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Abstract The reliability of mine geological environment
quality assessment highly depends on a large amount of sur-
vey data, a comprehensive evaluation system and an effective
evaluation model. Using computer technology to integrate
large amount of data can help to ensure the valid management
and the effective assessment. Compared with previous studies,
this study has improved and enriched the evaluation system
and optimized the traditional evaluation method. Moreover,
combining geology with computer science, it has developed
the evaluation function of mine geological environment and
realized the intersection and innovation of the discipline. The
specific research content has the following three parts. First, a
new design for an evaluation system which can synthetically
describe the mine geological environment is presented.
Second, a particle swarm optimization (PSO)-support vector
machine (SVM) model is established as an alternative to tra-
ditional approaches that avoid interference from artificial fac-
tors. Third, a new mine geological environmental information
system (MGEIS) is presented to efficiently manage data.
Then, PSO-SVM evaluation model is embedded in it, and

the mine geological environment in Jilin province is assessed
by using MGEIS. Decisions can be presented based on the
evaluation results in this study to better support the recovery
of the local mine geological environment.

Keywords Mine geological environmental evaluation .

Hierarchical factor evaluation system . PSO-SVM evaluation
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Introduction

Immoderate, long-term, and disorganized mining activities are
the main factors that cause damage to the geological environ-
ment such as environmental pollution, geological disasters,
and resource destruction (Monjezi et al. 2009; Zhang et al.
2012; Lukichev and Nagovitsin 2013). Unreasonable devel-
opment and utilization of mineral resources have not only
restricted economic development and deteriorated the envi-
ronment but have also threatened quality of life (Hough
et al. 2004; Mayes et al. 2009). Environmental impact assess-
ment (EIA) is an effective method in mine geological environ-
ment protection and mineral resources development
(Mirmohammadi et al. 2009). The main purpose of EIA ap-
proaches is indeed to evaluate a proposed action, defining and
quantifying its possible environmental impacts, and finding
means to mitigate them (Weaver et al. 1996). As a result, it
is necessary to use a scientific method to evaluate the mine
geological environment, and then take effective measures to
monitor and manage it. This process forms an important com-
ponent of sustainable development of the geological environ-
ment (Jordan and Project 2009).

Previous research focused on the evaluation methods to
evaluate the environmental pollution degree in order to reduce
the impact on the environment and human health. A number
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of scholars have studied environmental evaluationmethods and
utilized themselves to quantify mine geological environment,
including gray relational analysis (Chang et al. 1997; Chang
2001), analytic hierarchy process (Saaty 1980; Lukichev and
Nagovitsin 2013), fuzzy comprehensive evaluation (Kuo and
Xue 1998), neural networks (Yama and Lineberry 1999; Yoon
et al. 2011; Khalili et al. 2016), and support vector machines
(Sun et al. 2009). Regarding improvements to the accuracy of
evaluation results, scholars combined two kinds of single eval-
uation method (Chen 2007). For example, a rough set neural
network model (Shi 2008), a multi-level fuzzy comprehensive
evaluation model (Zhang et al. 2008), a fuzzy comprehensive
evaluation model based on hierarchical analysis (Wei 2010;
Huang et al. 2012), and a fuzzy evaluation model based on gray
correlation analysis (Liu et al. 2013) have all been shown to
exhibit variable levels of accuracy in the comprehensive eval-
uation of mine geological environment. However, during the
calculation process, thesemethods have different shortcomings,
such as the rough set neural network method cannot guarantee
evaluation precision due to limited numbers of samples, while
others, such as support vector machine (SVM) model and the
comprehensive index method, tend to have difficulty with the
determination of parameters and weights because of the influ-
ence of artificial factors.

At present, the application of computer information tech-
nology which is involved in mining data management and
mineral resources utilization in support of government envi-
ronmental policies is of huge importance, so more and more
studies have been carried out in this field (Peck and Gray
1999; Knights and Daneshmend 2000). The application of
computer information technology to the science of environ-
mental protection is known as Environmental Informatics
(EI). In this respect, EI is a bridge between computer infor-
matics and environmental science (Pillmann et al. 2006). For
example, the Czech Republic began to carry out research from
1998 on the combination of multiple space analysis systems
and laser radar technology to monitor the environment, devel-
oping a system based on an ArcObject component that be-
came responsible for the management and processing of hy-
drology, soil, and atmospheric testing data as well as three-
dimensional (3-D) visualization. This system was also able to
incorporate the multiple evaluation of risk based on spatial
analysis and a raster image algebra system. This research pro-
vided a good technical basis to monitor and visualize the re-
gional environment in 3-D as well as a scientific grounding for
the Czech government in the future (Bao 2012). Other coun-
tries have also attached great importance to environmental
geological problems, especially in regard to the processing
and development of mineral resources. Examples include the
design and construction of mineral resource sustainable devel-
opment decision support systems (Yang and Dang 2013).
Spatial system databases are integrated with multiple layers,
including mineral geological maps, residential distributions,

vegetated environment, and land use, enabling multiple im-
pact factors to be extracted and comprehensive analyses of
mineral resource development zoning in regions within coun-
tries to be undertaken. This enables policy-makers to deter-
mine regional Bfitness level^ according to local resources and
the environmental situation. In this context, the Geological
Environmental Monitoring Institute of China constructed a
national mine environment information system using an
ACCESS database system (Zhang and Yuan 2006). This sys-
tem enables a number of management functions including
mine data entry, data queries, and data deletion. These systems
can enable the goal of managingmine geological environmen-
tal information as well as promoting the use of such data.

Based on the previous studies but different from them, this
study combines computer technology with mine geological
environment assessment. It is not only to achieve the efficient
management of data but also to achieve the effective evalua-
tion of the mine geological environment. Thus, we develop a
mine geological environmental information system (MGEIS)
from basic computer principles in this study that is based on
real-life requirements. Compared with previous systems, our
new system not only contains basic functions but also has
special functions, including Banalysis and evaluation^ and
Bmap display.^ We combine particle swarm optimization
(PSO) algorithm and SVM to establish PSO-SVM evaluation
model which utilizes the PSO to optimize the parameters in
SVM to avoid the interference of artificial factors (Chen and
Phuong 2017; Ma et al. 2017). At the same time, we embed
the PSO-SVM model and the hierarchical factor evaluation
system we established inMGEIS to evaluate the mine geolog-
ical environment in Jilin province scientifically. The results of
evaluation provide a basis for future decision-making with
regard to regional environmental restoration.

Study area

Our study area, Jilin province, is located in the northeast of
China. It is connected to Liaoning province in the south, to
Inner Mongolia autonomous region in the west, to
Heilongjiang province in the north, to Russia in the northeast,
and to Democratic People’s Republic of Korea in the south-
east. Jilin province covers an area of 187,400 km2 and has a
population of more than 26 million people. The geographical
location of Jilin province is shown in Fig. 1.

The general trend in topographic change across this prov-
ince encompasses lowlands in the northwest and highlands in
the southeast. Jilin province can be divided into three geomor-
phic regions, the eastern Changbai Mountains, the central
Songliao Plain, and the western Daxingan Mountains.

Jilin province has abundant mineral resources (Pang and
Zhou 2008), including energy and non-metallic minerals,
metals, and mineral water. In recent years, the mine geological
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environment of the study area has been damaged to varying
degrees due to the impact of human activities. The long-term
uncontrolledmining leads to resource depletion. The disorder-
ly mining had greatly damaged the mineral resources and had
resulted in a series of mine environmental geological prob-
lems. According to the survey, mine environmental geological
problems in Jilin province caused by human activities mainly
include geological disasters, land resource destruction, and
water resource pollution.

Materials and methods

In this study, the following materials and methods are used to
evaluate the quality of mine geological environment in Jilin
province.

A hierarchical factor evaluation system

The mine geological environment is complex. Not only artifi-
cial activities but also the background and natural conditions
of mining will induce different kinds of geological environ-
ment problems. Based on domestic and foreign research in
mine geological environment evaluation system (Weaver et
al. 1996; Huang et al. 2012; Jiang et al. 2015; He et al.
2017), as well as on the basis of actual conditions in Jilin
province and the reports on the restoration of mine geological
environment, our new mine geological environment

evaluation system can be established and referred to as
Bhierarchical factor evaluation system.^

Building on previous work, the evaluation system present-
ed in this paper represents a marked improvement as it is
established from the actual situation in the mine geological
environment and it includes both natural and man-made fac-
tors addressed frommultiple levels and angles. Our evaluation
system is divided into three levels, used to describe different
aspects of the mine geological environment from the large
scale to local. Each level contains many factors, which are
used to describe specific contents, including an element layer,
an index layer, and a factor layer. The evaluation system is
more comprehensive and thus enables a more realistic and
suitable description of the mine geological environment for
the practical needs of government management departments
and professional personnel. For example, compared with pre-
vious studies, we add three elements in the element layer, the
Bbasic situation of the mine,^ Bsensitive factors of the sur-
rounding mining area,^ and the Bcomplexity of restoration.^
Similarly, we add indexes in the index layer, the Bore class,^
the Blag problem,^ and the Brestoration deposit.^

Thus, to evaluate mine geological environment, we consid-
er five elements, encompassing 18 indexes and their magni-
tudes, as summarized in Table 1 (Weaver 1996; Huang et al.
2012; Jiang et al. 2015; He et al. 2017; Jin and Xi 2017). The
final mine geological environment damage degree is shown in
Table 2. The corresponding scores of the different indicators
in Table 1 are man-made which can be changed, and the spe-
cific score does not affect the evaluation results. The purpose

Fig. 1 The geographical location of Jilin province
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of setting the score is to distinguish the last three pollution
levels during the evaluation.

Mine geological environment evaluation methods

SVM

SVM is able to solve a number of fundamental problems in
pattern recognition under given small sample size
(Mirmohammadi et al. 2009; Gasmi et al. 2016). This ap-
proach largely solves the problem of over-learning, as well
as issues of non-linearity, disaster dimension, and classifica-
tion problems (Baly and Hajj 2012; Arunkumar and
Karthigaikumar 2017).

During the process of mine geological environment evalu-
ation, a complex non-linear mapping relationship exists be-
tween damage degree and evaluation factors. This non-linear
problem can be transformed into a linear problem in the high-
dimension space through an optimal separation hyperplane
generated using a kernel function in transformation space.

To do this, a sample set is first defined as follows: (xi, yi),
i = 1, 2,⋯, n; y = {1, −1} is the category label. Building on
this, the hyperplane equation is:

ω⋅xi þ b ¼ 0 ð1Þ

Second, a slack variable is incorporated into the constraint
condition, ξi ≥ 0, and the largest interval hyperplane is called
the generalized optimal separating hyperplane. The constraint
condition is:

s:t yi ω⋅xið Þ þ b½ Þ≥1−ξi ð2Þ

Similarly, the optimization problem is as follows:

min
1

2
ω⋅ωð Þ þ C ∑

n

i¼1
ξi

s:t yi ω⋅xið Þ þ b½ Þ≥1−ξ i ¼ 1; 2;⋯; n
ð3Þ

In these expressions, ω is the weight vector, b is bias, ξi is
the slack variable, and C is the penalty factor. Thus, C > 0; the
larger the C, the greater punishment for misclassification.

Third, we incorporate Lagrange multipliers α, β, as fol-
lows:

L ω; ξ; b;α;βð Þ ¼ 1

2
ω⋅ωð Þ þ C ∑

n

i¼1
ξi−

∑
n

i¼1
αi yi ω⋅xi þ bð Þ−1þ ξi½ �− ∑

n

i¼1
βiξi

ð4Þ

Fourth, the partial derivatives of ω, ξ, and b are taken to
determine the duality of the original problem, as follows:

max
α;β

Q αð Þ ¼ L ω; ξ; b;α;βð Þ ¼ ∑
n

i¼1
αi−

1

2

� ∑
n

i¼1
∑
n

j¼1
αiα jyiy j ψ xið Þ⋅ψ x j

� �� �

¼ ∑
n

i¼1
αi−

1

2
∑
n

i¼1
∑
n

j¼1
αiα jyiy jK xi; x j

� �
s:t ∑

n

i¼1
αiyi

¼ 0;αi≥0 ð5Þ

This leads to the optimal judgment function, as follows:

f xð Þ ¼ sgn ∑
n

i¼1
α*
i yiK x; xið Þ þ b

� �
ð6Þ

where α is a Lagrange multiplier; α∗ is the optimal solution of
α, α* ¼ α*

1;α
*
2;…;α*

n

� �
; K is the kernel function; (xi, yi) are

the training samples, i = 1, 2,⋯, n; and b is the bias.
Defining an appropriate kernel function is necessary to

establish a SVM model, as different functions are used in
different situations (Wu and Wang 2009). Commonly ap-
plied kernel functions include linear, polynomial, radial
basis function (RBF), and sigmoid kernel function,
expressed as follows:

Linear kernel functionK xi � x j
� � ¼ xi � x j

� �
; ð7Þ

Polynomial kernel functionK xi � x j
� �

¼ g xi � x j
� �þ r

� �d
; g > 0; ð8Þ

RBF kernel functionK xi; x j
� � ¼ exp −g xi−x j

�� ��2
h i

; g > 0; ð9Þ
Sigmoid kernel functionK xi; x j

� �

¼ tanh g xi � x j
� �þ r

� �
; g > 0 ð10Þ

In the process of mine geological environment quality eval-
uation, the nuclear parameter g and the penalty factorC have a
crucial impact on the evaluation results. Therefore, the param-
eters are important to the evaluation model. In this paper, we
select the PSO algorithm to optimize the model parameters
and the specific steps are described in BEstablish PSO-SVM
model in MGEIS.^ The remaining parameters are set to de-
fault values.

PSO

PSO is a kind of evolutionary algorithm that is derived from a
random solution. In order to determine a globally optimal
solution, PSO searches from a current to an optimal value
using iteration (Armaghani et al. 2017), easily achieving high
precision and rapid convergence.

Table 2 The mine
geological environment
damage degree

Level I II III

Degree Light Moderate Serious

Arab J Geosci (2017) 10: 447 Page 5 of 13 447



In the first place, we initialize PSO to generate a group of
random particles and determine an optimal solution through
iteration. Two particles in this system update their speeds and
positions according to the following formulae to find optimal
values:

vkid ¼ wivk−1id þ c1rand1 pbesti−x
k−1
id

� �

þ c2rand2 gbesti−x
k−1
id

� � ð11Þ

xkid ¼ xk‐1id þ vkid i ¼ 1; 2;…;m; d ¼ 1; 2;…; nð Þ ð12Þ

In these expressions,m denotes the particle swarm size, n is
the particle dimension, vk is the speed at k iteration step, and xk

is the space position of the particle at k iteration step. c1 and c2
are constants. rand1 and rand2 are independent random num-
bers between [0,1].

Establish PSO-SVM model in MGEIS

We establish PSO-SVM model in MGEIS as follows:
Step 1. Data preparation
On the basis of the hierarchical factor evaluation system

and classification standard adopted above in this paper, we
generate 900 groups of random samples including 600
groups of training samples and 300 groups of verifying
samples. In total, there are 200 groups of training samples
and 100 groups of verifying samples in each classification
standard.

Step 2. Data normalization
We apply the following formula to normalize our data:

~X i ¼ X i−min X ið Þ
max X ið Þ−min X ið Þ ð13Þ

Step 3. Determination of PSO-SVM model structure
The scores of five evaluation elements are used as input

variables in this study, including geological environmental
background conditions (X1), the basic mine situation (X2),
sensitive factors in the surrounding mining area (X3), the type
and degree of mine geological environmental problem (X4),
and the complexity of restoration (X5). In each case, mine
geological environmental evaluation levels are used as output
variables.

Step 4. Determination of PSO-SVM model parameters
We apply PSO algorithm according to Eqs. (11) and (12) to

optimize the penalty factor C and the nuclear parameter g in
SVM, as outlined below:

(a) PSO parameters are initialized (i.e., particle dimension n,
population size m, number of iterations p) using initial
values that randomly denote the solution space position

and velocity of the particle, marked as x0i and v0i ,

respectively. SVM parameters (C, g) can be expressed
as the current position of the particle, while the next
generation parameters (C, g) are updated from velocity
which determines the direction and size.

(b) Calculate fitness value of each particle. Mark it as si(x)
and compare with pbesti. A particle will adopt the current
individual optimal solution if si(x) < pbesti.

(c) Comparisons are made with pbesti and gbest. A particle
will adopt the current group optimal solution ifpbesti <
gbest.

(d) We determine whether, or not, termination conditions are
satisfied following calculations for the entire particle
group. Given a situation where these conditions are not
met, then particles are moved according to Eqs. (11) and
(12) to generate a new group and we return to step (b).
However, if termination conditions are met, then calcu-
lation results are output.

Thus, following these steps to calculate, we generate an
optimal penalty factor, C = 0.01, and an optimal nuclear pa-
rameter, g = 0.01.

Step 5. Kernel function selection and establishment of the
PSO-SVM model

We write a set of MATLAB programs containing the most
optimal penalty andmost optimal kernel parameter to train our
samples. We then utilize this MATLAB software to establish
our mine geological environment evaluation models, applying
linear kernel, polynomial kernel, RBF kernel, and sigmoid
kernel functions. Test samples are migrated into evaluation
models to generate results as well as to enable the analysis
of different results in different kernel functions to select the
most optimal.

Step 6. Packing the PSO-SVM model and generating a
component

We first set up the MATLAB COM Builder external com-
plier using Bmex-setup.^ The compiler used in this study is
Microsoft Visual C++ 2010. Second, we enter Bdeploytool^ in
the command window ofMATLAB to start the COMBuilder,
and follow the sequence BFile-New Project^ to generate a new
project and a new class with the names BProj3^ and
BProjPlot3.^ Finally, we load the PSO-SVM model code file
to create a PSO-SVM component.

Step 7. PSO-SVM evaluation function realization
To complete this step, we establish an interface of

BAnalysis and Evaluation^ module in the Visual Studio
2010 platform. This interface has three parts encompassing a
hierarchical factor evaluation system, scoring window, and a
results display window. We write C# programming codes to
link each part and to invoke the PSO-SVM component for
evaluation.

We establish PSO-SVM model in BAnalysis and
Evaluation^ module of MGEIS using the steps outlined
above. Following login to the system, a user adds scores in
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this window. Operation buttons are clicked to enable PSO-
SVM model calculations in the background, and the results
of evaluation are subsequently displayed. The BAnalysis and
Evaluation^ module interface is shown in Fig. 2.

Implementation of MGEIS

In order to digitize, visualize, and manage mine geological
environmental information and to present these data scientif-
ically to managers, we develop the MGEIS presented in this
paper.

Our MGEIS is designed and written using computer tech-
nology. Thus, this study makes comprehensive use of the soft-
ware Visual Studio 2010, SQL Server 2005, MapGIS K9, and
MATLAB in development. In addition, according to the actual
needs of government departments and professionals, we de-
velop a general geographic information system (GIS) function
via secondary development of MapGIS K9 (Matejicek et al.
2006) that applies ADO.NET interface technology to connect

varieties of components with the database efficiently. A num-
ber of special user requirements can further be achieved by
programming in the C# language.

MGEIS structure and function

Our MGEIS application adopts a client/server mode and in-
cludes UIL (user interface layer), BLL (business logic layer),
andDAL (data access layer) from top to bottom. Of these, UIL
is mainly responsible for displaying information and incorpo-
rating external inputs, while BLL plays an essential role in
data exchange between UIL and DAL, while the latter ac-
cesses the database and XLS documents. The overall architec-
ture of our MGEIS application is shown in Fig. 3.

Our MGEIS application contains seven functional mod-
ules, including BData Query,^ BData Input,^ BData
Management,^ BAnalysis and Evaluation,^ BMap Display,^
BFile Management,^ and BUser Management.^ The specific
functions of each module are presented in Table 3.

Fig. 2 BAnalysis and Evaluation^ module
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MGEIS workflow

Our MGEIS application has a user-friendly interface and is
simple to operate. Initially, all information related to a mine is
stored in the software SQL Server 2005 and GDB enterprise
manager through a series of data tables that incorporate varies
kinds of layers. Secondly, the PSO-SVMmodel is established
and packed as a component via MATLAB (Monjezi et al.
2009). The MGEIS application then connects information
with GIS and the PSO-SVM model component to realize the
evaluation of mine geological environment. Finally, evalua-
tion results are displayed as MGEIS outputs. Operation of

MGEIS is simple and the results are clear and intuitive for
users. An MGEIS work flowchart is shown in Fig. 4.

Results and discussion

These results of this study are based on our Jilin province
MGEIS project. In this project, mine geological environmen-
tal restoration reports of 684 mines are collected and we input
the information into our system, alongside a number of eval-
uation factors. We then use MGEIS to calculate and output the
following results.

Fig. 3 Overall architecture diagram

Table 3 MGEIS application
functions Function Description

Data query Concludes attribute, spatial, and file queries

Data input Attributes mine information into the system to unify management

Data management Retains mining reports and geological maps in the system to inquire conveniently

Analysis and evaluation Applies the PSO-SVM model to evaluate the mine geological environment

Map display Produces a map of mine geological environmental evaluation results
and develops linkages between attribute and spatial queries

File management Manages laws, regulations, standards, specifications, and government documents

User management Protect the safety of the system
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Accuracy of SVM models using different kernel functions

As shown in Fig. 5, different verification results for the four
SVMmodels are obtained by using different kernel functions.
The calculation results presented in Fig. 5 which were com-
pared with the description of mine geological environment
damage degree in the reports show that the accuracy of linear,

polynomial, RBF, and sigmoid SVMmodels are 89.33, 94.00,
88.66, and 4.00%, respectively. Data suggest that the polyno-
mial SVMmodel is slightly more accurate than either linear or
RBF models, and far more accurate than the sigmoid model.
Results therefore imply that the polynomial SVM model is
suitable for mine geological environmental assessment in
our study area.

Fig. 4 MGEIS work flowchart

Fig. 5 Different verification
results for the four SVM models
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Comparing SVM and PSO-SVM evaluation results

We use both a SVMmodel and a PSO-SVMmodel to evaluate
the mine geological environmental qualities of 684 mines in
this study. Our evaluation results for 30 mines are shown in
Table 4. Data show that the two evaluation models achieved
the same classification result rate 95.9%. It can be seen from
BAccuracy of SVM models using different kernel functions^
that the SVM evaluation model is applicable to the evaluation
of mine geological environment. Therefore, the PSO-SVM
model is suitable for the evaluation of mine geological envi-
ronment similarly. Previous studies tend to use traditional
evaluation models for assessment which affects results be-
cause of the influence of artificial factors. This is illustrated
by the case of sample, for example, where the SVM result
indicates level I and the PSO-SVM result indicates level II.
As for M1mine, although the type and degree of environmen-
tal problem is characterized as level I, there are important
places in this region where energy minerals need to be mined
underground and the landform is complex. However, as the
mine has therefore proved difficult to manage and is leading to
serious consequences, a level II evaluation result conforms to
the actual situation. Similarly, in the case of example M12, the
SVM result shows level II while the PSO-SVM result shows
level III. Again, as for M12 mine, a method of combined
mining is being applied as this site contains abundant metal
minerals. The landform is complex, the environmental geo-
logical condition is moderate, land resource destruction is se-
rious, and restoration is difficult; thus, a level III evaluation
result conforms to the actual situation.

In summary, PSO-SVM is more effective than SVM eval-
uation model in the process of calculation, which not only

avoids the interference of artificial factors but also makes the
evaluation result more realistic.

Evaluation of PSO-SVM results

The data presented in Fig. 6 shows that 2.64% of our study
area can be classified as level I, lightly damaged, while
43.27% can be classified as level II, moderately damaged,
and 54.09% can be classified as level III, seriously damaged.
Data presented in Fig. 7 shows that the level I area comprises
35.71% metal minerals, 33.04% non-metal minerals, 4.46%
energy minerals, and 26.79% vapor minerals. Similarly, the
level II area comprises 38.02% metal minerals, 19.39% non-
metal minerals, 40.31% energy minerals, and 2.28% vapor
minerals. The level III area comprises 35.92%metal minerals,
17.15% non-metal minerals, 45.96% energy minerals, and
0.97% vapor minerals.

Thus, on the basis of our results, the mine geological envi-
ronment of our study area has been almost entirely moderately
or seriously damaged by mining activities, especially in ener-
gy mineral areas such as coal-mining regions.

Figure 8 illustrates a map of evaluation results produced
using the BMap Display^ function of our MGEIS; this map is
amplified at the bottom of this figure. These data show that
PSO-SVM model evaluation results for Jilin province can be
classified at three degrees of seriousness, light, moderate, and
serious. These results reveal that 54.09% of mine sites are

Table 4 Comparison of evaluation results between two models

Mine number SVM PSO-SVM Mine number SVM PSO-SVM

M1 I II M16 II II

M2 II II M17 III III

M3 II III M18 III III

M4 I I M19 II II

M5 II II M20 I II

M6 II II M21 III III

M7 III III M22 II III

M8 I II M23 III III

M9 I I M24 II II

M10 III III M25 II II

M11 III III M26 III III

M12 II III M27 II III

M13 II II M28 III III

M14 II II M29 III III

M15 II II M30 I I

Fig. 6 The statistical results of mine geological environment evaluation

Fig. 7 The percentage of different ore classes in three evaluation degrees
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Fig. 8 A map of evaluation results produced using the BMap Display^ function of our MGEIS
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seriously damaged, while 43.27% are moderately damaged.
Seriously damaged mines are mainly distributed in the Jilin,
Liaoyuan, Tonghua, and Baishan regions. The damage degree
of mine geological environment is affected by the location,
background condition, mining method, and so on. All the
underground mining mines in the Jilin province have different
degrees of surface subsidence. These mines are mostly distrib-
uted in the mountain basin area and around such as Liaoyuan.
Surface subsidence often occurs in coal mines. The coal ore
body is mostly shallow buried type, the thickness of the loose
cover layer is large, the rock strength is low, the thickness ratio
is small, the lithological association is complex, and the sur-
face subsidence is easy to occur. The mountainous area in the
southeast of Jilin province is seriously damaged, because there
are large mined-out area and surface collapse which leads to
the occurrence of fissures along the joints of basalt after years
of underground mining. In the effect of precipitation, the frac-
ture occurs along the steep slope and causes serious damage.
There are landslides mainly distributed in the eastern moun-
tainous area of Jilin province due to open-pit mining.
Landslide geological disaster occurs within the mining area
of main stem and tributaries every flood season frequently
because of the vegetation coverage rate decline caused by
mining activity, combined with high and steep mountain ter-
rain, water development, and emissions of waste rock which
are piled up in the flood ditch sides basically.

Conclusions

1. Compared with previous studies, the establishment of hi-
erarchical factor evaluation system describes the mine
geological environment better from multiple levels and
angles. The evaluation system contains five elements
and 18 indexes including natural and man-made factors.
The comprehensive description for the complex mine
geological environment lays the foundation for the evalu-
ation work.

2. The results of our study suggest that PSO-SVM model is
suitable for the mine geological environment evaluation
and the results are more accurate and realistic. This study
improves the traditional methods and combines PSO
method with SVM method to make up for each other. It
not only solves mine geological environment problem but
also overcomes the parameters in evaluation model which
are affected by artificial factors.

3. Different from previous information system, we develop
MGEIS with the function of mine geological environment
evaluation. This study makes the PSO-SVM model and
hierarchical factor evaluation system embedded in
MGEIS to realize the interface and visualization of mine
geological environment evaluation. It provides an easy

approach to realize the complex evaluation process and
makes results easy to understand.

4. The MGEIS will perform an important role in the man-
agement of mine geological environment and it has al-
ready been applied by the Jilin Province Department of
Land and Resources. Managers who use MGEIS can re-
serve, manage, search, retrieve, add, update, analyze,
evaluate, input, and output related information. MGEIS
meets the actual demands of the government personnel.
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