 0.016 0.161 0.322 0.483 0.644 0.805 0.966

SD 0.000 0.005 0.010 0.015 0.020 0.024 0.029

Table 5 Statistical analysis
results for transformation models
based on common points

Direction Model α β SSE (m) R2 AR (m) RMSE (m)

x Helmert 0.986 2.537 2.779 0.996 0.700 0.481

Molodensky 0.987 2.343 2.746 0.996 0.698 0.478

Reg 1.006 −0.306 1.225 0.998 0.405 0.319

MCS 0.987 2.523 3.216 0.996 0.803 0.518

ANN 1.000 0.000 0.000 1.000 0.000 0.000

y Helmert 1.306 36.380 63.423 0.831 2.091 2.299

Molodensky 1.315 37.370 63.322 0.833 2.075 2.297

Reg 1.261 31.440 16.634 0.946 2.116 1.177

MCS 1.651 74.650 51.468 0.906 1.646 2.071

ANN 0.988 −1.306 0.117 0.999 0.053 0.099

z Helmert 1.013 1.318 18.502 0.932 1.472 1.242

Molodensky 1.022 1.211 18.315 0.934 1.474 1.235

Reg 1.042 0.120 3.464 0.987 0.634 0.537

MCS 1.056 0.755 26.397 0.913 1.435 1.483

ANN 1.000 0.000 0.000 1.000 0.000 0.000
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ranges from 33 to 80%. Moreover, in the average (δz), the
range of improvement is 43 to 78%.

Finally, the average distortion in space (Dave) has improved
values ranging from 37 to 72%.Moreover, the prediction abil-
ity precision of ANN has an improvement values ranging
from 17.5 to 64%. According to the second comparison, it is
clear that the neural network can more precisely predict the
transformed coordinates and better than the other models used
in Egypt previously. It is also important to note that the previ-
ous transformation models used in Egypt need to know the
priori precision of common points as a first step in the least
squares solution, but this information is not available in
EGD30 common points (El-Shambaky 2004; Abd-Elmotaal
1994; Abou-Beih and Al-Garni 1996). In contrast, the neural
network model did not need a priori knowledge of common
points’ precision to begin its solution.

For the last indicator, the conformity property according
to the accuracy testing was studied. This test has two
levels; the first level compares actual and transformed
pro jec t ed pos i t i ons us ing UTM pro jec t ion fo r
both common and check points. The test involves only
horizontal accuracy once the coordinate values have been
determined; the resul tant res idual d is tance ΔR

(ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2 þ ΔN 2

p
) for each point should be computed;

where ΔE and ΔN are the residuals (actual minus trans-
formed) in the east and north directions, respectively.
Table 7 illustrates the comparison between transformation
models with respect to resultant residual distances (ΔR)
for both common points and check points.

From Table 7, it is clear that in common points, the neural
transformation model gives the minimum resultant residuals
of 5.10 cm with an accuracy of 9.68 cm. This result indicates
an improvement of resultant residuals of at least 97% with an
improvement in accuracy of 92%. At check points, it is obvi-
ous that the neural model can predict the projected coordinates
with minimum resultant residuals of 29.32 cm with an accu-
racy of 20.16 cm; these results indicate an improvement of
resultant residuals of at least 51%, with a 45% improvement in
accuracy.

The second level test depends on the geometrical interpre-
tation of the neural transformation model. It is known that, the
UTM projection belongs to a conformal projection type
(Srivastava et al. 2014). Additionally, the transformation from
one grid to another can be done by twomodels: conformal and
affine transformation. The difference between the two models
is the scale in the east and north directions. In the first
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Table 6 Distortions of transformation models over check points (unit m)

Average
(δx)

σx Average
(δy)

σy Average
(δz)

σz Dave

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x þ σ2

y þ σ2
z

q

Helmert 0.675 0.437 1.794 1.673 0.513 0.223 2.207 1.743

Molodensky 0.672 0.435 1.797 1.674 0.511 0.223 2.208 1.744

Reg 0.457 0.324 1.455 0.621 0.511 0.310 1.713 0.766

MCS 0.602 0.397 0.590 0.427 0.518 0.482 1.179 0.756

ANN 0.455 0.451 0.398 0.300 0.292 0.310 0.744 0.624
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model, the scale is equal in both directions, while in the
second model, the scales in both directions are not equal
(Richard 2009). According to previous information, both
common points and check points transformed by a neural
model are projected on the UTM system as first datum
observations, and their actual projected coordinates on the
UTM system are used as the second datum using the clas-
sical method of least squares adjustment with conditions to
estimate the affine model’s parameters according to Eq. 22.

E
0 ¼ sxEcos θð Þ−syNsin θð Þ þ xo

N
0 ¼ sxEsin θð Þ þ syNcos θð Þ þ yo

�
ð22Þ

where (E′, N′) represent the actual projected coordinates,
(E, N) are the transformed projected coordinates, (sx,sy) are
the scales in both directions, (θ) is the rotation angle, and
(xo,yo) are the shift parameters in both directions. The pa-
rameter values and their standard deviations are shown in
Table 8; from this table, it can be observed that the scales in
both directions are equal, indicating that the affine model
changed to a conformal model that keeps the internal angles
between projected points unchanged. Additionally, the
scale value deviation has a small value of 0.0001, indicating

that the neural transformation model produces conformal
projected coordinates suitable with a large scale map.
According to a previous comparison, the main conclusion
is that the neural network model is the most suitable to
predict transformed coordinates among other models in
two and three directions.

Conclusions

From the previous study, it is obvious that Egyptian datum
transformation is not an easy process because of the inaccuracy
and inconsistency in the old local geodetic network in Egypt.
A neural network with two neurons in the input layer, four
neurons in two hidden layers, and one neuron in the output
layer is selected as a suitable datum transformation model
according to three indicators: first, the minimum space distor-
tion; second, the consistency between individual distortions,
and finally, avoiding the over-fitting problem. In addition, the
uncertainty of datum transformation and impact of the data
errors are evaluated for the design model. The assessment of
the selection model is shown that the developed ANN model
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Table 7 Comparison UTM
projection models according to
resultant residuals

Model Max (m) Min (m) Mean (m) SD (m)

Common points Helmert 7.0314 0.0689 1.9860 1.8821

Molodensky 7.1225 0.0633 1.9854 1.8871

Reg 4.3835 0.2885 1.6966 1.1987

MCS 8.8218 0.1510 1.7969 2.4990

ANN 0.3209 0.0028 0.0510 0.0968

Check Points Helmert 3.4807 0.0266 1.4034 1.3198

Molodensky 3.4881 0.0338 1.4060 1.3233

Reg 2.1082 0.0771 1.0487 0.6155

MCS 1.1343 0.1579 0.5982 0.3649

ANN 0.7762 0.0225 0.2932 0.2016
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is significant to correct and solve the coordinate transforma-
tion problem in Egypt.

The results of the comparison between the designed neural
network and the other transformation models, which are the
Helmert, Molodensky, regression, and minimum curvature
surface, used in Egypt show that the neural network model
gives the minimum residuals attached to common points, in-
dicating that the neural network has a high degree of correla-
tion between the model and the existing common points,
which leads the neural model to keep the original common
point coordinates without changes according to the ESA re-
cords. Second, the neural network model gives the most min-
imum space and individual average distortions among other
transformation models, and it improves the average space dis-
tortion by a range of 37 to 72%. Moreover, the prediction
ability precision of ANN has an improvement values ranging
from 17.5 to 64% in three directions for the Cartesian co-
ordinates. In the individual directions, the neural model
improves the distortion by 0.4 to 80% in all directions; the
neural model improves the residual distances in the map
projection by 51 to 97%, with 45 to 92% of improvement
in accuracy while keeping the conformity property advan-
tage during the projection process. Thus, the neural net-
work can precisely estimate the transformed coordinates
better than other models used in Egypt.

Finally, the neural network model did not need a priori
knowledge of common points’ precision to begin its solution;
in contrast, the other transformation models need this infor-
mation as a first step in the solution although this information
is not available in the old EGD30 common points. For all of
these reasons, the final conclusion can be summarized as fol-
lows: applying the neural network technique is the most suit-
able method for use as a tool to solve the datum transformation
problem in Egypt, and the high advanced soft computing
techniques are suitable to estimate the shift of datum’s;
herein, it mentions that the future work should be compared
a development model with a high advanced one.
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