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Abstract The logistic regression and statistical index
models are applied and verified for landslide susceptibil-
ity mapping in Daguan County, Yunnan Province, China,
by means of the geographic information system (GIS). A
detailed landslide inventory map was prepared by litera-
tures, aerial photographs, and supported by field works.
Fifteen landslide-conditioning factors were considered:
slope angle, slope aspect, curvature, plan curvature, pro-
file curvature, altitude, STI, SPI, and TWI were derived
from digital elevation model; NDVI was extracted from
Landsat ETM7; rainfall was obtained from local rainfall
data; distance to faults, distance to roads, and distance to
rivers were created from a 1:25,000 scale topographic
map; the lithology was extracted from geological map.
Using these factors, the landslide susceptibility maps were
prepared by LR and SI models. The accuracy of the re-
sults was verified by using existing landslide locations.
The statistical index model had a predictive rate of
81.02%, which is more accurate prediction in comparison

with logistic regression model (80.29%). The models can
be used to land-use planning in the study area.
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Introduction

In China, the annual loss of lives and property due to natural
hazards (e.g., earthquakes and landslides) are significantly
high, especially in mountainous regions. In Southwest of
China, most of the areas are located in mountainous area,
and Daguan County has been recognized as one of the most
prone to landslides areas in Yunan province, Southwest of
China. In recent years, the occurrence frequency of geological
disasters has increased, causing local economic development
restricted, which has also caused plenty of casualties and prop-
erty damage every year. Landslide is considered as one of the
most damaging natural disasters that usually occur in moun-
tainous regions (Yalcin et al. 2011). In order to decrease the
possible damage caused by landslides, the present study
aimed to assess or predict landslides for mountainous regions
and Daguan County was selected as a suitable case.

In literature, many attempts have been made to apply a
variety of qualitative and quantitative models to predict land-
slides and produce susceptibility maps based on GIS.
Quantitative methods, such as frequency ratio (FR) (Pradhan
2010; Yalcin et al. 2011; Park et al. 2013; Youssef et al. 2014),
statistical index (SI) (Pourghasemi et al. 2013; Kavzoglu et al.
2015), and logistic regression (Devkota et al. 2013; Felicísimo
et al. 2013; Chen and Wang 2007; Pradhan 2010; Nourani
et al. 2014; Pourghasemi et al. 2013), have been applied to
landslide susceptibility evaluation. Other quantitative
methods, such as certainty factor (CF) (Devkota et al. 2013;
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Liu et al. 2014; Zhang et al. 2016; Kanungo et al. 2011), index
of entropy (IoE) (Devkota et al. 2013; Youssef et al. 2014;
Sharma et al. 2015; Constantin et al. 2011), and weights of
evidence (WoE) (Ozdemir and Altural 2013; Sharma and
Kumar 2008; Soofastaei et al. 2016; Mohammady et al.
2012), have also been frequently used to landslide suscepti-
bility analysis. In recent years, data mining-based methods
have also been proposed and implemented for landslide sus-
ceptibility mapping, such as artificial neural network (ANN)
(Park et al. 2013; Nourani et al. 2014; Yilmaz 2010; Bui et al.
2015), fuzzy set (logic) (Pradhan 2010; Dragićević et al. 2015;
Pourghasemi et al. 2012), support vector machine (SVM)
(Yilmaz 2010; Bui et al. 2015; Kavzoglu et al. 2014), and
random forests (RF) (Stumpf and Kerle 2011a; Stumpf and
Kerle 2011b; Chen et al. 2014). In addition, analytical hierar-
chy process (AHP)model (Kavzoglu et al. 2014; Pourghasemi
et al. 2012; Yalcin et al. 2011), a qualitative method based on
expert opinion, is also popular in the landslide susceptibility
analysis. In summary, varieties of approaches for landslide
susceptibility analysis have been applied in the literature.

In this study, two quantitative methods such as logistic
regression and statistical index model based on GIS were used
to produce the landslide susceptibility maps for the Daguan
County, China. To achieve this aim, a detailed landslide in-
ventory map was prepared by literatures, aerial photographs,
and supported by field works. And, 15 landslide-conditioning
factors were considered. A total of 136 landslides (70%) were
applied for the model construction and 58 landslides (30%)
were used for the model validation. Finally, success-rate and
prediction-rate curve methods were used to validate the accu-
racy of the landslide susceptibility maps produced from two
models.

The study area

The study area is located in Yunnan Province, Southwest
of China (Fig. 1), which lies within between 27°36′ and
28°15′ latitude and 103°43′ and 104°07′ longitude and
covers an area of 1692 km2 with size 43.7 km in the
east–west direction and 73.2 km in the south–north di-
rection. It is bounded to the northwest by Yanjin County,
to the southeast by Yiliang County, to the south by
Shaotong City, and to the west and north by Yongshan
County. The altitude varies from 523 to 2773 m and
slope angle values range from 0° to 77°, and steep slopes
are very common. The yearly average temperature is
15 °C, and the annual precipitation is 992.9 mm. In the
study area, the Yili River is the main river system; the
main river system and its sub-branches are widely dis-
tributed. The study area is one of the frequent

occurrences of landslides Counties in Yunnan Province,
which contains a total of 194 landslides.

Data preparation

Landslide inventory map

A landslide inventory map was considered to be the base of
landslide susceptibility mapping. It contains landslide loca-
tions that occurred in the past. And, landslide inventory is
related to landslide-conditioning factors, such as geology (li-
thology), geomorphology (slope and aspect), precipitation,
land cover, and distance to roads, faults, and rivers (Shahabi
et al. 2014). In the current study, the landslide locations were
identified based on a previous inventory map, interpretation of
satellite images, and extensive field surveys that were used to
check the landslides. Eventually, a detailed and reliable inven-
tory map with a total of 194 landslides was created. Figure 1
shows the distribution of landslide locations in the Daguan
County, China. The landslide locations were randomly
grouped into two parts. From these, 136 (70%) landslides
selected were used for training the model, and the remaining
58 (30%) were used for the model validation in this study area.
Three types of landslides are observed in the study area: debris
flow, unstable slope, and rock falls. Nevertheless, rock fall
types are the dominant ones.

Conditioning factors

Landslide-conditioning factors used in the current study are
slope angle, slope aspect, curvature, plan curvature, profile
curvature, altitude, NDVI, rainfall, STI, distance to roads, dis-
tance to rivers, lithology, distance to faults, TWI, and SPI.
From these, slope angle, slope aspect, curvature, plan curva-
ture, profile curvature, altitude, STI, SPI, and TWI were de-
rived from digital elevation model (DEM); NDVI was extract-
ed from Landsat ETM7; rainfall was obtained from local rain-
fall data; distance to faults, distance to roads, and distance to
rivers were created from a 1:25,000 scale topographic map;
the lithology was extracted from geological map. Eventually,
these 15 factors were selected to map the landslide suscepti-
bility for the study area.

Slope angle

Slope angle is one of the key factors in inducing slope insta-
bility and is considered to be one of the important factors in
landslide susceptibility mapping (Kanungo et al. 2006). It can
be seen that this factor was very popularly used in the litera-
ture (Kanungo et al. 2006; Lee et al. 2007; Pourghasemi et al.
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2012). In this study, slope angle map was extracted from the
digital elevation model (DEM) using ArcGIS 10.0 and
grouped into seven classes with an interval of 10°, namely,
0°–10°, 10°–20°, 20°–30°, 30°–40°, 40°–50°, 50°–60°, and
>60° (Fig. 2a).

Slope aspect

Slope aspect is also regarded as one of the main landslide-
conditioning factors in landslide susceptibility mapping,
since generally, landslide occurrences are seriously

Fig. 1 Location map of study
area
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affected by slope aspect-related factors (Yalcin et al.
2011). It is also frequently used in landslide susceptibility
assessment by different researchers. (Kanungo et al. 2006;
Lee et al. 2007; Oh et al. 2010). For the current study,
slope aspect was calculated with aid of ArcGIS software,
and slope aspect map was categorized into nine classes for
the entire map, which is shown in Fig. 2b: flat (−1°):
north (337.5°–360°, 0°–22.5°), northeast (22.5°–67.5°),
east (67.5°–112.5°), southeast (112.5°–157.5°), south
(157.5°–202.5°), southwest (202.5°–247.5°), west
(247.5°–292.5°), and northwest (292.5°–337.5°).

Curvature

Curvature is defined as the reciprocal of the radius of a
circle that is tangent to the given curve at a point
(Ohlmacher 2007). As one of the topographic factors, cur-
vature was selected as a conditioning factor for landslide
susceptibility assessment in the current study. The curva-
ture map was also extracted from the digital elevation
model (DEM) based on ArcGIS 10.0 and reclassified into
three classes (Fig. 2c): <−0.6, −0.6–0.6, and >0.6.

Plan curvature

Plan curvature is described as the curvature of a contour line
formed by intersecting a horizontal plane with the surface
(Pourghasemi et al. 2012). As a topographic factor and
landslide-related factor, plan curvature was divided into three
categories in the study area (Fig. 2d), such as <−0.3, −0.3–0.3,
and >0.3.

Profile curvature

Similarly, another topographic factor is profile curvature. In
particular, profile curvature is defined as the curvature in the
vertical plane parallel to the slope direction (Yilmaz et al.
2012). In the same way as for plan curvature, profile curvature
was also divided into three categories (Fig. 2e): <−0.5, −0.5–
0.5, and >0.5.

Altitude

The altitude map was constructed using the DEM with reso-
lution of 30 × 30m grid size based on ArcGIS software. In the
present study area, the altitude ranges from 523 to 2773m and
is reclassified into seven classes with 300 m interval, such as
<800 m, 800–1100 m, 1100–1400 m, 1400–1700 m, 1700–
2000 m, 2000–2300 m, and >2300 m (Fig. 2f).

Distance to faults

Fault forms a weak belt or zone which is characterized by
heavily fractured rocks (Foumelis et al. 2004; Pourghasemi
et al. 2012). In general, closer distance to tectonic structures
will result more landslides. In this study, the distance to faults
was extracted from the structural geology map of study area at
the scale of 1:25,000 and was classified into five classes using
an interval of 1000 m based on ArcGIS 10.0 software, and the
fault buffer categories were defined as <1000, 1000–2000,
2000–3000, 3000–4000, and >4000 m (Fig. 2j).

Distance to rivers

Similar to the distance to roads, the distance to rivers is also
very important for landslide susceptibility analysis; generally,
the closer the distance from rivers will result more numbers of
landslides. In the current study, distance to rivers was classi-
fied into five classes using an interval of 500 m, and the river
buffer categories were defined as <500, 500–1000, 1000–
1500, 1500–2000, and >2000 m (Fig. 2h).

Distance to roads

Distance to road is considered to be one of the causal factors
for landslide occurrence, and it is frequently used in landslide
susceptibility analysis by many investigators (Nourani et al.
2014; Yilmaz 2010; Pourghasemi et al. 2012). Distribution of
landslides along the roads is very common mainly due to the
fact that the natural condition of the slope is damaged during
the process of road construction; besides, the road cut exposes
the joints and fractures that also make the slope unstable. In
the present study, distance to roads was taken into account for
landslide susceptibility mapping and grouped into five buffer
zones using an interval of 500 m (Fig. 2i): <500, 500–1000,
1000–1500, 1500–2000, and >2000 m.

Lithology

The landslide occurrence as a part of geomorphologic studies
is related to the lithology (Pourghasemi et al. 2012). It is con-
sidered to be a very important conditioning factor because
different lithological units have different landslide susceptibil-
ity values. In the current study, the lithology map was classi-
fied into three classes using ArcGIS 10.0. Various types of
lithological units cover the study area. Among them, hard
rocks include limestone, dolomite, sandy dolomite, sandstone,

�Fig. 2 Thematic maps. a Slope angle, b slope aspect, c curvature, d plan
curvature, e profile curvature, f altitude, g distance to faults, h distance to
rivers, i distance to roads, j lithology, k rainfall, lNDVI.m topographical
wetness index (TWI), n stream power index (SPI), o sediment transport
index (STI)
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Fig. 2 (continued)
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and basalt; the medium-hard rocks consist of argillaceous do-
lomite and silty sandstone and limestone and dolomite
interbedding; the weak rocks are mainly composed of argilla-
ceous dolomite with intercalation of shale, mudstone, siltstone
mixed mudstone and shale, shale with intercalation of coal,
coal, strong weathering rocks, and soil. It is shown in Fig. 2j.

Rainfall

Rainfall is regarded as one of the most important trigger
factors in landslide susceptibility analysis. Rainfall was
also considered to produce landslide susceptibility map
in this study, and four classes were created using
ArcGIS 10.0: <800, 800–1000, 1000–1200, and
>1200 mm/year. The average annual precipitation distri-
bution of the study area is shown in Fig. 2k.

NDVI

NDVI, namely, is the normalized difference vegetation
index. The NDVI is a measure of surface reflectance
and gives a quantitative estimate of vegetation growth
and biomass (Hall et al. 1995; Akgun et al. 2012). The
NDVI map was extracted from Landsat satellite image.
The NDVI value was calculated using ENVI based on
the following formula:

NDVI ¼ IR − Rð Þ= IRþ Rð Þ ð1Þ

where IR is the infrared band of the electromagnetic spectrum
and R is the red band of the electromagnetic spectrum.

For the present study, the NDVI value was reclassified into
five categories (Fig. 2l): <−0.02, −0.02 to −0.00, −0.00–0.02,
0.02–0.04, and >0.04.

TWI

Topographical wetness index (TWI) is considered to be one of
the topographic factors within the runoff model which mea-
sures the degree of accumulation of water at a site. It is calcu-
lated using the following formula (Beven and Kirkby 1979):

TWI ¼ ln a=tan βð Þ ð2Þ

where a is the specific catchment area and β is the slope
gradient (in degrees).

In the study area, TWI value was calculated based on
ArcGIS 10.0, which was also divided into four categories
(Fig. 2m): <4.5, 4.5–6, 6–7.5, >7.5.

SPI

Stream power index (SPI) is another topographic factor within
the runoff model which describes potential flow erosion and

related landscape processes (Moore et al. 1991; Akgun et al.
2012). It is defined as follows:

SPI ¼ a� tan β ð3Þ

where a is the specific catchment area and β is the slope
gradient (in degrees).

The SPI value was calculated with aid of GIS and grouped
into four classes: <30, 30–60, 60–90, >90. It is shown in Fig. 2n.

STI

Sediment transport index (STI), as one of the important topo-
graphic factors, reflects the erosive power of overland flow
(Jaafari et al. 2014). It is defined as follows (Moore and Burch
1986):

STI ¼ a
22:13

� �0:6
� sin β

0:0896

� �1:3

ð4Þ

where a is the specific catchment area and β is the slope
gradient (in degrees).

STI was also considered to produce landslide susceptibility
map for the present study. In this study, STI values were clas-
sified into four classes (Fig. 2o), such as <20, 20–40, 40–60,
and >60.

Methodology

Logistic regression

Logistic regression method is considered to be one of the statis-
tical methods, which is frequently used in landslide susceptibility
assessment by different researchers in different parts of the world
(Nourani et al. 2014; Pradhan and Lee 2010; Lee et al. 2007;
Oh et al. 2010). As one of the multivariate analysis models,
logistic regression model was also selected to quantitatively as-
sess the landslide susceptibility in the present study. Logistic
regression allows one to form a multivariate regression relation-
ship between a dependent variable and some independent vari-
ables, which is useful for predicting the presence (landslides) or
absence (non-landslides) of a characteristic or outcome based on
values of a set of predictor variables. The advantage of logistic
regression is that the variables may be either continuous or dis-
crete, or any combination of both types, and they do not necessar-
ily have normal distributions, by means of addition of an appro-
priate link function to the usual linear regression model (Pradhan
and Lee 2010). In the present study, the dependent variable is a
binary variable (0 or 1), 1 represents presence of a landslide, and 0
for absence of a landslide. The logistic regressionmodel is defined
by the following equation: (Atkinson and Massari 1998):

Z ¼ β0 þ β1X 1 þ β2X 2 þ :::þ βnX n ð5Þ
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whereZ is the linear combination,β0 is the intercept of the logistic
regression model, the β1, β2,…βn are the coefficients of logistic
regression, and X1, X2,…Xn are the independent variables.

In order to predict the landslide occurrence, the relationship
between the probability of landslide occurrence and its depen-
dency on several variables can be expressed as follows:

P ¼ exp zð Þ
1−exp zð Þ ð6Þ

where Z is the linear combination, P is the probability of
landslide occurrence.

Statistical index

The statistical index method is another statistical method,
which is first proposed by vanWesten et al. (1997) in landslide
susceptibility assessment. Subsequently, this method has been
applied for landslide susceptibility assessment by various re-
searchers in their studies (Pourghasemi et al. 2013; Kavzoglu
et al. 2015). In this model, the weight for a parameter class is
defined as the natural logarithm of the landslide density in the
class divided by the landslide density in the entire study area.
The statistical index method is expressed as the following
formula (Van Westen et al. 2007):

Sij ¼ ln
Dij

D

� �
¼ ln

Nij

Pij

. N
P

� �� �
ð7Þ

where Sij is the weight given to a certain class i of parameter j,
Dij is the landslide density within the class i of parameter j, D
is the landslide density within the study area, Nij is the number
of landslides in a certain class i of parameter j, Pij is the num-
ber of pixels of a certain class i of parameter j, N is the total
landslides within the study area, and P is the total pixels within
the study area.

Results and discussions

Application of logistic regression

The model coefficients were calculated using the statistical
analysis software SPSS. Through the logistic regression mod-
el, spatial relationship between each landslide-conditioning
factor and landslide is assessed and shown in Table 1. In this
analysis, slope angle, curvature, plan curvature, profile curva-
ture, altitude, NDVI, STI, distance to roads, distance to rivers,
distance to faults, TWI, and SPI were defined as the
Bcontinuous data^ which were treated as Bscale^ in statistical
analysis software SPSS, while slope aspect, rainfall, and li-
thology were Bincontinuous data^ which were treated as
Bnominal^ data in SPSS.

Using eq. (5), the formula predicting the landslide occur-
rence in the present study was obtained as follows:

z ¼ 1:714*slope angle
� 	þ slope aspectc

þ 0:001*curvature
� 	þ 17:164*plan curvature

� 	
þ 2:918*profile curvature
� 	þ −6:380*altitude

� 	
þ −0:563*distance to faults
� 	

þ −1:317*distance to rivers
� 	

þ −1:772*distance to roads
� 	þ lithologyc

þ rainfallc þ 0:030*NDVI
� 	þ 1:947*TWI

� 	
þ 138:314*SPI
� 	þ −27:343*STI

� 	
−3:983 ð8Þ

where slope angle is the slope value, curvature is the curvature
value, plan curvature is the plan curvature value, profile cur-
vature is the profile curvature value, altitude is the altitude
value, distance to faults is the distance to faults value, distance
to roads is the distance to roads value, NDVI is the NDVI
value, TWI is the TWI value, SPI is the SPI value, STI is
the STI value. Logistic regression coefficient values are
1.714, slope aspectc, 0.001, 17.164, 4.19, 2.918, lithologyc,
rainfallc, −1.317, −1.772, 0.030, 1.947, 138.314, and −27.343
listed in Table 1, and z is the parameter. The model constant or
the intercept of model is −3.983.

Sample calculation of LR for few pixels is provided in
Table 2. Using eqs. (6) and (8), the probability of landslide
occurrence (P) of six samples was calculated. The P is 0 which
indicates no occurrence of landslides.

From Eq. (8), it is obvious that slope angle, curvature, plan
curvature, profile curvature, distance to rivers, NDVI, and SPI
coefficients are positive. This means that these factors are
positively related to the landslide occurrence, whereas alti-
tude, distance to faults, distance to roads, TWI, and STI coef-
ficients are negative which indicate a negative relation with
the landslide occurrence in the study area.

Using eq. (6), the probability of landslide occurrence (P)
was calculated.

Eventually, using eqs. (6) and (8), a landslide susceptibility
map was created by logistic regression model based on GIS
and reclassified into five classes for visual interpretation using
Jenks natural break classificationmethod: very low, low, mod-
erate, high, and very high (Fig. 3).

Application of statistical index

Spatial relationship between each landslide-conditioning fac-
tor and landslide by statistical index model is shown in
Table 1. From Table 1, it is seen that slope class in 50–60°
has highest positive weight value of 0.330, which indicates
that the landslide probability is higher in this class. For slope
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Table 1 Spatial relationship between each landslide-conditioning factor and landslide by LR and SI model

Factors Classes No. of
landslide

No. of pixels
in domain

Percentage of
landslide (%)

Percentage of pixel
in the domain (%)

Coefficients of
logistic regression

SI

Slope angle (°) 0–10 10 315,376 7.353 15.398 1.714 −0.739
10–20 35 604,562 25.735 29.517 −0.137
20–30 50 584,333 36.765 28.530 0.254

30–40 28 369,683 20.588 18.050 0.132

40–50 10 137,382 7.353 6.708 0.092

50–60 3 32,473 2.206 1.585 0.330

>60 0 4345 0.000 0.212 0

Slope aspect Flat 0 72,489 0.000 3.539 −22.182 0

North 12 209,258 8.824 10.217 −0.497 −0.147
Northeast 13 237,809 9.559 11.611 0.135 −0.194
East 16 285,248 11.765 13.927 −0.277 −0.169
Southeast 20 275,745 14.706 13.463 0.742 0.088

South 11 212,510 8.088 10.376 −0.149 −0.249
Southwest 21 244,987 15.441 11.961 0.563 0.255

West 23 257,742 16.912 12.584 0.190 0.296

Northwest 20 252,366 14.706 12.322 0 0.177

Curvature < −0.6 27 440,821 19.853 21.523 0.001 −0.081
−0.6 - 0.6 77 1,167,868 56.618 57.021 −0.007
> 0.6 32 439,465 23.529 21.457 0.092

Plan curvature < −0.3 20 454,804 14.706 22.206 17.164 −0.412
−0.3 - 0.3 79 1,118,913 58.088 54.630 0.061

> 0.3 37 474,437 27.206 23.164 0.161

Profile curvature < −0.5 26 320,275 19.118 15.637 2.918 0.201

−0. 5–0.5 88 1,398,289 64.706 68.271 −0.054
> 0.5 22 329,590 16.176 16.092 0.005

Altitude (m) <800 8 57,659 5.882 2.815 −6.380 0.737

800–1100 32 196,122 23.529 9.576 0.899

1100–1400 59 348,656 43.382 17.023 0.935

1400–1700 28 552,115 20.588 26.957 −0.270
1700–2000 8 493,685 5.882 24.104 −1.410
2000–2300 1 317,630 0.735 15.508 −3.049
>2300 0 82,287 0.000 4.018 0

Distance to faults (m) 0–1000 43 546,775 31.618 26.693 −0.563 0.169

1000–2000 20 395,589 14.706 19.312 −0.272
2000–3000 29 309,084 21.324 15.089 0.346

3000–4000 19 219,453 13.971 10.713 0.265

>4000 25 577,486 18.382 28.192 −0.428
Distance to rivers (m) 0–500 92 770,992 67.647 37.639 −1.317 0.586

500–1000 31 574,173 22.794 28.030 −0.207
1000–1500 9 377,803 6.618 18.444 −1.025
1500–2000 2 190,566 1.471 9.303 −1.845
>2000 2 134,853 1.471 6.583 −1.499

Distance to roads (m) 0–500 84 467,318 61.765 22.814 −1.772 0.996

500–1000 25 328,166 18.382 16.021 0.138

1000–1500 10 271,267 7.353 13.243 −0.588
1500–2000 9 223,859 6.618 10.929 −0.502
>2000 8 757,777 5.882 36.994 −1.839

Lithology Hard rock groups 51 1,392,782 37.500 67.978 −2.413 −0.595
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aspect, Southeast, Southwest, West, and Northwest have pos-
itive weight values of 0.088, 0.255, 0.296, and 0.177, respec-
tively. This means that these classes are more prone to

landslide occurrence. In case of curvature, the only positive
weight value was seen in class of >0.6. For plan curvature,
classes of −0.3–0.3 and >0.6 have positive weight values of

Table 2 Sample calculation of
LR for few pixels Factors Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Slope angle (°) 0.580 30.682 4.256 6.932 20.185 27.932

Slope aspect 0.563 0.563 0.135 0.742 0.000 −0.277
Curvature 0.512 2.464 0.625 0.983 −0.353 −0.167
Plan curvature 0.000 1.086 0.331 0.265 −0.400 −0.251
Profile curvature −0.512 −1.378 −0.294 −0.717 −0.047 −0.084
Altitude (m) 1273.000 2081.420 1392.750 1333.000 2338.820 2334.040

Distance to faults (m) 1539.420 1447.050 8462.430 1727.180 1034.290 4060.800

Distance to rivers (m) 1216.110 3032.050 145.229 1340.200 263.020 1497.190

Distance to roads (m) 775.037 1102.210 116.183 58.092 3516.810 5182.930

Lithology −1.186 −2.413 0.000 −1.186 −2.413 −1.186
Rainfall −0.724 −0.655 −0.724 −0.724 −0.655 -0.655

NDVI 0.011 −0.007 0.014 0.019 −0.029 -0.043

TWI 7.65 4.62 5.65 5.16 7.35 6.12

SPI 0.21 35.60 1.58 2.58 210.57 127.25

STI 6.155 6.987 9.298 14.750 1.105 23.378

Table 1 (continued)

Factors Classes No. of
landslide

No. of pixels
in domain

Percentage of
landslide (%)

Percentage of pixel
in the domain (%)

Coefficients of
logistic regression

SI

Medium-hard rock groups 73 572,709 53.676 27.952 −1.186 0.652

Weak rock groups 12 83,394 8.824 4.070 0 0.774

Rainfall < 800 mm/yr 43 260,798 31.618 12.732 −0.655 0.910

800-1000 mm/yr 71 545,461 52.206 26.629 −0.165 0.673

1000-1200 mm/yr 17 694,437 12.500 33.902 −0.724 −0.998
> 1200 mm/yr 5 547,691 3.676 26.738 0 -1.984

NDVI <−0.02. 1 320,960 0.735 15.707 0.030 −3.062
−0.02--0.00 2 199,906 1.471 9.783 −1.895
−0.00-0.02 102 1,143,564 75.000 55.963 0.293

0.02–0.04 31 377,921 22.794 18.495 0.209

>0.04 0 1060 0.000 0.052 0

TWI <4.5 40 547,912 29.412 26.752 1.947 0.095

4.5–6 47 719,154 34.559 35.112 −0.016
6–7.5 28 410,555 20.588 20.045 0.027

>7.5 21 370,533 15.441 18.091 -0.158

SPI <30 49 1,001,467 36.029 48.896 138.314 −0.305
30–60 25 290,862 18.382 14.201 0.258

60–90 13 161,048 9.559 7.863 0.195

>90 49 594,777 36.029 29.040 0.216

STI <20 71 1,270,415 52.206 62.027 −27.343 −0.172
20–40 32 394,013 23.529 19.237 0.201

40–60 12 155,324 8.824 7.584 0.151

>60 21 228,402 15.441 11.152 0.325

Model constant is −3.983
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0.061 and 0.161, respectively. For profile curvature, the SI
value is negative (−0.054) in the range between −0.5 and
0.5; other classes have positive value. This means that the
range between −0.5 and 0.5 is less prone to landslide occur-
rence. In case of altitude, classes of <800, 800–1100, 1100–
1400, and 1400–1700 m have positive weight values (0.737,
0.899, and 0.935, respectively), whereas classes of 1700–
2000 and 2000–2300 m have negative weight values. It indi-
cates that maybe most of people live in the area <1700 m and
have less effect in altitude of 1700 m. In case of distance from
faults, classes of 0–1000, 2000–3000, and 3000–4000 m have
positive weight values (0.169, 0.346, and 0.265, respectively),
while class of >4000 m has negative weight value of −0.428.
It is clear that as the distance from faults increases, the land-
slide frequency generally decreases. In case of distance from
rivers, the only positive weight value was seen in class of 0–
500 m; other classes are −0.207, −1.025, −1.845, and −1.499
for 500–1000, 1000–1500, 1500–2000, and >2000 m,

respectively. Similarly, it can be observed that as the distance
from rivers increases, the probability of landslide occurrence
generally decreases. As for distance from roads, class of 0–
500 m has the highest positive weight value of 0.996, which
indicates that landslide is prone to occur in this class, and as
the distance from rivers decreases, the probability of landslide
occurrence generally increases. For lithology, hard rock
groups have the negative weight value of −0.595, and weak
rock groups have the highest positive weight value of 0.774.
This supports the fact that generally hard rock is less prone to
landslide whereas weak rock is more prone to landslide. In
case of rainfall, class of <800mm/year has the highest positive
weight value of 0.910, followed by 800–1000 mm/year
(0.673), 1000–1200 mm/year (−0.998), and >1200 mm/year
(−1.984). In case of NDVI, the highest weight value was seen
in class of −0.00–0.02 (0.293), and the lowest weight value
was seen in class of <−0.02. For TWI, class of <4.5 has the
highest SI value of 0.095, followed by 6–7.5 (0.027), 4.5–6

Fig. 3 Landslide susceptibility
map using LR model
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(−0.016), and >7.5 (−0.158). For SPI, the 30–60 range has the
highest SI value (0.258), and class of <30 has the lowest SI

value (−0.305). For STI, class of >60 has the highest positive
weight value of 0.325, followed by 20–40 (0.201), 40–60

Table 3 Sample calculation of SI
for few pixels Factors Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Slope angle (°) −0.739 0.132 −0.739 −0.739 0.254 0.254
Slope aspect 0.255 0.255 −0.194 0.088 0.177 −0.169
Curvature −0.128 −0.128 −0.128 −0.128 −0.128 −0.128
Plan curvature 0.061 0.161 0.161 0.061 −0.412 0.061
Profile curvature 0.201 0.201 −0.054 0.201 −0.054 −0.054
Altitude (m) 0.935 −0.304 0.935 0.935 0.000 0.000
Distance to faults (m) −0.272 −0.272 −0.428 −0.272 −0.272 −0.428
Distance to rivers (m) −0.102 −0.149 0.586 −0.102 0.586 −0.102
Distance to roads (m) 0.138 −0.588 0.996 0.996 −0.183 −0.183
Lithology 0.652 −0.595 0.774 0.652 −0.595 0.652
Rainfall 0.673 −0.198 0.673 0.673 −0.198 -0.198
NDVI 0.293 −0.189 0.293 0.293 −0.306 -0.306
TWI -0.158 −0.016 −0.016 −0.016 0.027 0.027
SPI -0.305 0.258 −0.305 −0.305 0.216 0.216
STI -0.172 −0.172 −0.172 −0.172 0.151 0.201

Fig. 4 Landslide susceptibility
map using SI model
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(0.151), and <20 (−0.172). This means that landside is more
prone to occur in the class of >60, while landside is less prone
to occur in the class of <20.

Finally, the landslide susceptibility map was produced
using the following equation:

LSI ¼ slope angleð ÞSI þ slope aspectð ÞSI þ curvatureð ÞSI
þ plan curvatureð ÞSI þ profile curvatureð ÞSI
þ altitudeð ÞSI þ distance to faultsð ÞSI
þ distance to riversð ÞSI þ distance to roadsð ÞSI
þ lithologyð ÞSI þ rainfallð ÞSI þ NDVIð ÞSI
þ TWIð ÞSI þ SPIð ÞSI þ STIð ÞSI ð9Þ

Sample calculation of SI for few pixels is provided in
Table 3. Using eq. (9), LSI calculated was 1.332, −1.604,
2.382, 2.165, −0.737, and −0.157 for samples 1, 2, 3, 4, 5,
and 6, respectively.

Using ArcGIS 10.0 software, the landslide susceptibility
map was divided into five regions by Jenks natural break
classification method: very low, low, moderate, high, and very
high (Fig. 4).

Validation of landslide susceptibility maps

In order to evaluate the performances of landslide susceptibility
maps by logistic regression and statistical index models, both the
success and predication rate curves were applied by comparing
them with the existing landslide data. The area under the curve
(AUC) was used to evaluate the accuracy of landslide suscepti-
bility maps quantitatively. The success-rate curve was obtained
by comparing the training dataset (136 landslides) with the land-
slide susceptibility map (Fig. 5a). Similarly, the prediction rate
curve was drawn by a comparison of the validating dataset (58
landslides) with the landslide susceptibility map (Fig. 5b). The

success-rate curve result shows that the area under the curve
(AUC) value was 0.8090 for LRmodel and 0.8213 for SI model,
which indicates that the success rate was 80.90% for LR model
and 82.13% for SI model. This means that the capability for
correctly classifying the areas with existing landslides is higher
in this study. The prediction rate curve shows that the area under
the curve (AUC) value was 0.8029 for LRmodel and 0.8102 for
SI model, which means that the success rate was 80.29% for LR
model and 81.02% for SI model. It also indicates that both LR
model and SI model with the higher prediction accuracy and
predict landslides very well in the study area. Using the valida-
tion of landslide susceptibility maps by the success-rate and
prediction-rate methods, it is seen that both the success rate and
the prediction rate have the same results and perform very well in
landslide susceptibility mapping.

Conclusions

GIS-based techniques have been widely used in landslide sus-
ceptibility mapping throughout the world. In this study, GIS-
based logistic regression (LR) and statistical index (SI) models
were applied for landslide susceptibility mapping in Daguan
County, Southwest of China, and their performances were com-
pared and tested. From the validation of the results, both the
logistic regression (LR) and statistical index (SI) models have
been successfully applied to produce the reliable landslide sus-
ceptibility maps in the current study area.

In process of producing landslide susceptibility maps of the
study area, a landslide inventorymap of study area was compiled
in the first stage, and a total of 194 landslides were detected by
literatures, aerial photographs, and supported by field works.
Landslides were randomly classified into two for modeling
(70%) and model validation (30%). Fifteen landslide-related fac-
tors were selected from spatial database: slope angle, slope as-
pect, curvature, plan curvature, profile curvature, altitude, dis-
tance from faults, distance from rivers, distance from roads,

Fig. 5 a Success rate of the landslide susceptibility map, b prediction rate of the landslide susceptibility map
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lithology, rainfall, NDVI, TWI, SPI, and STI. Through the anal-
ysis by two quantitative methods (LR and SI models) in ArcGIS
10.0, the landslide susceptibility maps of the study area were
constructed. Finally, to validate the results, both the success-
rate and prediction-ratemethodswere applied, and the area under
the curve (AUC)was calculated. The validation results show that
the landslide susceptibility map produced by logistic regression
(LR) and statistical index (SI) model with the prediction rate of
80.29 and 81.02%, respectively. Similarly, the success rates were
80.90 and 82.13% for LR and SI models, respectively. It is con-
cluded that statistical index (SI) model performs slightly better
than logistic regression (LR) model, and two models with higher
prediction accuracy can be used for land use planning and slope
management in near future.
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