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Abstract Turkey is one of several countries frequently facing
significant earthquakes because of its geological and tectonic
position on earth. Especially, graben systems of Western
Turkey occur as a result of seismically quite active tensional
tectonics. The prediction of earthquakes has been one of the
most important subjects concerning scientists for a long time.
Although different methods have already been developed for
this task, there is currently no reliable technique for finding the
exact time and location of an earthquake epicenter. Recently
artificial intelligence (AI) methods have been used for earth-
quake studies in addition to their successful application in a
broad spectrum of data intensive applications from stock mar-
ket prediction to process control. In this study, earthquake data
from one part of Western Turkey (37–39.30° N latitude and
26°–29.30° E longitude) were obtained from 1975 to 2009
with a magnitude greater thanM ≥ 3. To test the performance
of AI in time series, the monthly earthquake frequencies of
Western Turkey were calculated using catalog data from the
region and then the obtained data set was evaluated with two
neural networks namely as the multilayer perceptron neural
networks (MLPNNs) and radial basis function neural net-
works (RBFNNs) and adaptive neuro-fuzzy inference system
(ANFIS). The results show that for monthly earthquake fre-
quency data prediction, the proposed RBFNN provides higher
correlation coefficients with real data and smaller error values.
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Introduction

Western Turkey is one of themost rapidly deforming continental
regions on earth, and widely spread seismicity in the region is an
indicator of this deformation (Alptekin et al. 1990). The active
deformation of western Turkey is governed by the interaction of
three major plates (Eurasia, Arabia, and Africa). North
Anatolian Fault (NAF), East Anatolian Fault (EAF), Bitlis
Thrust Belt (BTB) and Aegean graben systems are consisted
of the main tectonic structures of Anatolia (Fig. 1). The main
part of the deformation in western Turkey has been caused by
subduction and collision-related processes; however, the
current-day deformation is closely related to the stage of
collision, specifically to the rate of convergence and subduction
of some of the plates (Royden 1993a, b). The present geomor-
phology of the region is characterized by a series of east-west
trending major grabens with northeast-southwest-trending
secondary (cross-cutting) grabens (Koçyiğit et al. 1999).

The activity of basin bounding faults is shown by numer-
ous historical earthquakes, such as September 20, 1899,
Menderes, November 18, 1919, Soma (M = 6.9), March 31,
1928, Torbalı (M = 6.3), April 23, 1933, Gökova (M = 6.5),
September 22, 1939, Dikili-Bergama (M = 6.5), October 6,
1942, Gulf of Edremit-Ayvacık (M = 6.8), July 16, 1956,
Söke-Balat (M = 7.1), March 23, 1969, Demirci (M = 5.9),
March 28, 1969, Alaşehir (M = 6.5), and March 28, 1970,
Gediz (M = 7.2). Recently, there have been other earthquakes
in Urla and Sığacık. April 10, 2003, Urla (M = 5.7) and
October 17–21, 2005 (M = 5.7, M = 5.9, and M = 5.9),
Sığacık earthquakes were other important seismic activities
in the region.
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Various studies have been undertaken to determine the seis-
mic features of Western Turkey. According to Sayıl and
Osmanşahin (2008), the region has been divided into 13
sub-regions due to certain seismotectonic characteristics, plate
tectonic models, and the geology of the region. According to
their estimation, the highest earthquake occurrence probability
of surface wave magnitude MS ≥7.0 in the next 100 years is
80.6% (σ = 0.20, R = 0.87) for sub-region 9 and 77.8%
(σ = 0.17, R = 0.90) for sub-region 1. R and σ are the corre-
lation coefficient and standard deviation, respectively. They
found the recurrence time intervals for the earthquakes with
the samemagnitude to be 61 and 67 years in these sub-regions
(Sayıl and Osmanşahin 2008).

In addition to conventional techniques, prediction of earth-
quakes has recently been studied by artificial intelligence
methods. Bodri (2001) predicted the occurrence time of
M ≥ 6 earthquake seismicity rate variations of Carpathian–
Pannoman region, Hungary, and the Peloponnesos–Aegean
area, in the Greece region using artificial neural networks
(ANNs). Alves (2006) used ANN to predict the time of
occurrence and the locations of the earthquakes, experienced
for a specified time interval, with the help of the seismicity of
the Azores region. Qiang (2000) analyzed the predictability of
time series and introduced a method for the application of
ANN in forecasting earthquake precursor chaotic time series.

Sri Lakshmi and Tiwari (2009) evaluated monthly occur-
rence frequency time of the M ≥ 4 earthquakes with MLPNN
and nonlinear forecasting techniques by using earthquake cat-
alog data from Northeast India. The earthquakes of the East
Anatolian Fault System (EAFS) were predicted using changes
of the radon with ANN (Külahçı et al. 2009). Feed forward
neural networks (FFNNs), adaptive neural fuzzy inference

systems (ANFIS), and probabilistic neural networks (PNNs)
were used to discriminate between earthquakes and quarry
blasts in Istanbul and the vicinity (the Marmara region)
(Yıldırım et al. 2011).

Reyes et al. (2013) used a new prediction system, based on
ANN to predict earthquakes in Chile. Morales-Esteban et al.
(2013) built two multilayer feed forward ANNs to predict
earthquake occurrences. They tested their ANN model on
two areas with larger seismic activity in the Iberian
Peninsula: Alboran Sea and Western Azores–Gibraltar Fault.
Zamani et al. (2013) applied the neural network and ANFIS
model on earthquake occurrence in Iran. Buscema et al.
(2015) used USGS and ISIDe (the Italian seismic instrumental
and parametric database) catalog to predict the magnitude of
earthquakes with ANN. Their data set was composed of
324,542 events. Similarly, Alexandridis et al. (2014) studied
the Southern California Seismic Network catalog which con-
tains 313,068 seismic events ranging in magnitude from 1.5 to
7.5 to estimate large earthquake occurrence using radial basis
function neural networks (RBFNNs). Wang et al. (2015) esti-
mated the seismic hazard potential in the Sichuan–Yunnan
region, western China, with three different methods. In their
study, the catalog includes M ≥ 5.0 earthquakes in the
Sichuan–Yunnan region from 1500 to 2013.

The nature of earthquake induced by seismic sources is de-
fined as a noinear function by using neural network (Zakeri and
Pashazadeh 2015). ANN and ANFIS are used for classification,
prediction, and modeling nonlinear problems, and therefore,
they are a good candidate for processing earthquake data. In this
study, two different ANNs (which are MLPNN and RBFNN)
and ANFIS were applied to the earthquake frequency data from
Western Turkey to predict possible earthquake frequencies.

Fig. 1 Tectonic map of Turkey
showing study area

243 Page 2 of 9 Arab J Geosci (2017) 10: 243



Artificial neural networks and adaptive neuro-fuzzy
inference systems

Neural network (NN), or artificial neural network (ANN), is
an information processing system composed of large amount
of highly interconnected processing elements (neurons), and it
is an emulation of a biological neural system. There are dif-
ferent types of networks for broad application areas: pattern
recognition, time series analysis, signal processing, and con-
trol. Adaptive neuro-fuzzy inference systems (ANFISs) com-
bine the learning capabilities of neural network and the rea-
soning capabilities of fuzzy logic to provide enhanced predic-
tion capabilities. In this study, three networks were applied to
earthquake frequency data of Western Turkey.

Multilayer perceptron neural networks

Multilayer perceptron neural networks (MLPNNs) are one
of the most important classes of neural networks and have
many areas of application ranging from finance to engi-
neering. The network consists of an input layer, one or
more hidden layers, and an output layer (Fig. 2b). The
input layer is only responsible for feeding the input data
to the neurons of the second layer, which is the first hid-
den layer. The outputs of the second layer are used as the
input to the third layer, and so on, for the entire network.
The computation only occurs at the hidden and output
layer neurons. The connections between all the elements

of the networks are realized through synaptic weights.
These synaptic weights are adjusted via a back-
propagation algorithm to provide a nonlinear mapping.

As shown in Fig. 2a, the output of the jth neuron in the
hidden layer is given by

y j ¼ f v ¼ ∑
N

1
wji

*xi þ bj

� �
ð1Þ

where xi is the input vector, wjiis the synaptic weight
between the input i and the neuronj, yj is the output of
the jth neuron, bjis known as bias (Fig. 2a), and f(v) rep-
resents the activation function. The sigmoid and the hy-
perbolic tangent functions are the most commonly used
functions.

MLPNN is one of the supervised neural network types
which are trained via the presentation of input and the
corresponding desired output set. The standard back-
propagation algorithm for training the network is based
on the steepest descent gradient approach applied to min-
imization of a defined energy function related to the in-
stantaneous error between the desired output and actual
output. After the training, the network is also tested for
generalization performance with a separated test data set.

Radial basis function neural networks

Radial basis function neural network (RBFNN) is a feed-
forward network trained using a supervised training algo-
rithm and is suggested by many scientists as an alternative
to the MLPNN. RBFNN performs a nonlinear mapping
between the input and output vector spaces. They have
advantages in training and learning of a given training
set in a shorter period of time compared to MLPNN.
RBFNN has, typically, a kind of fully connected feed
forward structure and consists of three layers as shown
in Fig. 3: an input layer, a hidden layer with a nonlinear
RBFNN activation function, and a linear output layer

Fig. 2 a Single neuron structure. b MLPNN structure Fig. 3 Radial basis function neural networks structure
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(Ham and Kostanic 2000). The output of any neuron at
the output layer of RBFNN is calculated as

yi ¼ ∑
N

j¼1
wijφ j x−c j

�� ��� �
i ¼ 1; 2;…;m ð2Þ

where φj(.) is a set of N arbitrary functions known as
radial basis functions, ‖.‖ denotes the Euclidean norm,
wijis the weight connecting hidden neuron j to the output
neuron i, N is the number of neurons in the hidden layer,
x ∈ℜnx1 is an input vector, and cj ∈ℜnx1 are the centers
of radial basis functions in the input vector space. First,
the Euclidean distance between the input vector and the
center of the basis function is computed for each unit in
the hidden layer. The output of each hidden unit is a
nonlinear function of this distance and gives a score for
the match. The output of the network for each output
neuron is obtained using Eq. (2) as the weighted sum of
the hidden layer outputs. The activation function is gen-
erally based on a Gaussian function and given as

φ xð Þ ¼ exp −x2
.
σ2

� �
ð3Þ

where σ is the spread parameter which controls the width
of the radial basis functions. The training of the RBFNN
can be realized through the weights in the output layer,
the centers of the RBFNN, and the spread parameter of
the Gaussian function. The simplest form of RBFNN

training can be obtained with a fixed number of centers.
If the number of centers is made equal to the number of
input vectors, namely exact RBFNN, then the error be-
tween the desired and actual network outputs for the train-
ing data set will be equal to zero (Haykin 1999). In this
work, the exact RBFNN was used. The other advantage of
exact RBFNN in network training is to have a closed-
form solution. This certainly gives a training time advan-
tage to RBFNN (Ham and Kostanic 2000).

Adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference system (ANFIS) was pro-
posed by Jang (1993) and used for various applications
covering control systems, prediction of chaotic time

Fig. 4 Study area and the
epicenters of the earthquakes with
M ≥ 3 for years from 1975 to 2009

Fig. 5 Earthquake monthly frequency data set of Western Turkey from
1975 to 2009
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series, signal processing, etc. ANFIS combines the advan-
tages of neural networks and the linguistic interpretability
of fuzzy inference systems to provide specific solutions.
ANFIS can serve as a basis for generating a set of fuzzy
if–then rules with appropriate membership functions to
generate the stipulated input–output pairs. Here, a hybrid
learning algorithm is used to identify the parameters of
fuzzy inference systems. A given data set is emulated
for training fuzzy inference membership function param-
eters by combining the least squares method and the back-
propagation gradient descent method.

Earthquake catalog data of Western Turkey

Western Turkey is one of the regions where many histor-
ical and instrumental intensity earthquakes occur due to

graben tectonic plate movements. Fault lines lying on
grabens are the places where intense earthquakes occur.
So far various techniques have been evaluated to predict
the occurrence time and intensity of earthquakes. In this
study, earthquake catalog data have been evaluated by
MLPNN, RBFNN, and ANFIS.

The catalog data used in this study with M ≥ 3 were col-
lected from earthquakes which occurred at 37°–39.30° south
longitude and 26°–29.30° east latitude between 1975 and
2009 years (Kandilli Observatory and Earthquake Research
Institute and Republic of Turkey Prime Ministry Disaster
and Emergency Management Presidency). In this time inter-
val, there were 10,333 earthquakes in the area. All of the
earthquakes are shown in Fig. 4. The monthly earthquake
frequency data set was determined by obtaining the total num-
ber of earthquakes which occurred eachmonth. In this way for
the studied area, a total of 408 monthly frequency earthquake

Fig. 6 Input–output pairs
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values were calculated. The earthquake frequency data set is
given in Fig. 5.

Data analysis with ANN and ANFIS

The whole 408 data set of monthly earthquake frequency of
western Turkey earthquakes catalog data was divided into two
parts for training and testing the neural networks and ANFIS,

85 and 15%, respectively. Three hundred fifty monthly earth-
quake frequency data were used for training only. To predict
the future values of monthly earthquake frequency data series,
it is necessary to find the best number of past data to be used as
inputs to the networks. For this purpose, correlation coeffi-
cients of data series for different number of consecutive
monthly frequency data were calculated up to six consecutive
data values. Moreover, for each number of inputs, MLPNN,

Fig. 7 The result of MLPNN, RBFNN, and ANFIS for inputs from 1 to 6

Fig. 8 Correlation coefficients of
predicted frequency data for
MLPNN, RBFNN, and ANFIS
results
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RBFNN, and ANFIS were tested to calculate errors between
the desired response and the network response which was the
predicted monthly earthquake frequency data. The arrange-
ment of ANN-ANFIS inputs and corresponding data for dif-
ferent number of inputs are illustrated in Fig. 6. The initial
number of inputs was one, and the last tested number of inputs
was six. The circles with straight lines represent the currently
used network inputs whereas the circles with the dotted lines
represent the next input group to the network. In a similar
manner, the pointed arrows below with straight and dotted
lines correspond to network output for two consecutive train-
ing sessions.

To find the optimum network structure for MLPNN and
RBFNN, during the training, the number of inputs was set
from one to six as shown in Fig. 6. For the MLPNN training
session, various numbers of hidden layers were used. The
number of neurons in these layers was also changed. As a
result of training and test sessions, the optimum network for
the given data set was found as follows: MLPNN with one
hidden layer consisting of 15 neurons, 0.2 learning rate pa-
rameter, and a target training MSE of 0.0001. With this net-
work, the best RMSE and the highest correlation coefficient
were obtained with four consecutive inputs. The predicted
earthquake frequency values are given in Fig. 7. The correla-
tion coefficients and the RMSE values between observed and
predicted earthquake data are given in Figs. 8 and 9,
respectively

For RBFNN, exact structure where the number of centers is
equal to the number of input data was used. Moreover, the
number of centers was fixed during the training. With this
network, the error for the training was zero. In the centers of
the hidden layer, a Gaussian function was used. To find the
optimum spread parameter σ, a program was written to test
various spread parameters to provide the minimum error val-
ue. The optimum RBFNN, which provides minimum RMSE
and the maximum correlation coefficient between observed
and predicted earthquake data, was found with two consecu-
tive inputs and 350 centers. During ANFIS applications, fre-
quency data which were used in the preceding steps were

evaluated by using different membership functions. During
the test, various numbers of rules were tested and the best
results were obtained with 2 and 3. Data differing from 1 to
6 consecutive inputs were evaluated separately for each mem-
bership function. Correlation coefficients and RMSE values of
the obtained results were analyzed.

The predicted frequency values for all methods can be seen
in Fig. 7. Correlation coefficients and RMSE values are given
in Figs. 8 and 9, respectively. When frequency values that
were predicted by ANFIS are observed, four consecutive in-
puts gave the maximum correlation coefficient value but min-
imum RMSE value. In one input situation, the correlation
coefficient is minimum and the RMSE value is maximum.

When the results obtained for all methods from Figs. 8 and
9 are examined, it can clearly be seen that RBFNN provides
reduced RMSE values and larger correlation coefficients. In
this case, it can be said that RBFNN gives better results for the
data set studied.

Correlation coefficient and root-mean-squared error

Correlation coefficients and RMSE between observed and
predicted earthquake data were specifically calculated tomake
an assessment between MLPNN, RBFNN, and ANFIS. The
calculated correlation coefficients and root-mean-squared er-
rors are given in Figs. 8 and 9, respectively. When Table 1 is
examined, it is seen that in general for both NN, the highest
correlation coefficients are obtained for two, three, and four

Fig. 9 RMSE values ofMLPNN,
RBFNN, and ANFIS results

Table 1 Correlation coefficients of MLPNN, RBFNN, and ANFIS
results

Correlation coefficients

1 Input 2 Inputs 3 Inputs 4 Inputs 5 Inputs 6 Inputs

MLPNN 0.18 0.29 0.35 0.38 0.34 0.29

RBFNN 0.30 0.93 0.91 0.87 0.81 0.66

ANFIS 0.18 0.17 0.27 0.44 0.38 0.38
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consecutive input values (Table 1). For MLPNN, the highest
correlation coefficient 0.38 was obtained for four consecutive
values, whereas for RBFNN, the maximum correlation coef-
ficient 0.93 was obtained for two consecutive input values.
The maximum correlation coefficient for ANFIS, 0.44, was
obtained for four consecutive input situations. When all the
selected applications are evaluated, it was observed that cor-
relation coefficients for MLPNN and ANFIS are similar and
coefficient for RBFNN is higher when compared with others.

The root-mean-squared error values obtained for the test
data set are given in Fig. 9 and Table 2. When the results were
analyzed, it can be seen that the lowest error value is obtained
for four inputs for MLPNN and ANFIS and two inputs for
RBFNN. The calculated correlation coefficients and RMSE
values are well matched with each other at four inputs for
MLPNN and ANFIS and at two inputs for RBFNN.

Conclusions

Western Turkey is one of the most seismically active regions
in the world because of the approximately E–W trending gra-
bens and their basin-bounding active normal faults. There
have been many historical and recent major earthquakes along
these graben systems. For the prediction of the earthquakes
and the determination of the tectonic features of the region,
different techniques were applied to seismological data. In this
study,MLPNN, RBFNN, andANFIS have been applied to the
earthquake catalog data of Western Turkey. The networks
were trained and tested for various numbers of consecutive
inputs, up to 6. The correlation coefficient values were esti-
mated to be in a range of 0.18–0.38 for MLPNN, 0.17–0.44
for ANFIS, and 0.3–0.93 for RBFNN. The RMSE values are
between 39.6 and 57.3 for MLPNN, 33.7 and 45.6 for ANFIS,
and 13.8 and 38.8 for RBFNN. When the results obtained are
analyzed, it can be seen that four consecutive inputs for
MLPNN and ANFIS and two consecutive inputs for
RBFNN are more accurate. The test results show that the
RMSE values of RBFNN are lower than the MLPNN and
ANFIS results. When the MLPNN and ANFIS results are
compared, besides similar results, ANFIS may be evaluated
better than MLPNN. RBFNN gave better results when com-
pared with the other two methods. Therefore, it can be said

that RBFNN provides a better prediction for the monthly
earthquake frequency data of the region.
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