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Abstract Geological facies modeling is a crucial problem for
reservoir characterization as it affects the reservoir heterogene-
ities and fluid flow performance prediction. The main purpose
of this research is to adopt a stochastic simulation to construct
3D lithofacies models of the tidal/estuarine depositional envi-
ronment of the upper sandstone member in south Rumaila oil
field, located in Iraq. Based on core measurements, the upper
sandstone member has three main lithofacies: sand, shaly sand,
and shale. Literature review indicates that the formation is
encompassed of mainly sandstone with some inter-bedded
shale zones. To reconstruct the 3D lithofacies model, the se-
quential indicator simulation (SISIM) was adopted to build the
categorical image, pixel by pixel, considering the nonparamet-
ric condition distribution. Specifically, SISIM depends on the
variogram to address and model the variation between any two
spatial points from the available data. Therefore, 12 different
variograms were constructed given the three lithofacies in four
different azimuth directions: 0°, 45°, 90°, and 135°.The
resulting lithofacies models in the four selected azimuth direc-
tions have shown frequent tidal lithofacies channeling and in-
dicate an approximate matching with the original description of
the formation depositional environment of the tidal-dominated
and sand-rich environment. The generated lithofacies model in
135° direction has sand channels prevailing towards the south-
east shoreline of the reservoir. The created lithofacies model
also preserves the reservoir complexity and heterogeneity be-
cause it was created using a high-resolution gridding system

with approximately two million grids. Additionally, the
resulting tidal lithofacies model ensures reservoir heterogeneity
as the petrophysical properties are then distributed given each
lithofacies with distinct indicator variograms.
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Introduction

Spatial lithofacies modeling is a very important step in reser-
voir characterization because it accurately reflects the strati-
graphic reservoir structure and provides clear insights into
how the reservoir is subdivided through flow unit zonation.
A lithofacies model is beneficial because it helps individuals
understand the description of different depositional environ-
ments in addition to capturing all of the heterogeneity levels
and scales which are integrated into the reservoir flow model
(Mikes and Geel 2006; Walker 1992). The facies model can
also serve as a guide to predict reservoir properties in different
locations with the same depositional environment by control-
ling the reservoir heterogeneities and fluid flow characteristics
(Walker 1992). The type and architecture of the geological
facies and their related petrophysical data distribution are cru-
cial issues with direct influences on reservoir heterogeneities,
fluid flow performance prediction, field development, and
economic evaluation (White and Royer 2003). The process
of integrating all available geological information into the
numerical reservoir simulation in terms of 3D facies distribu-
tion is called facies modeling (Walker 1992). For accurate
facies distribution, it is necessary to efficiently integrate the
different scales of data to capture the reservoir heterogeneity
and transfer it into the reservoir model. The most recent
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methods that have been used to quantify the facies and
petrophysical properties involve deterministic (estimation)
and stochastic (simulation) approaches (Journel 1989, 1990;
Journel and Alabert 1990; Journel and Gomez-Hernandez
1993; Overeem 2008).

Several methods have been used for facies modeling in-
cluding variogram-based methods, object-based modeling,
and multiple-point geostatistics (Liu et al. 2004; Zhang
2008). The most commonly performed geostatistical models
are pixel-based methods. Pixel-based models are used for sto-
chastic modeling of either discrete distribution variables such
as facies or continuous distribution variables such as porosity
or permeability. More specifically, pixel-based models en-
compass sequential indicator simulation for facies and sequen-
tial Gaussian simulation for petrophysical properties.

The pixel-based model is used to build the categorical im-
age, pixel by pixel, considering nonparametric condition dis-
tribution. The pixel-based model, sometimes referred to as
two-point statistics, depends on the variogram to address and
model the variation between any two spatial points from the
available data (Caers and Zhang 2004; Deutsch and Journel
1998; Liu et al. 2004; Zhang 2008). Although it is simple and
requires few parameters, the pixel (variogram)-based model-
ing has some limitations including its inability to capture com-
plex geological structures such as channel shapes, thickness,
and sinuosity. For instance, it is unable to capture models with
many different geological formationswith the same variogram
but different architectures (Caers and Zhang 2004).

Sequential indicator simulation (SISIM) is used to build a
conditional probability density function of nonparametric prop-
erties, such as rock type, by considering binary simulation
(Caers 2000; Deutsch and Journel 1998). Once the continuous
variable is transformed into a number of indicator variables,
one for each class, each of the indicator variables is spatially
modeled using any of the variogram or covariance functions. In
SISIM, the facies data are encoded into binary values (0, 1)
controlled by giving threshold values. Then, spatial distribution
is characterized by the indicator variograms in order to generate
alternative equiprobable stochastic reservoir images. The bina-
ry encoding could also be adopted for the main facies charac-
terization such as sand and shale (Journel and Gomez-
Hernandez 1993). Moreover, the facies can be encoded as bi-
nary variables given a specific location to represent different
rock types, such as one for sand channels and zero for lobe, in a
complex turbiditic reservoir (Alabert and Massonnat 1990).
Additionally, SISIM can predict the facies distribution in
inter-well regions through log signatures to characterize major
log associations in non-cored wells and provide conditional
data for the stochastic facies distribution.

To capture the marine to fluvial transition, the SISIM has
been modified to incorporate a vertical trend in the mean pro-
portion of each of the major facies associations (Begg et al.
1996).

Sequential indicator simulation has been widely accepted
in many different reservoir characterization studies.
Specifically, SISIM has been successfully used for lithofacies
modeling to characterize flow barriers and/or flow paths and
fractures in sandstone formations (Journel and Alabert 1990),
complex turbiditic reservoir (Alabert and Massonnat 1990),
and sand-shale reservoirs (Massonnat et al. 1992).

Different data sources and scales, such as well data, seis-
mic, and geological interpretation, can be integrated to build
the facies model through SISIM and Co-SISIM (Journel and
Alabert 1990). Sequential indicator simulation has also been
widely described in many other studies (Alabert and Modot
1992; Goovaerts 1997; Seifert and Jensen 1999; Srivastava
1994).

Consequently, the sequential indicator simulation was
adopted in this paper to reconstruct the 3D lithofacies model
of tidal depositional environment of the upper sandstone
member/Zubair formation in the south Rumaila oil field. The
approximate reconstruction of the lithofacies based on the
depositional environment description leads to preserve the
reservoir heterogeneity because petrophysical properties’ per-
meability and porosity are later distributed given each
lithotype, not as a function of the entire reservoir of one ap-
proximate facies type.

Field description

Introduction

Discovered in October 1953 by Basrah Petroleu Company, the
Rumaila oil field is located in southern Iraq about 50 km west
of Basrah city and about 30 km to the west of the Zubair oil
field (Al-Ansari 1993). It is about 100 km long, 12 to 14 km
wide, and more than 3 km below sea level. Dip angles on the
flanks do not exceed 3°, but are about 1° in the crest. Faults are
not indicated in all layers of the Rumaila field (Al-Ansari
1993). The geographical location of south Rumaila oil field
is shown in Fig. 1. The area remarked in Fig. 1 contains the
most geologic and reservoir data and is the main sector in the
south Rumaila oil field. This sector contains 40 producers and
20 injectors (Mohammed et al. 2010). However, discrete
lithofacies distributions of the wells in this sector are only
provided for 19 wells. These wells are in all areas of the
reservoir which enables efficient 3D lithofacies modeling.
Figure 2 illustrates the current well locations in the south
Rumaila oil field.

Geological description

The south Rumaila oil field is composed of many oil-
producing reservoirs. Zubair is one of the oil reservoirs that
are represented by the Late Berriasian-Albian cycle and its
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Fig. 1 Geographical location of oil and gas fields in Iraq, including south Rumaila oil field (modified from Al-Ameri et al. 2009)
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Fig. 2 Current well locations for the sector under study in the main pay/south Rumaila oil field
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sediments, which belongs to the Lower Cretaceous age. The
Zubair formation is rich in organic deposition and accumula-
tion of sedimentary matter (Al-Obaidi 2010). The thickness of
the Zubair formation ranges between 280 and 400 m with
levels increasing towards northeast end of the field
(Al-Obaidi 2009). Based on the sand to shale ratio, the
Zubair formation encompasses five members. These members
named from top to bottom are as follows: upper shale member,
upper sandstone member, middle shale member, lower sand

member, and lower shale member. The upper sandstone mem-
ber of the Zubair formation is the main pay zone of south
Rumaila oil field (Mikes and Geel 2006). The main pay com-
prises of five dominated sandstone units, separated by two
discontinuous shale units (C and K), as shown in Fig. 3. The
shale units act as barriers impeding vertical migration of the
reservoir fluids; however, in some areas, they are not as prom-
inent. The reservoir and shale units have been denoted from
top to bottom as AB, C, DJ1, DJ2, K, LN1, and LN2

Fig. 3 Geological lithology column of the formations in south Rumaila oil field (modified from Mohammed et al. 2010)
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(Mohammed et al. 2010). The geological column for the entire
reservoir’s zones in the Rumaila oil field is shown in Fig. 3.

Depositional environment

The Zubair formation is part of the Lower Cretaceous se-
quence age. It is located between two dolomite-limestone
and shale formations that are named Shuaiba and Ratawi,
respectively. The Zubair formation encompasses mainly sand-
stone with some inter-bedded shale zones (Al-Muhailan et al.
2013). Figure 4 shows the stratigraphic column with vertical
lithology description and well log indications for all the zones
in the south Rumaila oil field.

Overall, the Zubair formation was deposited through del-
taic, estuarine, and fluvial environments (Harris et al. 2012).
The upper shale member, which is located above the upper
sandstone member, was deposited in a wave/shoreface and
offshore-dominated environment resulting in sand channels
that extend east-west across the anticline (Al-Muhailan et al.
2013). The upper and middle sandstone members were depos-
ited in a tidal/estuarine environment in which the sand chan-
nels are stacked and continuous everywhere across the forma-
tion. The lower sandstone member was deposited in a fluvial/
mouth bar-dominated environment. The analyses of core sam-
ples have indicated coarsening upward black claystones at the

base of the lower part of the upper sandstone member overlain
by bioturbated very fine-grained sandstones, which in turn are
overlain by fine-grained, trough cross-bedded sandstones. The
same events took place at the middle sandstone member
(Harris et al. 2012). The core sedimentology, palynofacies
observations, and biostratigraphic analyses indicate both ma-
rine and terrestrial microflora confirm a marginal marine gross
depositional environment. On the other hand, the palynology
studies have proven the succession of the very fine- and
fine-grain sandstones (Kitching et al. 2013).

Another study stated that the main pay was a fluvially
dominated, sand-rich deltaic environment (Wells et al.
2013). The study likewise highlights the phased advance and
retreat of a river-dominated and tidally influenced delta sys-
tem. Additionally, the observation of cyclic bundles of the thin
forest shale laminae confirms the influence of tides. Marine
flooding surfaces were also observed and usually succeeded
by prodelta shales that affect the vertical connectivity in the
formation. Nevertheless, most of the effective reservoir rocks
are of a high quality in lateral and vertical amalgamates.
Excluding the shale distribution, the entire sand distribution
tends to be heterogeneous through rapid lateral and vertical
variations (Al Naqib 1967). In the southern part of the field,
core analysis indicates fine- to medium-grained cross-bedded
sandstones, which were mainly deposited in lower delta plain

Fig. 4 Stratigraphic column of Rumaila field with lithology (left). Lithology and well log data for Zubair formation only (right) (modified from Al-
Muhailan et al. 2013)
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distributed channels. However, the grain sizes tend to decrease
in mixed sand and shale deposits that were preserved in the
northern area of the field (Wells et al. 2013).

Since there are contradictions between the various facies
studies on the upper sandstone member, the 3D lithofacies
modeling in this study was conducted considering the descrip-
tion provided by Harris et al. (2012) which stated the tidal/
estuarine depositional environment of the upper sandstone
member.

Geostatistical reservoir modeling

Isaaks and Srivastava (1989) stated that BGeostatistics offers a
way of describing the spatial continuity of natural phenomena
and provides adaptations of classical regression techniques to
take advantage of this continuity.^ Geostatistics integrates
mathematical concepts, computer technology, and stochastic
modeling to generate multiple equiprobable realizations that
keep the reservoir heterogeneity by honoring all the available
data (Caers and Zhang 2004; Deutsch and Journel 1998;
Journel 1990; Liu et al. 2004). These alternative stochastic
images (realizations) are created through conditional stochas-
tic simulation with the ability to reproduce extreme values,
such as high-permeability channels and low-permeability bar-
riers, in order to quantify the geological spatial uncertainty
(Caers 2005). The geological uncertainties occur due to in-
complete information regarding the modeled phenomenon
(Goovaerts 1997; Pyrcz and Deutsch 2014). Most
geostatistical reservoir characterization models are
variogram-based algorithms such as sequential indicator sim-
ulation for facies modeling and sequential Gaussian simula-
tion for continuous petrophysical parameters.

Variogram-based algorithms

Variogram-based geostatistics, also called two-point statistics
or traditional two-point geostatistics, adopt variogram models
to describe the variation between any two spatial data loca-
tions (Gringarten and Deutsch 1999; Liu et al. 2004; Zhang
2008; Deutsch and Journel 1998).

The variogram describes the geometry and continuity of
reservoir properties and has direct impact on the flow behav-
ior. The variogram can be defined as the measure of dissimi-
larity between known and unknown data as the distance in-
creases and mathematically is the expected squared difference
between two data values separated by a distance vector h
(Gringarten and Deutsch 1999).

2γ hð Þ ¼ E Y uð Þ−Y uþ hð Þ½ �2 ð1Þ

where h represents the spatial lag distance between two
points, γ(h) refers to the variance between two points with
distance h, Y (u) refers to the variance of parameter at point
u, and Y (u + h) represents the variance of parameter at point
u + h. The variogram terminology includes sill (the plateau
that variogram reaches the range); range (the distance at which
the variogram no longer increases with distance increases);
and nugget (measurement error when distance is zero).
These parameters are represented in Fig. 5.

γ hð Þ ¼ var zð Þ−cov hð Þ
Dissimilarity hð Þ ¼ Sill−Similarity hð Þ ð2Þ

where var(z) refers to the sill or variation of parameter z and
cov(h) represents the covariance or similarity between data in
distance h. Simple kriging is then used for spatial data distri-
bution based on best variogram fit.

Fig. 5 Variogram structure
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K is the covariance matrix between the known data.

K ¼
cov Z1; Z1ð Þ cov Z1; Z2ð Þ ⋯ cov Z1; Znð Þ
cov Z2; Z1ð Þ cov Z2; Z2ð Þ ⋯ cov Z2; Znð Þ

⋮ ⋮ ⋱ ⋮
cov Zn; Z1ð Þ cov Zn; Z2ð Þ ⋯ cov Zn; Znð Þ

0
BB@

1
CCA ð3Þ

where K is the covariance matrix between known data in
variogram, k is the covariance vector between the known
and unknown data, and λ is the kriging weights.

k ¼
cov Z1; Z0ð Þ
cov Z2; Z0ð Þ

⋮
cov Zn; Z0ð Þ

0
BB@

1
CCA ∼λ ¼

λ1

λ2

⋮
λn

0
BB@

1
CCA ð4Þ

where k is the covariance matrix between known and un-
known data in variogram, and λ is the kriging weights in
variogram. The final formula of simple kriging is

z0 ¼ ∑
n

i¼n
λizi ð5Þ

where z0 is the predicted value of parameter z in simple kriging
and

∑
n

i¼n
λi ¼ 1:

The variogram-based conditional simulation algorithms in-
clude sequential Gaussian simulation for continuous variables
and sequential indicator simulation for categorical variables
(lithofacies). The sequential indicator simulation (SISIM)
was adopted in this study for the 3D lithofacies modeling of
the upper sandstone member of south Rumaila oil field, as it is
described below.

Sequential indicator simulation

The most common geostatistical facies modeling is SISIM
which is designed for modeling the spatial distribution of fa-
cies based on the indicator variogram (Journel and Alabert
1990; Massonnat et al. 1992). The indicator variogram is used
to build up a discrete cumulative density function (CDF) for
the individual facies types and the node is assigned a lithotype,
k, selected at random from this discrete CDF (Journel and
Gomez-Hernandez 1993). After encoding facies into elemen-
tary samples 0, 1 given threshold values, the indicator
variogram then can be formulated as

I Zk ; xð Þ ¼ 0 if Z xð Þ > Zk

1 if Z xð Þ≤Zk

� �
ð6Þ

where I (Zk; x) is the indicator random variable that is associ-
ated with random function Z (x) for a threshold value Zk. The
expected value of the indicator random variable I (Zk; x) is

equal to the cumulative probability P r {Z (x) < Zk} as shown
below:

E I Zk ; xð Þð Þ ¼ 0� Pr Z xð Þ > Zkf g þ 1� Pr Z xð Þ≤Zkf g ð7Þ
E I Zk ; xð Þð Þ ¼ Pr Z xð Þ < Zkf g ð8Þ

where P r {Z (x) < Zk} represents the cumulative probability in
SISIM. According to the logic described about SISIM, the
SISIM is considered as a nonparametric sequential simulation
(Caers 2000). The main SISIM procedural steps for the facies
spatial modeling after establishing the grid network and coor-
dinate system are demonstrated below (Goovaerts 1997;
Journel and Gomez-Hernandez 1993; Pyrcz and Deutsch
2014):
1. Create the indicator variogram for each lag distance based

on the indicator lithofacies.

γ hð Þ ¼ 1

2Nh
∑
i¼1

Nh

facies hþið Þ−facies hð Þ
� �2 ð9Þ

where Nh is the number of points included in indicator
variogram. The prior distribution function represents the
density distribution of the facies and it is calculated as

F zið Þ ¼ ∑
i−1

j¼1
P zj
� � ð10Þ

where F (zi) represents the prior distribution function of facies
and P (zj) refers to the density distribution of the facies.
2. Select randomly all the un-sampled locations to be

simulated.
3. Consider the indicator kriging to estimate the probability

that un-sampled location prevails given the indicator
values at the surrounding locations.

4. Randomly specify the indicator values to be either 0 or 1.
5. After adding the simulated indicator value to the sampled

data group, repeat the procedure for the remaining
un-sampled locations.

6. Repeat this procedure for all the realizations.

The SISIM was adopted to reconstruct the 3D lithofacies
modeling of the upper sandstone member of south Rumaila oil
field. Since the azimuth direction of the shoreline is not clearly
identified in the literature, the SISIM was attained to recon-
struct the lithofacies model in four azimuth directions. These
four different azimuths cover the entire range of the actual
depositional flowing. However, the sea is located in the south-
east and the shoreline should be closer to the azimuth direction
of 135°. As an assumption, the dip angle was set to be zero as
a default value and minor range was set to be 500 for all the
four azimuth directions. However, the major ranges were dif-
ferent given each lithotype and azimuth. The values of major
range were selected to achieve the best fitting of the indicator
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variogram that covers the distance-based correlation between
where the sample points in the reservoir. The best values of
major ranges control the channel continuity (stationary) in the
tidal depositional environment.

Results and discussion

Among 60 wells in the main pay of the south Rumaila oil
field, only 19 wells have the vertical discrete lithofacies dis-
tribution of sand, shaly sand, and shale. The discrete
lithofacies measurements have been first obtained from a core
measurement report from a well in south Rumaila oil field.
Then, the distributions for the 19 wells have been predicted by
the support vector machine algorithm in previous studies
(Al-Mudhafar 2015, 2017). Figure 6 depicts samples of the
discrete lithofacies distributions (sand, shaly sand, and shale)
for some wells in south Rumaila oil field. Figure 7 shows all

wells that have lithofacies distributions with their actual loca-
tions in the reservoir.

The first step in building the 3D property model is to con-
struct the structural model that includes grid structure and
horizon modeling. The grid structure involves setting the grid
system for the reservoir to be considered for all the upcoming
geological and reservoir modeling. The chosen dimensions of
each grid in the orthogonal corner gridding were 50 m × 50 m
and the number of grids (cells) in I direction was 210, and in J
direction was 202 grids. In the horizontal modeling, the main
reservoir has five zones. To capture a more realistic geological
structure, the zones were subdivided into 45 layers to have
approximately 2 m depth for each layer. Thus, the number of
grids inK direction was 45 grids. The final geostatistical mod-
el has 1,908,900 total number of grids for all the layers.
Figure 8 shows the structure gridded surface for the reservoir
including the layering structure.

For the geostatistical lithofacies modeling, the sequential
indicator simulation was adopted to reconstruct a 3D

Fig. 6 The vertical discrete lithofacies distributions for some wells in south Rumaila oil field
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lithofacies distribution for the sector of south Rumaila oil
field/main pay. The well lithofacies distributions were
upscaled, given each layer prior to starting the 3D
geostatistical lithofacies modeling. The main steps for the im-
plementation procedure of sequential indicator simulation are
outlined below:

1. Upscale well log data
2. Construct and fit indicator variogram
3. Random seed number
4. Frequency distribution of upscaled data points

The variogram-based stochastic simulation has been used to
identify the spatial structure of the main pay/Zubair formation in
south Rumaila oil reservoir. The variogram is a function that
describes the correlation between the values of sand, shaly sand,

and shale of points in space, depending on the distance between
them. The variogram is constructed based on the assumption that
the correlation function between these values depends only on
the relative position of measured points not on their locations in
space. Using the experimental data and given the suspicions
about the existence of differences in the spatial structure, the
calculated experimental directional variograms for sand, shaly
sand, and shale are constructed in four different azimuth direc-
tions. More specifically, the sequential indicator simulation con-
siders the indicator variogram to obtain the spatial correlation of
each lithotype in four different angles: 0° (horizontal), 45°, 90°
(vertical), and 135°. The constructed and modeled indicator
variograms for all the facies types given each direction are
depicted in Fig. 9.

In Fig. 9, the three top-left plots represent the indicator
variogram for the sand, shaly sand, and shale in horizontal
direction. The three top-right plots represent the indicator
variogram for the sand, shaly sand, and shale in 45° direction.
The three bottom-left plots represent the indicator variogram
for the sand, shaly sand, and shale in vertical direction. The
three bottom-right plots represent the indicator variogram for
the sand, shaly sand, and shale in 135° direction.

The spatial correlation of each lithotype was accomplished
versus lag distance in those azimuth directions. Choosing the
four main azimuth directions is to test and capture the different
spatial correlations in horizontal direction for heterogeneity
and vertical direction for anisotropy. The number of lags in
all the cases was 20, the average range of major directions was
2000 m, and the bandwidth of the search cone was around
2000 m. These parameters were chosen to capture all possible
wells with sufficient data.

After construction and fitting the empirical indicator
variograms, the standard covariance parameters, sill, nugget,
and range, were collected to be used in 3D spatial distribution
algorithm (solving the kriging equation). The spherical modeling

Fig. 7 Well locations and available measured discrete well lithofacies
distributions

Fig. 8 Gridding system (left). Zone’s layer thickness for the main pay/south Rumaila field (right)
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is the best fit for all the indicator variograms for all the lithotypes
in the four azimuth directions. Table 1 illustrates the indicator
variogram parameters for the lithofacies modeling in the four
azimuth directions.

The variogram results for sand in a horizontal direction
indicate that there is nugget effect, i.e., strong variability of
the content with lack of correlation between the data. This
may be due to the uncertainty of measurement or variability
of data on a smaller scale. Additionally, the results of shaly

sand variograms turned out a poor representative. In the hor-
izontal direction and at an angle of 45° and 90°, there is an
observed nugget effect, and at an angle of 135°, there is large
nugget of 0.623, sill of 0.895, and the range of 2180 ft, which
indicates a weak correlation of shaly sand. However, the
variogram results for shale were very good in all azimuth
directions. The nugget is completely absent in the horizontal
direction and at an angle of 45°, indicating the properly se-
lected scale and quality of experimental data. Moreover, the

Fig. 9 Twelve indicator major variograms for the three facies in four
azimuth directions: the three (top-left) variograms for the 0° (horizontal)
azimuth direction. The three (top-right) variograms for the 45° azimuth

direction. The three (bottom-left) variograms for the 90° (vertical)
azimuth direction. The three (bottom-right) variograms for the 135° azi-
muth direction
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nugget ranges from 0.218 to 0.375 at 90° and 135° degrees.
For all lithotypes, the range of the correlated data is 1170–5040 ft.

The outputs of indicator variogram fit such as sill, nugget, and
range are necessary for the 3D facies modeling through the se-
quential indicator simulation. To honor all the data, histogram,
variogram, and correct smoothing, the sequential indicator sim-
ulation was adopted for 3D facies modeling rather than the indi-
cator kriging, which does not represent more than facies plotting
(deterministic). Figure 10 shows the 3D lithofacies modeling
given the four variogram azimuth directions for the search cone,
which was set for the indicator variogram. The top-left figure
represents the lithofacies in 0°, the top-right represents the
lithofacies in 45°, the bottom-left represents the lithofacies in
90°, and the bottom-right represents the lithofacies in 135°.

It can be seen in Fig. 10 that this reservoir consists mainly
of sandstone with some inter-bedded shale zones, as men-
tioned before. A decrease mixed sand and shale deposits are
preserved in the northern area of the field as mentioned before
(the angle of 135°). In addition, the most effective reservoir
rocks of high quality, with less shaly sand, have inhomoge-
neous distribution with rapid vertical and lateral variations.
Furthermore, the entire sand distribution tends to be heteroge-
neous through rapid lateral and vertical variations.

Fig. 10 3D variogram-based geostatistical lithofacies distributions in the
four different azimuth directions for the main pay in south Rumaila oil
field. The four models represent the lithofacies given four variogram
azimuth directions (0o, 45o, 90 o, and 135o) by using the sequential

indicator simulation (SISIM). The lithofacies are sand, shaly sand, and
shale. The variograms have been created given each lithotype in the four
azimuth directions

Table 1 Indicator variogram parameters for all the lithofacies in the
four azimuth directions

Range

Facies Major Minor Range Azimuth Nugget Variogram type

Sand 1800 500 100 0 0.197 Spherical

Shaly sand 1795 500 100 0 0.201 Spherical

Shale 1340 500 100 0 0.00 Spherical

Sand 1658 500 100 45 0.067 Spherical

Shaly sand 1326 500 100 45 0.063 Spherical

Shale 1320 500 100 45 0.0 Spherical

Sand 1550 500 100 90 0.1 Spherical

Shaly sand 1215 500 100 90 0.1 Spherical

Shale 2376 500 100 90 0.1 Spherical

Sand 1872 500 100 135 0.1 Spherical

Shaly sand 1753 500 100 135 0.1 Spherical

Shale 1997 500 100 135 0.1 Spherical
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In order to judge the accuracy of the resulting 3D facies
modeling for the main pay/south Rumaila field, one should
consider the depositional environment of tidal/estuarine in
which the sand channels are stacked and continuous every-
where across the formation. The resulting lithofacies model-
ing provides an approximate description of that tidal deposi-
tional environment in all the four direction models. Since the
shoreline direction of south Rumaila field is located at the
southeast direction, the lithofacies model of 135° tends to be
the most accurate depositional description that preserves the
reservoir heterogeneity and captures the most realistic geolog-
ical environment.

Summary and conclusions

To capture the most realistic geological model and to preserve
the reservoir heterogeneity, the geostatistical modeling of
Sequential Indicator Simulation (SISIM) was adopted for 3D
lithofacies reconstruction of the upper sandstone member/
Zubair formation in south Rumaila field, located in Iraq. The
SISIM algorithm was implemented to capture the tidal/
estuarine depositional environment of the reservoir. The
SISIM was adopted on the reservoir in a high resolution of
approximately two million gridding systems. Four different
directions of the indicator variograms were estimated and
modeled for the lithofacies data to create the 3D lithofacies
models given these four azimuth directions.

The indicator variograms were necessary to link and quan-
tify correlation between geological variations through model-
ing the similarity between discrete lithofacies with the spatial
lag distance. Specifically, indicator variogram modeling is a
way to incorporate the geological knowledge into reservoir
characterization process in order to reduce the uncertainty of
spatial modeling. The resulting 3D lithofacies modeling en-
compasses mainly of sandstone with some inter-bedded shale
and shaly sand zones that match the tidal/estuarine deposition-
al system, which has been described in the literature.
Specifically, the shape of the resulting 3D modeling through
SISIM has clearly indicated the tidal/estuarine-dominated and
sand-rich environment for the upper sandstone formation.
According to the southeast shoreline direction of south
Rumaila field, the lithofacies model of 135° describes the
most realistic depositional environment that captures the res-
ervoir complexity and heterogeneity.

The resulting 3D lithofacies model can be then used as
basis for the petrophysical property modeling given each
lithotype. That leads to preserve the reservoir heterogeneity.
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