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Abstract The main factors and mechanisms controlling
the groundwater chemistry and mineralization are recog-
nized through hydrochemical data. However, water quality
prediction remains a key parameter for groundwater re-
sources management and planning. The geochemical study
of groundwater of a multilayered aquifer system in Tunisia
is recognized by measurements of the pH, EC, total dis-
solved solids (TDS), major ion concentration and nitrates
of 36 samples from pumping wells covering the aquifer
extension and analyzed using standard laboratory and field
methods. The calcite precipitation, gypsum, anhydrite and
halite dissolution, and direct and reverse ion exchange are
the principal process of chemical evolution in the
Nadhour-Saouaf aquifer system. Using stepwise regression,
the concentration groups of (Ca, Cl, and NO3), (Cl, SO4,
and Mg), and (Ca and Na) exhibit significant prediction of
TDS in Plio-Quaternary, Miocene, and Oligocene aquifer
levels, respectively. The highest values of R2 and adjusted
R2 close to 1 revealed the accuracy of the developed
models which is confirmed by the weak difference be-
tween the measured and estimated values varying between
−12 and 8%. The important uncertainty parameters that
affected the estimated TDS are assessed by the sensitivity
analysis method. The concentration of (Cl), (Ca and Cl),
and (Na) are the major parameters affecting the TDS sen-
sitivity of the Plio-Quaternary, Miocene, and Oligocene

aquifer levels, respectively. Hence, the developed TDS
models provide a more simple and easy alternative to
other methods used for groundwater quality estimation
and prediction as proven from external validation on
groundwater samples unconsidered in the model
construction.

Keywords Groundwater quality . Hydro-chemical . Multiple
regression analysis prediction

Introduction

Water scarcity is a common feature of our modern world and
this threat is predicted to be worse in the future (Alcamo
et al. 1997; MED WS &D WG 2007). Groundwater makes
up about 60% of the world’s freshwater supply, which is
about 0.6% of the entire world’s water (EPA 2009).
Groundwater also is recognized as one of the most valuable
natural resources, immensely important and a dependable
source of water in all climatic region all over the world
(Todd and Mays 2005; Carreira 2010). This situation may
induce severe water crisis (Varghese et al. 2012). The accu-
rate prediction of groundwater quality is essential for sus-
tainable utilization and management of vital groundwater
resources either on local or regional scales. In addition, for
an effective watershed management strategy, water quality
assessment is essential in ensuring the protection of ground-
water resources from an unavoidable climate change impact
and other problems like industrial revolution, urbanization,
agricultural increases, etc. (Subba Rao 2008; De Fraiture
andWichelns 2009; Liao et al. 2012). To that end, it is useful
to provide information on water quality, classification of
water for various purposes, identification of different
groundwater aquifers, assessment of groundwater potential,
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and investigation of different chemical processes (Trabelsi
et al. 2007; Liu et al. 2008; Chenini and Khemiri 2009).
Thus, water-quality indicators must reflect mineralization
process, integrate reservoir properties, and be sensitive to
groundwater recharge rate and flow direction (Andre et al.
2005; Subba Rao 2008). The water chemistry is an impor-
tant factor determining its use for domestic and irrigation
purposes (WHO 1984; Memon et al. 2011). The chemical
composition of groundwater is controlled by many factors
that include the composition of precipitation water, climate,
way of groundwater flow through the rock types, topogra-
phy of the region, saline water intrusion in coastal areas, and
human activities on the ground surface (Reghunath et al.
2002; Trabelsi et al. 2007; Subba Rao 2008; Liao et al.
2012; Arslan 2013; Bhat and Jeelani 2015). These factors
can combine to create diverse water types that change in
composition spatially and temporally. Different techniques
have been used in an attempt to evaluate water quality, es-
sentially based on chemical ions’ correlation and some ions’
rapports (Pazand and Pazand 2014; Ben Alaya et al. 2014).

Therefore, the predictor models offer a cost-effective
option to water-quality management, and they have the
potential to be applied elsewhere. Multiple regression anal-
ysis is a statistical methodology that utilizes the relation
between two or more quantitative variables so that a re-
sponse or outcome variable can be predicted from the
others. Predictor models can be used to supplement regular
monitoring by identifying areas that need health warnings
or more frequent monitoring and are useful between sam-
pling periods (USEPA 2010). This methodology is widely
used in the assessment of same-contaminant indicators:
viral and bacterial water pollution (Yates et al. 1985;
González-Ramón et al. 2012; Gonzalez and Noble 2014;
Herrig et al. 2015), harmful substances (Ozekin 1994;
Golfinopoulos and Arhonditsis 2002; Yu et al. 2015), ni-
trate (Liao et al. 2012), metals (Manzoor et al. 2006;
Kumaresan and Riyazuddin 2007; Ahsan et al. 2008),
and rare earth elements (Janssen and Verweij 2003).
Nevertheless, only a limited number of studies focused
on the TDS parameter as a groundwater-quality indicator.
WHO (1984) considered the TDS as the criteria for the
classification of groundwater for domestic purposes.

Given the aforementioned context, the main objective
of this work was to investigate the origins of minerali-
zation and to test and validate the applicability of multi-
ple regression analysis for estimating groundwater quali-
ty based on the TDS. The model developed was based
on chemical analysis data from Nadhour-Saouaf aquifer
samples. The data set was divided into a developing set,
used for setting up the models, and an independent set,
used for the validation. Then, a sensitivity analysis is
performed to evaluate the reliability and uncertainty of
the estimated TDS values.

Materials and methods

Study area

The Nadhour-Saouaf syncline, located in the southeastern
Zaghouan City in Tunisia, extends over an area of 400 km2

and lies between mountain ranges in the north and the north-
west and the alluvial range in the south (Fig. 1). The topogra-
phy varies from 78 to 923 m (Fig. 1). The climate is mostly
semiarid, with hot dry summer and wet winter. The mean
annual rainfall is about 400 mm; this is much lower than the
potential evaporation which exceeds 1560mm/year The mean
annual temperature is around 18 °C. This region has a rather
unstable climate with irregular rainfall quantity and highly
variable spatial distribution.

Geology and hydrogeology

Thegeological outcrops in the study area range from Jurassic
toQuaternary. TheQuaternary deposits largely present to the
south of Zaghouan area and the Plio-Quaternary formed the
syncline fillings, whereasMiocene showed a thick sequence
of lignite to the north and medium to coarse sandstone to the
south (Hamza 1990; Kacem 2008). The upper Oligocene
unit, situated in the bordering edges of infiltration, is mainly
composed of coarse sandstone and clay. The Lower Eocene
deposits are composed of limestone beds. TheUpper Eocene
deposits, a thick sequence of clay and marl, constitute the
superficial aquifer substrate, outcropping near the borders
of the syncline. The topographic heights ofMesozoic forma-
tions dominate the north of the studied area (Fig. 2a, b). The
hydrogeologicalSW-NEcross section reveals an aquifer sys-
tem featured by a synclinal structure and shows a deposition-
al sequence of three main hydrostratigraphic series: Plio-
Quaternary formed by conglomerate interstratified by sand
and clay beds, the Miocene sandstone layer, and highly per-
meable Oligocene sandstones interstratified by sand and
gravel beds (Fig. 3). The transmissivity ranged between
0.012 and 0.036 m2/s with a hydraulic conductivity of
30 × 10−6 to 8.7 × 10−3 m/s (SCET 2002). In the Nadhour-
Saouaf watershed, the aquifer has been exploited since the
1980s. In the 2000s, the number of pumping wells increased
rapidly, and consequently the extraction volume reached
5.2×106m3 in2007.Thus, since1982, thegroundwater level
has continuously declined with a maximum drawdown of
4.5 m during the period of 1995–1996. As a direct impact
of increasedwater abstraction, the groundwater level decline
was spreadover the entire aquifer.Consequently, the ground-
water becomes overexploited as its natural recharge by rain-
water cannot maintain a safe yield situation. To improve the
natural recharge regime of the water table, an artificial
groundwater recharge infrastructure was implemented
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Fig. 2 Geological map (a) and synthetic litho-stratigraphic column of the study area (b)

Fig. 1 Study area and groundwater sampling wells locations
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(Saadine Essahel and El Ogla hill dams) which consists of
releasing water downstream the hill dams in the wadi bed.

Naturally, this aquifer is recharged by water flowing from
the surrounding mountains, as well as by local infiltration
from several rivers (Zammouri and Feki 2005). The ground-
water flow direction is toward the over-pumping zone in the
SE area (Fig. 4). The highest piezometric levels are at the NE
of the study area, and the lowest ones are close to the Nadhour
area. Water of the Nadhour-Saouaf aquifer is used erratically
by different economic sectors. However, drinking-water sup-
ply and irrigation remain the primary use of groundwater
resources.

Groundwater sampling and analysis

Groundwater samples from 36 pumping wells in the Nadhour-
Saouaf multilayered aquifer system were collected in 2010.
All samples were obtained from existing water-supply bore-
holes used for domestic and agricultural purposes. The sam-
ples were divided into three main groups corresponding to
three reservoir levels: the Plio-Quaternary, the Miocene,

and the Oligocene. An attempt was made to choose sampling
locations that are uniformly distributed throughout the study
area (Fig. 1). The samples were collected after 10 min of
pumping and stored in polyethylene bottles. Immediately after
sampling, temperature (T°C) and electrical conductivity (EC)
were measured with a conductivity meter. pH was measured
using a pH meter. Chemical analyses of major elements (Na+,
Ca2+, Mg2+, K+, Cl−, SO4

2−, and HCO3
−) and nitrates (NO3

−)
were carried out in the Laboratory at the National School of
Engineers of Sfax (LARSEN) employing standard methods
reported in Table 1. The total dissolved solids (TDS) in mg/l
were determined gravimetrically.

The analytical data quality was ensured through careful
standardization; the ionic charge balance of each sample was
within ± 5%.

Multiple linear regression

One of the classical problems in engineering investigation is
to make predictions. Usually, such predictions require a for-
mula to be found which explain a relationship between a

Fig. 3 Hydrogeological cross section along transect BB′ (see Fig. 1 for location).
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response variable and a set of regression variables (Tabari
et al. 2011). Multiple linear regression (MLR) analysis is com-
monly used to describe quantitative relationships between the
dependent variable and one or more independent variables
(Shirsath and Singh 2010). This method is successfully used
by different authors to establish statistical models (Ghasemi

and Saaidpour 2007).TDS is a common parameter in water-
quality monitoring as it constitutes an excellent indicator of
groundwater quality. Therefore, MLR method provides an
equation linking the independent variables Vi ([Na], [Mg],
[Ca], [K], [SO4], [HCO3], [Cl], and [NO3]) to the dependent
variable Vd (TDS) for this case using a relationship of the
following type:

Vd ¼ β0 þ βiV i1 þ ∙∙∙þ βnVin ð1Þ

where the intercept (β0) and the regression coefficients of
descriptors (βi) are determined by least square method
(Green and Carroll 1996) and n is the number of groundwater
samples.

Before establishing the statistical model, the selection of
influential (significant) input variables has been applied.
Generally, all of the potential input variables are not equally

Fig. 4 Piezometric map of Nadhour-Saouaf aquifer in 2010

Table 1 Used analytical methods

Element Analytical method

Cl− Titration with AgNO3

HCO3
− Titration with HCl

SO4
2− Chromatography liquid phase

NO3
−,Na+, Mg2+, and K+ Atomic emission spectrophotometer

Ca2+ Titration with EDTA
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informative, because some variables may be correlated, noisy,
or have no significant relationship with the output to be
modeled (Maier and Dandy 1998; Hassan et al. 2014). The
selection of model inputs among chemical properties of sam-
pled groundwater was carried out according to multiple vari-
able correlations. The technique of multivariate data analysis
gives the correlation coefficient r for each pair of variables. A
correlation coefficient r is a number between − 1 and + 1,
which measures the strength of the linear relationship between
two variables. For r > 0.7, 0.5 ≤ r ≤ 0.7, and r < 0.5, the
variables were considered, respectively, strongly correlated,
moderately correlated, and poorly correlated. The standard-
ized skewness and standardized kurtosis were used to deter-
mine whether the sample comes from a normal distribution.
Values of these statistics outside the range of − 2 to + 2 indi-
cate significant departures from normality, which would tend
to invalidate many of the statistical procedures normally ap-
plied to this data. A variable with standardized skewness and
standardized kurtosis values outside the expected range is not
influential. Then, variables were retained in the model on a
significance level of P < 0.05.

The effectiveness of the developed MLR models was mea-
sured by a set of standard statistical indicators and the
ANOVA table (Makridakis et al. 2008), namely, multiple cor-
relation coefficient (R2), adjusted R2, P value, mean absolute
error (MAE), and Durbin–Watson statistic (DWS). The

relationships between variables were established using the
stepwise regression method (Bernstein 1988; Thayer 2002).
Multiple variable analysis and multiple regression modeling
were performed using STATGRAPHICS XVI.I statistical pro-
gram (SPT 2009).

Results and discussion

Groundwater chemistry

A statistical summary of the total dissolved solids (TDS) and
major ion and nitrate concentrations in the groundwater are
presented in Table 2. The TDS values range from 0.9 to 1.8,
0.7 to 1.8, and 0.7 to 2.4 g/l, respectively, for the Plio-
Quaternary, Miocene, and Oligocene levels. In order to iden-
tify the geochemical processes responsible for the groundwa-
ter salinization, the major elements versus TDS and ions ver-
sus saturation index was analyzed.

TDS versus major elements

In order to identify the geochemical processes contributing to
the groundwater salinization in the multilayered Nadhour-
Saouaf aquifer system, the relationship between concentra-
tions of major elements and TDS was considered (Fig. 5).

Table 2 Descriptive statistics of water-quality parameters

TDS Ca (mg/l) Mg (mg/l) Na (mg/l) K (mg/l) Cl (mg/l) SO4 (mg/l) HCO3 (mg/l) NO3 (mg/l)

Quaternary level (n = 10)

Average 1.3 116.3 70.6 218.0 4.7 254.8 350.2 328.8 6.6

St dev 0.33 52 15.3 60.6 2.0 81.5 133.3 41.7 5.8

Min 0.9 28 45 142.0 2.03 133 176 261 0

Max 1.8 192 89 303 8.1 415 583 397 14.6

St skew 0.1 −0.3 −0.6 0.1 0.6 0.6 0.5 136.0 14.6

St kurtosis −1.1 −0.6 −0.5 −1.1 −0.7 0.2 −0.5 0.1 0.1

Miocene level (n = 13)

Average 1.04 253.68 245.6 11.0 209.1 84.8 60.3 154.4 4.9

St dev 0.34 108.8 92.2 16.8 147.3 60.4 30.3 66.3 2.2

Min 0.68 49.0 106.5 0 44.0 24.0 15.8 78.0 2.0

Max 1.81 414.0 400 54 581 236 120 297 9.1

St skew 1.7 −0.4 0.6 2.7 1.9 2.0 0.98 1.2 0.7

St kurtosis 0.5 −0.3 −0.4 2.1 1.7 1.6 0 0 −0.4
Oligocene level (n = 13)

Average 1.3 104.6 56.4 218.6 5.1 274.5 272.7 314.3 7.8

St dev 0.5 41.8 30.0 116.5 2.8 145.5 184.6 82.9 15.8

Min 0.7 40 17 112 2.5 96 69.58 158.5 0

Max 2.4 200 141 415 10 560 800 440 44

St skew 1.6 1.4 2.8 1.2 1.2 1.3 3.2 −0.3 2.8

St kurtosis 0.3 1.0 3.9 −0.7 −0.5 −0.2 4.2 −0.5 1.7
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For the Plio-Quaternary level, these diagrams indicate a well-
defined correlation characterizing the relationship of Ca2+,
SO4

2−, Na+, and Cl− versus TDS with correlation coefficients
of 0.83, 0.82, 0.81, and 0.79, respectively. The relationships
suggest these major elements’ contribution to the water min-
eralization of the Plio-Quaternary level. Except the HCO3

−, all
major elements and TDS are well correlated for the Miocene
level which indicates that the total salt content is mainly con-
trolled by the concentrations of these elements, with correla-
tion coefficients exceeding 0.85. Major elements Cl−, Na+,
SO4

2−, and Mg2+ are well correlated with TDS, with correla-
tion coefficients of 0.9, 0.88, 0.8, and 0.7, respectively, which
can further elucidate elements controlling mineralization in
the Oligocene level.

Relationship between ions

In order to underline the mechanisms of groundwater miner-
alization, relationships between the major elements were in-
vestigated. The Na+/Cl− relationship shows a high correla-
tion with relatively high concentrations in ions Na+ com-
pared to ions Cl− as a consequence of halite dissolution as a

major process of mineralization (Fig. 6a). The excess of Na+

relative to Cl−may be explained by the intervention of other
processes like cation exchange between groundwater and the
clay fraction of the aquifer material (Trabelsi et al. 2007;
Kraiem et al. 2012). SO4

2− versus (Ca2++ + Mg2+) shows a
good positive correlation for all samples of the various aqui-
fer levels (Fig. 6b) due to the probable cation exchange by
generation of a Ca2+ deficiency relatively to SO4

2− concen-
tration. Figure 6c shows that dolomite dissolution is proba-
bly the source of Mg2+ and Ca2+ in addition to other sources
of theses ions for all aquifer levels. The plot of (Ca2+ +Mg2+)
versus (HCO3

−+SO4
2−) shows that allMiocene samples and

some samples from both Oligocene and Plio-Quaternary are
placed close to the 1:1 line indicating that Nadhour-Saouaf
groundwater mineralization is controlled by gypsum disso-
lution.Agreat number of Plio-Quaternary groundwater sam-
ples and a few ones of the Oligocene level are placed in the
right due to an excess that happens to be of HCO3

− and SO4
−

indicating that groundwater mineralization is controlled by
ion exchange in addition to mineral dissolution (Fig. 6d).

Furthermore, the referred exchange is confirmed through
the plot of ((Ca2+ + Mg2+) − (HCO3) + SO4

2−)) versus (Na+ +
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K+ −Cl−) as shown in Fig. 7, revealing an inverse proportional
evolution with a slope of about − 1 (Mc Lean et al. 2000;
Dassi 2004; Kamel et al. 2005; Kraiem et al. 2012). In the
absence of these reactions, all data should plot close to the
origin (Mc Lean et al. 2000). Figure 7 shows that the ground-
water samples are distributed on both sides indicating that
Nadhour-Saouaf groundwater mineralization is also con-
trolled by ion exchange and reverse ion exchange process with
clay minerals present in the aquifer material.

Saturation index

The saturation indices (SI) of calcite, dolomite, halite, anhy-
drite, and gypsum were calculated using the code
Diagrammes 6.51. The results are presented in Fig. 8. SI eval-
uates the level of equilibrium between minerals of water and

rocks (Elango et al. 2003). If SI is greater than zero (SI > 0), the
solution is saturated relative to the mineral, and then, precipita-
tion from the groundwater is theoretically possible. When SI is
below zero (SI < 0), the solution is undersaturated and dissolu-
tion continues. If SI is equal to zero (SI = 0), the mineral would
be either precipitating or dissolving (Qiyan and Baoping 2002;
Trabelsi et al. 2007).

As shown in Fig. 8a, b, all samples are supersaturated with
respect to calcite and dolomite except for a few ones. In the
cases of gypsum, anhydrite, and halite, SI values indicate
undersaturation, suggesting that their soluble component Na,
Cl, Ca, and SO4 concentrations are not limited by mineral
equilibrium (Guler et al. 2002). For the Miocene and
Oligocene levels, the saturation indices of anhydrite and gyp-
sum vary in inverse proportion to the sum of (Ca2+ + SO4

2−)
(Fig. 8c, d).
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The saturation indices of halite versus (Na+ + Cl−) indicate
that water evolves from a state close to undersaturated with
respect to halite (Fig. 8e). Not only calcite precipitation but
also gypsum, anhydrite, and halite mineral dissolution are the
principal reactions that determine the chemical evolution in
Nadhour-Saouaf aquifer system.

Nitrates

Nitrate is a very important parameter for assessing the con-
tamination of groundwater (Einsiedl and Mayer 2006;
Ameur et al. 2016). The limit of nitrate content in water
is set by the World Health Organization (WHO) at 50 mg/l.
High concentrations of nitrates can cause serious health
problems. In the study area, this parameter range between
0 and 54 mg/l, with a nitrate average of 8 mg/l. Only one
sample exceeds the nitrate concentration limit (50 mg/l),
established by the WHO standards.

MLR model development

In developing the MLR model, an appropriate number of ex-
plicative variables required to provide a more precise simula-
tion results were determined. This approach was used to ex-
tract related variables controlling groundwater quality. The
range of the considered variables, the average, the standard
deviation, the standard skewness, and the standard kurtosis are
shown in Table 2. The standardized skewness and standard-
ized kurtosis outside the range of − 2 to + 2 are in bold show-
ing irrelevant variables in groundwater quality. For the Plio-
Quaternary aquifer level, all variables can be considered as
significant model inputs. The Na was deleted from the input
variable list for the Miocene level and the Mg, Cl, and NO3

were excluded from the list of variable considered in the
Oligocene level.

The results of MLR analysis for the three aquifer levels in
Nadhour-Saouaf syncline using a stepwise regression
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technique are summarized in Table 3. The Bbeta^ (standard-
ized regression coefficients) values show the relative contri-
bution of each independent variable in the prediction of
groundwater quality. The BP value^ refers to the significant
variables, which are included in the regression equation.

After fitting the MLR models to the data set, an assess-
ment is made of the adequacy of the fitting for each mod-
el. The value of R2 is 0.96, showing that about 96% of the
total variations in the TDS can be accounted for the inde-
pendent variables for the Plio-Quaternary aquifer level.
The fitted model 1 retained three explicative variables
(Ca, Cl, and NO3). For the Miocene water samples,
MLR model 2 required other explicative variables (Cl,
SO4, and Mg). The high R2 shows that about 98% of
the total variations in the TDS have been explained by
these variables. However, for the Oligocene level, only
tow explicative variables (Ca and Na) appear obligatory
to explain the TDS variation by the model 3. The value of
R2 is 0.98, showing that about 98% of the total variations
in the TDS can be accounted for the independent vari-
ables. Goodness of fit between measured and simulated
TDS was assessed by the mean absolute error. A low
MAE was recorded for three models. The autocorrelation
of residuals was checked by using the Durbin–Watson
statistic (Makridakis et al. 2008). The value of Durbin–
Watson statistic for the residuals obtained at Plio-
Quaternary, Miocene, and Oligocene levels range between
1.54 and 3.34, which is significant at a 95% confidence
interval, thereby satisfying the condition of no autocorre-
lation at lag 1 in the groundwater samples of these aquifer
levels. These diagnostic checks were employed for all of
the three aquifer levels, and the results indicated that all
MLR models satisfy the basic assumptions of MLR tech-
nique (Courville and Thompson 2001).

In order to test whether the dependent variable TDS is
related to predictor variables, the ANOVA table was used
(Williams 2015). Since P value is less than the signifi-
cance level (5%), it indicates a TDS related to predictor
variables for all aquifer levels. Table 4 shows that at the
5% significance level, whether it appears that any of the
predictor variables can be removed from the full models is
unnecessary. The entire coefficients for the models are

significant, i.e., P value of the t statistic for each coeffi-
cient is less than significance level (5%), so all the con-
sidered variables are useful as predictors of dependent
variable TDS.

For the qualitative evaluation of the models’ perfor-
mance, the results of graphical indicators are concerned; a
comparison of measured and predicted TDS is shown in
Fig. 9a, b, and c for the Plio-Quaternary, Miocene, and
Oligocene aquifer levels, respectively. It is apparent from
this figure and in Table 5 that all models showed reasonable
correlation between measured and predicted TDS. Hence,
the produced MLR models are viable tools for monitoring
assessment of groundwater-quality status which can en-
hance groundwater resources management in the area.

Sensitivity analysis

The groundwater-quality assessment was carried out using
chemical data for each aquifer level. Unfortunately, there is a
relatively great deal of the uncertainty in the process of chem-
ical parameter analysis. Thus, the water quality uncertainties
are compounded by uncertainties relating to the chemical pa-
rameters explaining TDS variation for each aquifer level. In
the light of these probable uncertainties, a sensitivity analysis
was conducted for the MLR models. The aim of this was to

Table 3 MLR models and their
performance P

value
R2 Adjusted

R2
MAE DWS

Model 1: TDS = 0.299262 + 0.00212499 × Ca +
0.00263781 × Cl + 0.0194928 × NO3

0.0002 95.74 93.61 0.05 2.23

Model 2: TDS = 0.429459 + 0.00132246 × Cl +
0.00182834 × SO4 − 0.00158612 × Mg

0.0000 98.80 98.40 0.03 3.37

Model 3: TDS = − 0.0219974 + 0.00578409 × Ca +
0.00327165 × Na

0.0000 98.67 98.40 0.04 1.54

Table 4 Statistical results obtained from the MLR analysis

Parameter β Standard error t statistic P value

Model 1

Ca 0.00212499 0.000818763 2.59537 0.0409

Cl 0.00263781 0.000433984 6.07813 0.0009

NO3 0.0194928 0.00650624 2.99602 0.0241

Model 2

Cl 0.00132246 0.00019766 6.69057 0.0001

SO4 0.00182834 0.000146889 12.4471 0.0000

Mg −0.00158612 0.000593317 −2.67331 0.0255

Model 3

Ca 0.00578409 0.000473929 12.2046 0.0000

Na 0.00327165 0.000170161 19.2268 0.0000

382 Page 10 of 14 Arab J Geosci (2017) 10: 382



investigate the relative importance of each input variable for
accurately predicting groundwater quality. This analysis was
carried out for all MLR models by imposing certain changes
on individual inputs and observing their effects on the model
output. According to the weak quantity of NO3 in the Plio-
Quaternary water samples, the effect of its uncertainty on the
TDS assessment is not included in this analysis. The magni-
tude of the perturbation was ± 10%with respect to the original
data, while keeping the other inputs at their original values and
then calculating the change in the model output TDS. The
uncertainties associated with the chemical parameters were

evaluated by computing a defined relative sensitivity (S) as
AS/CP. The CP is the relative change of a given variable or
parameter, defined as |Vs − Vm|/Vm × 100, and AS is the rela-
tive change in the output TDS value, defined as |Cs − Cm|/
Cm × 100. Vs and Vm are variable values used for sensitivity
and MLR model original value, respectively, and Cs and Cm

are output data TDS computed in sensitivity and generated
MLR model, respectively (Jiménez-Martínez et al. 2010).
Figure 10a, b, and c present the results of the sensitivity anal-
yses for the MLR models of Plio-Quaternary, Miocene, and
Oligocene level, respectively. The variation of the sensitivity
values with the inputs at each water sample are shown for all
aquifer levels. It can be seen from Fig. 10a that in the Plio-
Quaternary level groundwater, all the inputs have reasonably
low values of sensitivity (the rank ranging between 0.05 and
0.64). Compared to Ca, the variation of the Cl affects signif-
icantly the TDS at this level. However, at the Miocene aquifer
level, inputs Cl and SO4 have an irregular value of sensitivity
as compared to those for the Mg input (Fig. 10b). It has a low
sensitivity value (< 0.2). Therefore, the greatest change in the
TDS of Miocene water samples is not due to perturbations in
the inputMg but also to variations in the Ca and Cl. For almost
all the Oligocene water sample, the TDS sensitivity trend to
Na was deduced (Fig. 10c). Therefore, the inputs having the
highest sensitivity should be considered with greater accuracy
so as to ensure reliable prediction of TDS by the MLR model.

External validation of the TDS models

The next task was to conduct a validation test of the cali-
brated models with data different from those used for mod-
el formulation (Table 3). The prediction was made for each
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Fig. 9 Comparison of measured and simulated TDS for a Plio-
Quaternary level, b Miocene level, and c Oligocene level

Table 5 Statistical results of measured and predicted TDS in Nadhour-
Saouaf aquifer system

Min Max Average St dev

Quaternary level (n = 10)

Measured TDS 0.93 1.79 1.35 0.33

Estimated TDS 0.96 1.74 1.35 0.32

Residual −0.10 0.10 0.00 0.07

Relative difference, % −10.14 7.71 −0.26 5.41

Miocene level (n = 13)

Measured TDS 0.68 1.81 1.04 0.34

Estimated TDS 0.71 1.83 1.04 0.34

Residual −0.05 0.07 0.00 0.04

Relative difference, % −5.54 4.78 −0.14 3.71

Oligocene level (n = 13)

Measured TDS 0.72 2.44 1.30 0.52

Estimated TDS 0.73 2.38 1.30 0.51

Residual −0.12 0.07 0.00 0.06

Relative difference, % −11.93 5.61 −0.08 4.77
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aquifer level separately based on the previously defined
predictor variables. Figure 11a–c depicts the predicted
TDS values and the TDS data derived from evaluation of
the various groundwater samples based on the MLR
models of Plio-Quaternary, Miocene, and Oligocene aqui-
fer levels, respectively. Thus, Fig. 11 shows Bperfect^ sim-
ulation. TDS predicted for Nadhour-Saouaf aquifer are in
reasonable agreement with the measured data.

Conclusions

Investigations of groundwater quality have been based on two
approaches: (i) hydrochemical characterization using major
elements and relationships, (ii) statistical modeling with
MLR for simulating and predicting of TDS using physico-
chemical parameters (pH, EC, and TDS); major ions concen-
tration [HCO3], [Cl], [SO4], [Ca], [Mg], [Na], and [K]; and
nitrates. Calcite precipitation, gypsum, anhydrite, and halite
dissolutions are the main reactions inducing the chemical evo-
lution in Nadhour-Saouaf aquifer system, in addition to direct

and reverse ion exchange with clay minerals. Then, for MLR
approach, the standard protocols for MLR modeling, as well
as all the pertinent and influential input variables, were used to
achieve this goal. The performance of the MLR models de-
veloped for three aquifer levels was assessed both quantita-
tively and qualitatively by using appropriate statistical and
graphical indicators. Analysis of the results indicated that the
developed TDS models provide accurate prediction of TDS
with considerably high values of R2 and lower values of MAE
at a 95% significance level. The fitted MLR models are rea-
sonably good for all aquifer levels, despite their low residuals.
The MLR technique has important practical advantages such
as the fact that implementation is much easier and less time-
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consuming compared to other predictor methods.
Consequently, the MLR technique can serve as an alternative
and cost-effective tool for groundwater-quality prediction.
The methodology presented in this study is very useful in
groundwater management and protection and may be easily
applied in other regions.
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