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Abstract Mining activities pose a potential risk of metal con-
tamination around mining sites. On May 6, 2010, a tailings
dam failure of the Mazraeh copper mine near Ahar in East
Azerbaijan province, Iran, released vast amounts of mine
wastes. To better understand the magnitude of copper contam-
ination in the waste-affected soils, it is important to assess the
spatial distribution of soil copper content at unsampled points.
A total of 30 soil samples and their surficial sediments togeth-
er with the 6 uncontaminated control samples (0–10 and 10–
30 cm) were collected along the stream flow that joined Ahar-
Chai River. Some of soil properties as well as total copper
concentration were determined in all samples. The mean value
of the latter in the surface contaminated soils was found to be
approximately two times more than controls. Furthermore, the
mean concentration of copper in the surface loaded material
was 10 times more than the soils. High copper concentrations
were observed in surficial sediments of the soils near the bro-
ken tailings dam. The Inverse Distance Weighting (IDW)
method was employed in data analysis. The spherical and
Gaussian semivariogram models were properly fitted to the
data of copper contents in soils and surficial sediments.
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Abbreviations
IDW Inverse Distance Weighting
GPS Global Positioning System
EC Electrical conductivity
CEC Cation exchange capacity
OC Organic carbon
CCE Calcium carbonate equivalent
CF Contamination factor
SCC Soil copper concentration
CCS Copper concentration of surficial sediments
C0 Nugget
C0+C Sill
A0 Range of parameter
RSS Residual sum of squares
DSM Digital soil mapping
CV Coefficient of variation
UTM Universal Transfer Mercator

Introduction

Paying attention to contamination causes and sources and also
to monitoring pathways is the main objectives in rational use
of soil resources and environment. Increasing human activities
during the last decades have induced widespread release of
heavy metals in the environment. Industrial products, mines,
transport, and even uncontrolled application of pesticides are
the known sources to establish heavy metal contamination
(Hutton and Meeus 2001). These metals may spread to the
soil by sewage application, wastewater irrigation, and atmo-
spheric deposition (Salomons 1992).

Late in the 1970s, pedologists realized the possible em-
ployment of geostatistics in soil survey. They also developed
methods to make maps of individual soil properties without
having to classify the soil and getting embroiled in all the
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doubts and controversy (Webster 2008). Due to the impossi-
bility of making the samples of all data points, geostatistical
approaches were used to predict the spatial and temporal dis-
tribution of a variable and create maps as well. These provide
descriptive tools such as semivariograms to characterize the
spatial pattern of continuous and categorical soil attributes
(Goovaerts 1999). A lead risk map for Wolverhampton,
England, was provided using a spherical model and kriging
interpolation method, in which near surface soil lead concen-
trations showed a degree of spatial correlation on a city scale
(Hooker and Nathanial 2006). A comparative study of inter-
polation methods for mapping soil properties revealed that the
correlation coefficients between experimental data and esti-
mated results of kriging were higher and its mean absolute
errors were lower than those of Inverse Distance Weigh-
ting (IDW) method (Kravchenko and Bullock 1999).
Nevertheless, the high accuracy of that method for studying
of nitrogen distribution pattern has previously been reported
(Gotway et al. 1996). This approach was also confirmed by
others to predict the spatial distribution of heavy metals in
floodplain soils around the Gule River in the Netherlands
(Leenaers et al. 1990).

Climate change in Iran is likely to cause the conversion of
agricultural lands into the marginal ones. As well known, the
bioclimatic changes are out of our monitoring, whereas min-
ing and manufacturing development should be perfectly con-
trolled. Disturbance of mines, whose owners do not obey the
laws of rehabilitation, is potentially detrimental to the envi-
ronment (Shahbazi and De la Rosa 2010). Tailings dam are
structures built to impound wastes from mining activities.
Currently, thousands of tailings dam worldwide contain bil-
lions of tons of waste material at mining sites. Tailings dam
should be constructed to achieve a stable and safe state.
Unfortunately, since 1970, more than 35 tailings dam failures
reported around the world. The Aznalcollar (Spain) and Sasa
(Macedonia) accidents occurred in 1998 and 2003 caused an
intensive flow of tailing materials through the rivers of
Guadiamar and Kamenica, respectively (Vrhovnik et al.
2013). Copper is the main contaminant in the soils of copper
mining areas of the world. Moreover, copper is an essential
nutrient to all organisms but is toxic at high concentrations
(Adriano 2001). Some of researchers have reported the spatial
distribution of soil copper in relation to relevant soil properties
(Grzebisz et al. 2001; Jafarnejadi et al. 2013; Sun et al. 2014).

The study site of this research work was around the
Mazraeh copper mine which has been established since
1960 in the Northwest of Iran. The refining capacity of this
refinery is expected to be 250 t copper per day. Copper ore
concentration processes create wastes (tailings) that are direct-
ed to the ponds for storage. Therefore, the marginal agricul-
tural areas are thought to be at risk of exposure to heavy
metals, particularly copper. On May 6, 2010, after a heavy
rain, the poor construction of the tailings dam caused to

collapse and then to discharge the effluent into a seasonal
stream, namely Mazraeh-Chai, that empties into Ahar-Chai
River. Because of low capacity of the stream channel, massive
flooding and triggered mudslide occurred in the marginal
lands. The tailings flow material comprised high concentra-
tions of some heavy metals, particularly copper which may
adversely affect the environment. Consequently, we investi-
gated the patterns of copper spatial distribution in the vicinity
of the failed dam. This study deals with the characteristics of
the soils and their surficial sediments after the accident.

Materials and methods

Study area

This study was performed in an area of about 1500 ha located
in the Mazraeh region of Ahar County in East Azarbaijan
province, Iran (Fig. 1).

The area lies within the coordinates of longitude 47° 02′
47″ to 47° 03′ 46″E and latitude 38° 31′ 56″ to 38° 37′ 12″ N.
There are cultivations, orchards, and voids along the pathway
of seasonal stream. The geology of the study area belongs to
quaternary period and characterized by high level piedmont
fan and valley terraces deposits. The dominant soil orders in
this region were classified as Inceptisols.

Sampling and preliminary analysis

Composite sampling was conducted at 30 sites close to the
pathway of Mazra-Chai seasonal stream (Fig. 1) in May 2011
for determining the total concentration of copper not only at
both upper (0–10 cm) and lower (10–30 cm) soil depths (in-
dicated as surface and subsurface soils) but also at surface
accumulated (surficial) sediments. The samples were collect-
ed on the line, spaced 300 m apart, from the tailings dam to
about10 km away where the effluent was being discharged
and expanded through the marginal lands. Moreover, six con-
trol soil samples were collected some meters away from the
contaminated area but not covered by sediment. Global
Positioning System (GPS) was used to provide the geograph-
ical coordination of sample points.

Soil samples were air-dried and then sieved through a 2-
mm mesh. Some common physical and chemical properties
including texture (Gee and Bauder 1986), electrical conduc-
tivity (EC) (Rhoades 1996), pH (Thomas 1996), cation ex-
change capacity (CEC) (Chapman 1965), organic carbon
(OC) (Nelson and Sommers 1982), and calcium carbonate
equivalent (CCE) (USDA-SCS 2004) were determined. The
soil copper concentration (SCC) at two depths and copper
concentration of surficial sediments (CCS) were measured
using aqua regia method (Chen and Ma 2001). Half a gram
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(0.5 g) of the soil or sediment sample was digestedwith 12mL
of aqua regia solution (HNO3/HCl, 1:3 ratio) and allowed to
stand overnight. Then, the sample was digested at 110 °C for
3 h. The digest was allowed to cool and filtered through
Whatman no. 42 paper into a 100-mL standard volumetric
flask. The filtrate was analysed for Cu using flame atomic

absorption spectrometry, BShimadzu, 6300.^ To evaluate the
pollution status of soils before and after the accident, a con-
tamination factor (CF) was calculated using the concentration
of copper in each sample compared to its concentration in the
control samples. It was also divided into four categories ac-
cording to previous investigations (Hakanson 1980).

Fig. 1 Study area and sampling points setting
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Statistical analysis

Statistical analysis was performed using the Statistical
Package for Social Science (version 16.0; SPSS Inc.,
Chicago, IL, USA). Descriptive statistics of the selected
soil and sediment properties, i.e. mean, minimum, max-
imum, standard deviation, coefficient of variability,
skewness, and kurtosis, were calculated. For normality,
the original dataset were tested by one-sample
Kolmogorov-Smirnov approach (Webster 2001). The re-
lationships between SCC and soil physical-chemical
properties were found via Pearson correlations using
Eq. (1). The correlation coefficient, r, measures the
strength and direction of linear correlation. A value
close to +1 or −1 signifies a strong relation; one close
to zero signifies a weak one.

r ¼
1

N−1
∑N

i¼1 Zi−Z
� �

yi−y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y � s2z

p ð1Þ

where S2 y and S2 z are the variances of y and z, as two
measured variables, respectively.

Modelling the variogram

The geostatistical analysis was carried out by the soft-
ware GS+ for the environmental sciences, version 5.1.
The datasets were normalized to improve the results of
the modelling. Three theoretical models including spher-
ical, Gaussian, and exponential models were adjusted to
the semivariograms. The degree of spatial dependence
of a random variable Z (xi) over a certain distance
was computed by the following semivariogram (Eq. 2).

γ hð Þ ¼ 1

2N hð Þ ∑ z xið Þ−z xiþhð Þ½ �2 ð2Þ

where, γ(h) is the semivariance for the interval distance
class h, N(h) is the number of pairs of the lag interval,
Z (xi) is the measured sample value at point i, and Z
(xi+h) is the measured sample value at position (i+h).
Uniform intervals were defined as a lag class distance
intervals. The parameters of the appropriate data model
including nugget (C0), sill (C0+C), and range of param-
eter (A0) were derived with higher R2 and lower residual
sum of squares (RSS). The nugget effect represents the
undetectable experimental error and field variation with-
in the minimum sampling space and the sill represents
total spatial variations.

Spherical model

The spherical function provides the main features of bounded
variogram models (Eq. 3).

γ hð Þ ¼ c
3h
2a

−
1

2
−ð Þ3
h

a

( )
for h≤a and γ hð Þ ¼ cfor h

> a ð3Þ

where c is the sill variance and a is the range.

Exponential model

The exponential function is defined by Eq. 4, where c is the
sill as before and r is a distance parameter.

γ hð Þ ¼ c 1−exp −−h
r

� �n o
ð4Þ

Gaussian model

Unlike the two above models which increase from their ori-
gins with decreasing gradient, some others (like Gaussian
model) appear to increase in gradient from the origin and then
curve with decreasing gradient (Eq. 5).

γ hð Þ ¼ c 1−exp −
hα

rα

� �� �
ð5Þ

where c and r have the same meaning as in the exponential
model and α is an additional parameter, with 1 < α ≤ 2.
Clearly, if α=1, then the model is exponential. However, α
value greater than 1 creates reverse curvature near the origin.
The limiting α = 2 defines the so-called Gaussian model.

Fitting the model

There are practical considerations determining the best ap-
proach to use in any given circumstance (Henderson et al.
2008). The method of IDW was used to spatial interpolation
of all variables in the study area (Lark and Ferguson 2004).
The models were fitted based on fundamental hypothesis of
the IDWmethod which assumes that each measured point has
a local influence that diminishes with distance. The
Geostatistical Analyst Wizard tool was used to digitize the
map of the study area. Both IDW and kriging methods are
most widely used interpolation tools, but the IDW method
was chosen due to limited data (i.e. <50 data points), poor
distribution of these across the study area, and simplicity
(Elliot et al. 2000). The IDW approach is based on the
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assumption that the attribute value of an unsampled point is
the weighted average of known values within the
neighbourhood, and the weights are inversely related to the
distances between the prediction location and the sampled
locations (Whelan et al. 1996). There are different kinds of
IDW according to its power as well as our objective does not
meet to apply all of them. Either isotropy hypothesis or
IDW^2 was also conducted in this research work.

Spatial interpolation and its uncertainty will be used by
automated anisotropic Inverse Distance Weighting Cross-
Validation/Jackknife approach (Tipper 2008). In cross-valida-
tion, each measured point is removed and compared to the
predicted value for that location (Lu and Wong 2008). It is
suggested to have field observations to verify the model out-
puts by adding the coordinate of tested samples on digital
maps which is missing in this article.

Geographic information system

Geographic information system (GIS) is a computer-based
system which provides data capturing and preparation, data
management, manipulation, and presentation. Spatial or
georeferenced data can be produced by GIS thematic maps.
Therefore, production, dissemination, and use of maps play an

important role in cartography. The maps created represent
certain levels of detail, which is dependent on the scale. One
cannot only compare the results but also offer recommenda-
tions for point to point of the study area.

Finally, the data file was transferred to a congenial pro-
gram, i.e. ArcGIS 10.1, a popular package with excellent
graphics. ArcMap as a main application in ArcGIS was used
for all mapping and editing tasks in the present study. The area
of each mapping unit was then calculated to find the spatial
variability of the copper contamination in the field scale. In a
digital soil mapping (DSM) project, for example, the soil bi-
ological indices have been mapped using a regression-kriging
method (Shahbazi et al. 2013).

Results and discussion

Data descriptions and statistical analysis

The statistical descriptive analysis of data is summarized in
(Table 1). The high and low values of coefficient of variation
(CV) belong to OC content and pH, respectively. All parameters
except OC (both depths), SCC, and CEC (0–10 cm depth) had
normal distributions. Logarithmic conversion was used to nor-
malize their distributions. The normalized data of OC, SCC, and

Table 1 Descriptive statistics for selected properties of the surficial sediments and the investigated soils at two depths (no 30)

Soil properties Depth (cm) Mean Min. Max. SD CV (%) Skewness Kurtosis

Sand (%) 0–10 53.8 22.1 83.5 12.3 22.8 0.1 1

10–30 57.7 40.6 80.6 11.2 19.4 0.3 1

Silt (%) 0–10 32.4 8.7 50.8 9 27.7 0.3 0.6

10–30 28.7 13.9 47.9 9 31.2 0.3 0.4

Clay (%) 0–10 13.8 6 27.1 5.6 40.4 0.6 0.5

10–30 13.6 5.5 24.7 5.9 43.3 0.5 1.1

CCE (%) 0–10 5.3 0 13.8 3.4 64.2 0.5 0.15

10–30 4.5 0 10.1 2.57 57.1 0.1 0.3

pH 0–10 8.1 8.4 7.7 0.2 2 0.5 0.3

10–30 8.3 7.6 8.6 0.2 2.4 1.4 2.6

EC (dSm−1) 0–10 1.09 0.37 2.67 0.5 42.2 1.4 3.4

10–30 0.9 0.5 2.1 0.4 43.9 1.8 3.3

OC (%) 0–10 1.92 0 13.16 2.3 118.7 4.3 21.9

10–30 1.4 0 12.3 2.1 149.3 4.9 25.8

CEC (cmolckg
−1) 0–10 26 15.8 54.8 6.9 26.4 2.5 10.1

10–30 23.2 12.7 36.7 5.6 30.7 0.3 0.02

SCC (mg kg−1) 0–10 105.3 72.6 257.9 34.4 32.6 3.2 13.5

10–30 86.4 59.2 154.3 18.2 21.1 1.7 5.6

CCS (mg kg−1) -------- 1288 444 1854 289 23.2 0.7 1.4

SD standard deviation, CV coefficient of variations, CCE carbonate calcium equivalent, pH soil reaction, EC electrical conductivity,OC organic carbon,
CEC cation exchange capacity, SCC soil copper concentration, CCS copper concentration of surficial sediments
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CEC were back transformed to the original scale in DSM. The
analysis of geochemicalmobility for the tailings of Sarcheshmeh
mine showed that copper had the highest mobility among the
heavymetals present (Khorasanipour and Eslami 2014). A point
by point observation of total copper concentrations for soils and
surficial sediments of the study area are fully presented in a
Universal Transfer Mercator (UTM) coordinate system
(Table 2). The values of CF in each sampling point at two depths
are also presented. The mean total concentration of copper at
upper 10 and 10–30 cm depth of the control soils were 49.7 and
48.8 mg kg−1, respectively. These values were used to calculate
the contamination factors of copper for the contaminated soils.
Themeantotalconcentrationofcopperatupper10cm,10–30cm,
and surficial sediments was 105.3, 86.4,and 1116 mg kg−1, re-

spectively. The guideline values for copper were established for
soils at different textures as follow (in mg Cu kg−1): clay, 100;
loam, 60; and sand, 30 (Kabata-Pendias 2011).

Considering the dominance of sandy loam and loam soil
textures in the study area, one can use the guideline value of
60 mg kg−1. Therefore, the mean total concentration of copper
in upper and lower soil depths was approximately 1.75 and
1.44 times higher than the guideline value. However, the cop-
per content of the control soils is lower than the guideline
value. Much higher concentrations of copper (1900 and
925 mg kg−1) were respectively reported in paddy soils of
China, around the Dexing Copper Mine, in Jiangxi
Province, and the Daye Smelter, in Hubei province (Wu
et al. 2011). A significant decrease in the heavy metal contents

Table 2 Total copper concentrations and contamination factors at the sampling points (no 30)

Sample no. Geographic coordination Depth = 0–10 cm Depth = 10–30 cm CCS (mg kg−1)

Longitude (m) Latitude (m) SCC (mg kg−1) CF SCC (mg kg−1) CF

1 679,598 4,276,699 98.1 1.97 87.9 1.81 1698

2 679,590 4,276,677 257 5.19 154 3.17 1854

3 679,238 4,276,080 123 2.49 101 2.08 1659

4 679,080 4,275,710 101 2.05 87.2 1.79 1566

5 679,020 4,275,687 94.3 1.89 81.7 1.68 1248

6 678,486 4,574,631 87.2 1.75 71.2 1.46 1351

7 678,240 4,273,948 120 2.43 93.3 1.92 1116

8 678,318 4,273,550 72.6 1.46 74.5 1.53 982.7

9 678,248 4,273,193 87.1 1.75 62.4 1.28 1182

10 678,380 4,272,730 119 2.39 100 2.07 973.1

11 678,441 4,272,332 88.3 1.78 59.2 1.21 1148

12 678,497 4,272,188 155 3.12 82.7 1.69 1006

13 678,563 4,271,946 121 2.44 99.8 2.05 1140

14 678,558 4,271,790 102 2.07 81.4 1.67 1031

15 678,679 4,271,437 99.7 2.01 89.3 1.83 1033

16 678,778 4,270,918 73.5 1.48 76.2 1.56 792.3

17 678,606 4,270,814 90.1 1.81 71.2 1.46 964.8

18 678,435 4,270,667 72.9 1.47 83.7 1.72 1057

19 678,230 4,270,461 74.8 1.51 69 1.42 714.8

20 678,211 4,270,172 99.9 2.01 90.9 1.87 877.1

21 678,156 4,269,882 86.9 1.75 64.4 1.32 1034

22 678,285 4,269,552 80.9 1.63 74.9 1.54 971.1

23 678,265 4,269,307 94.9 1.91 88.5 1.82 1229

24 678,192 4,270,594 102 2.06 109 2.24 1221

25 678,334 4,268,143 121 2.44 80.9 1.66 998.4

26 678,330 4,267,954 114 2.31 87.7 1.8 444.4

27 678,381 4,267,200 92.4 1.86 74.8 1.53 1102

28 678,340 4,267,477 111 2.23 98.7 2.03 973.9

29 678,269 4,268,719 92.5 1.86 85.8 1.76 986.5

30 678,248 4,266,931 120 2.43 108 2.23 1118

SCC soil copper concentration, CF contamination factor, CCS copper concentration of surficial sediments
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Table 4 The best fitted models for semivariograms of the investigated soils at two depths and even surficial sediments using IDW^2 method

Soil properties Depth (cm) Model Co Co+C Ao (m) Co/Co+C (%) R2 RSS

Sand (%) 0–10 Spherical 111.8 225.4 4057 49.6 0.99 3.9

10–30 Spherical 66.8 139.3 5049 48 0.99 0.87

Silt (%) 0–10 Spherical 66 85 3300 77.6 0.97 3.5

10–30 Gaussian 69.1 255.7 4200 27 0.74 2.29

Clay (%) 0–10 Exponential 10−4 0.16 411 10−4 0.85 4.8 × 10−4

10–30 Spherical 0.01 28.01 1154 0 0.94 11.8

CCE (%) 0–10 Gaussian 0.37 1.07 10,110 34.4 0.61 3.4 × 10−3

10–30 Spherical 4.8 6.8 2300 70.6 0.71 0.61

pH 0–10 Spherical 0.01 0.07 21,100 21 0.81 1.9 × 10−4

10–30 Gaussian 0.01 0.23 11,670 5.1 0.98 10−5

EC (dS m−1) 0–10 Spherical 4 × 10−3 0.19 748 1.8 0.95 1.3 × 10−4

10–30 Gaussian 0.07 0.74 12,180 9.5 0.95 7.6 × 10−4

OC (%) 0–10 Gaussian 4 × 10−3 7 × 10−2 15,980 5 0.93 1.4 × 10−5

10–30 Gaussian 6 × 10−4 2 × 10−2 17,180 4 0.95 2.7 × 10−7

CEC (cmolckg
−1) 0–10 Gaussian 0.03 0.25 11,630 10 0.94 3.9 × 10−4

10–30 Gaussian 14.2 78.4 6820 18 0.92 166

SCC (mg kg−1) 0–10 Gaussian 0.04 0.46 15,950 9 0.75 2.4 × 10−3

10–30 Spherical 0.02 0.06 6500 30 0.85 1.3 × 10−4

CCS (mg kg−1) − Gaussian 0.03 0.75 16,030 4 0.97 6.7 × 10−4

Co nugget, co+c sill, Ao range parameter,CCE carbonate calcium equivalent, pH soil reaction,EC electrical conductivity,OC organic carbon,CEC cation
exchange capacity, SCC soil copper concentration, CCS copper concentration of surficial sediments

Table 3 Correlation coefficients between soil properties and SCC

Soil properties OC CCE CEC EC pH Clay Sand SCC

(Depth = 0–10 cm)

OC 1

CCE 0.149 1

CEC 0.823** −0.082 1

EC 0.136 0.207 0.334 1

pH −0.624** −0.068 −0.633** 0.498** 1

Clay 0.007 0.029 0.439* 0.378* 0.285 1

Sand −0.222 −0.178 −0.611 −0.325 0.373 −0.734 1

SCC 0.785** −0.176 0.769** 0.086 −0.41* 0.181 −0.387* 1

(Depth = 10–30 cm)

OC 1

CCE 0.178 1

CEC 0.543** −0.212 1

EC 0.577** −0.363* 0.561** 1

pH −0.72** 0.252 −0.77** −0.752** 1

Clay 0.048 −0.095 0.502** 0.329 −0.381 1

Sand −0.19 −0.04 −0.811** −0.277 0.552** −0.607** 1

SCC 0.737** −0.134 0.493** 0.429* −0.6** 0.113 −0.213 1

OC organic carbon, CCE calcium carbonate equivalent, CEC cation exchange capacity, EC electrical conductivity, pH soil reaction, SCC soil copper
concentration

*p < 5%; **p < 1%
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from surface to depth of contaminated sites has been previ-
ously reported (Rodríguez-Tovar and Martín-Peinado 2014).
Furthermore, there was a significant decrease in standard de-
viation values with increasing depth. This indicates that the
contamination originated from an influx of surface-
transported materials rather than a geological event.

Fairly good direct correlations were found between SCC
and OC. Copper can form stable complexes with organic mat-
ter (Pandey et al. 2000). Positive correlations between copper
concentration and dissolved organic matter were similarly
found in the soil percolates of contaminated soils (Kalbitz
and Wennrich 1998) and in the soil solutions of some agricul-
tural lands (Romkens and Salomons 1998). The mobilization

of Cu and its uptake increased by rapeseed cultivation.
Therefore, remediation via application of activated charcoal
and phytoremediation using rapeseed may be recommended
in the future investigations (Rinkelbe and Shaheen 2015). The
results revealed a significant negative correlation between
SCC and soil pH at two depths. However, the strength of
relationship was higher in the subsurface soils than in the
surface ones. The decrease in pH at high contaminated soils
may be attributed to the copper hydrolysis. No significant
correlation was found between the clay content and SCC in
this research work. A positive correlation was found between
SCC and EC of the soils at depth of 10–30 cm. This may be
attributed to receiving and then leaching of soluble salts from
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transported materials. The SCCwas also negatively correlated
with sand content at depth of 0–10 cm. This may be due to low
retention capacity of the coarse-textured upper horizons. The
finding was in agreement with others (Usman 2008). The high
correlation coefficient between SCC and CEC was a conse-
quence of strong correlation between CEC and OC (Table 3).

Moreover, results showed a significant positive correlation
(p < 0.01) between SCC and the thickness of surficial mate-
rials in both depths. This is another reason confirming again
that the source of copper contamination in the study soils is the
tailings dam failure. The results also revealed that the mean
value of CFin the surface soil samples near the tailings dam
was about 14 which were very high. This is in consistent with
findings of the previous reports (Veinott et al. 2003). There are
several copper mines in the entire world (Chile, the USA,
China, Morocco, etc.). The copper concentration in the tail-
ings of the Dabaoshan (Shaoguan region, China), Jiuhuashan
(Anhui province, China), and Anti-Atlas (Southern Morocco)
mines were reported 1486, 1899, and 2527 mg kg−1, respec-
tively (Zhou et al. 2007). This concentration for the tailings
dam materials in Mazraeh mine was 5870 mg kg-1 which is
approximately three times greater than the above-mentioned
concentrations. This could be the consequence of low

recovery of copper from copper bearing ores. The mean value
of CF for surface (0–10 cm) and subsurface soils (10–30 cm)
was 2.1 and 1.77, respectively. This indicates the moderate
contamination in the study area.

Geostatistical modelling and spatial variability

Spatial variability was investigated using semivariograms.
The ratio of nugget to total semivariance, expressed as a per-
centage, was used to classify spatial dependence. A ratio of
<25% indicated strong spatial dependence, between 25 and
75% indicated moderate spatial dependence, and >75% indi-
cated weak spatial dependence (Cambardella et al. 1994).
According to the best fitted models (considering higher R2

and lower RSS) resulted from the geostatistical analyses, the
ratio of nugget variance to the sill variance in surficial sedi-
ments was lower than soils. Additionally, this ratio for the
upper 10 cm of the soils was lower than the next 20 cm.
These results illustrated the more spatial dependence of cop-
per distribution in sediments and upper 10-cm soils than in the
next 20-cm soils. Either despite the high potential of soils to
adsorb contaminants like Cu or these contaminants will all
likely enter the surface and groundwater eventually

Lege Lege Lege LegeLege

a b c d eFig. 3 Created maps of selected
soil surface properties according
to high accurate modelling. a pH.
b CEC/ cmolc kg

−1. c OC/ %. d
SCC/ mg kg−1. e CCS/ mg kg−1
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(Jahanshahi et al. 2014). Therefore, the probable transmission
of copper into the lower depths or into the runoff must be
considered in the design of the proposed dam. Derived param-
eters from geostatistical analysis are summarized for both soil
depths and sediments in Table 4.

When data are limited, to predict successfully at unsampled
points strongly depends on the relationships between accura-
cy, sample size, and sample spacing and to what extent these
factors are related to the property under investigation
(Schloeder et al. 2001). In order to interpolate some of

observed soil surface (0–10 cm) properties, the variogram
models fitted to the experimental variograms are presented
in (Fig. 2). The spherical model was appropriately fitted to
interpolate pH variability (Fig. 2a). The similar results were
previously reported (Silva et al. 2003). The exponential model
was best fitted for interpolating soil clay content in the study
area as well as it had been also found by others (Joshua et al.
2014). Moreover, the Gaussian model was also identified as a
work horse modelling approach for interpolation the CEC,
OC, SCC, and CCS (Fig. 2b–e).

Fig. 4 Distance profile graphs of the selected soil surface properties. aDEM/m. b pH. cCEC/ cmolc kg
−1. dOC/%. e SCC/ mg kg−1. fCCS/mg kg−1. g

thickness of surficial sediments/ cm
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Integrating modelling results with GIS

Digital mapping after selecting the most suitable modelling ap-
proach is the subsequent process to observe the spatiality distri-
bution. As it appears from the results, the tailings dam has oc-
curred in the north part of study area. The raster graphics of five
surface properties were reclassified to four classes using the
Geometrical Interval method (Fig. 3a–e). Spatial distribution
and overlay analysis showed that the values of all parameters
decreased from the north to the south part of area in the direction
of flow. Major parts of the released materials with high copper
concentration have been percolated in soils near the source and
rest of them have been diluted by storm water along the direc-
tion flow. Obtained results from geostatistical analysis graphi-
cally represented in Fig. 3 are in agreement with the results of
correlation analysis (Table 3) that were discussed above.

Unfortunately, lacks of precise terrain data and application
experience are the most important limitations of applying ter-
rain analysis in low relief areas (Gallant and Dowling 2003).
Geostatistical methods cannot substitute conventional soil
mapping; they can be an excellent aid for a better understand-
ing of soil distribution. They allow us to consider the soil as a
continuum; in this issue, they overcome conventional soil
mapping (Wälder et al. 2008). As we know, the topographic
profiles of each digital elevation model (DEM) represents the
relationships between elevation and soil formation factors as
well as processes. In fact, it shows the change in elevation of a
surface along a line. Even a very gentle surface relief may
exert deep influences on soil properties (McKenzie and
Ryan 1999). Here, attention has been focused on the relation-
ships between DEM and selected soil surface properties in the
present study (Fig. 4). According to the obtained graphs, the
general scheme of pH variations was vastly different
compared to other parameters. When the pH was in peak at
2 km away from the source, CEC, OC, and SCC values were
at the lowest level. On the contrary, reverse results were
observed at 5 km away from the source. The distance profile
graphs revealed that there are similarities on distribution
patterns of the SCC and CCS in stream pathway from upper
to lower part of the study area. Also, general scheme of graphs
(Fig. 4e–g) shows that the thickness of surficial sediments in
the direction of flow is corresponding to SCC and CCS.
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