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Abstract This study compares the predictive performance of
GIS-based landslide susceptibility mapping (LSM) using four
different kernel functions in support vector machines (SVMs).
Nine possible causal criteria were considered based on earlier
similar studies for an area in the eastern part of the Khuzestan
province of southern Iran. Different models and the resulting
landslide susceptibility maps were created using information
on known landslide events from a landslide inventory dataset.
The models were trained using landslide inventory dataset. A
two-step accuracy assessment was implemented to validate
the results and to compare the capability of each function.
The radial basis function was identified as the most efficient
kernel function for LSM with the resulting landslide suscep-
tibility map showing the highest predictive accuracy, followed
by the polynomial kernel function. According to the obtained
results, it concluded that using SVMs can generally be con-
sidered to be an effective method for LSM while it demands
careful consideration of kernel function. The results of the
present research will also assist other researchers to select
the best SVM kernel function to use for LSM.
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Introduction

Landslide is one of the most damaging common geologic
hazards all over the world. It poses a threat to the safety of
human lives as well as the environment, resources and prop-
erty (Yesilnacar and Topal 2005; Kanungo et al. 2006; He
etal. 2012). In order to mitigate the impacts and consequences
of landslides, landslide susceptibility mapping (LSM) is sup-
posed to be an appropriate approach to enhance the under-
standing and to predict future hazards (Feizizadeh and
Blaschke 2013a). LSM aims to assess the proneness of the
terrain to future mass movements and slope failures. It also
helps decision makers and managers to become aware of
landslide-susceptible regions in order to diminish the unpleas-
ant consequences of this hazard by appropriate management
of slope. Susceptibility values are usually expressed in a car-
tographic way. LSM is a multi-faceted approach, and landslide
as a spatial decision problem takes a variety of decision
making-related spatial factors into account. Over the last three
decades, regional landslide susceptibility assessment has been
considered as one of the most challenging issues in the inter-
national landslide literature (Pradhan 2012). As a response to
this challenge, many researchers have attempted to produce
LSM by using different techniques and methods (Ayalew and
Yamagishi 2005; Gorsevski et al. 2006; Yal¢in 2008;
Gorsevski and Jankowski 2010; Feizizadeh and Blaschke
2011; Pradhan 2012; Shadman Roodposhti et al. 2014,
Hong et al. 2015a, b; Tsangaratos et al. 2016; Chen et al.
2016; Hong et al. 2016a, b, c). Since the LSM is generated
through a number of related spatial factors, using an integrated
approach of multi-criteria decision analysis (MCDA) and the
geographical information systems (GIS) leads to making an
appropriate approach for assessing more effective factors of
landsliding (MCDA, Feizizadeh and Blaschke 2011;
Feizizadeh and Blaschke 2012). However, due to the fact that
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GIS-MCDA deals with a wide range of spatial factors, it is
increasingly known that the process of this method itself is a
main source of the inherent uncertainties in the results
(Feizizadeh and Blaschke 2012; Feizizadeh and Blaschke
2013b; Feizizadeh and Kienberger 2017).

Soft computing approaches are increasingly used for
LSM during more recently, and a large number of method-
ologies such as support vector machines (SVM, Yao et al.
2008; Yilmaz 2010; Micheletti 2011; Ballabio and
Sterlacchini 2012), artificial neural networks (ANNs, Lee
et al. 2007; Pradhan and Lee 2010; Bui et al. 2012a) and
neuro-fuzzy model (adaptive neuro-fuzzy inference strategy
(ANFIS), Ercanoglu and Gokceoglu 2004; Pradhan et al.
2009; Bui et al. 2012b) have been proposed for LSM.
When studying the literature, one may conclude that each
of these approaches can report on success stories, but disad-
vantages were identified in several comparison studies. For
example, ANN and ANFIS methods do not work properly
when there are some limitations such as lack of enough
knowledge about the study area. As a result of incomplete
data, these methods lead to imaginary and also inaccurate
results (Yilmaz 2010). Generally, although all of the men-
tioned approaches have own benefits and drawbacks, a large
number of researches argue that the advantages of the SVM
method are far more. SVM is a supervised learning method
based on statistical learning theory and the structural risk
minimization principle (Vapnik 1998; Yao et al. 2008;
Pradhan 2012). This method is a fairly new method which
transfers the covariates into a higher dimensional feature
space within nonlinear transformations (Brenning 2005;
Yilmaz 2010). The main advantage of this method is that
it can use large input data with fast learning capacity. This
method is well suited to nonlinear high-dimensional data
modelling problems and provides promising perspectives in
the LSM (Bai et al. 2008). Moreover, kernel methods gen-
erally are a class of algorithms for pattern analysis in SVM
modelling and the selection of the kernel function is a very
important and mission-critical step. The classes divide with a
decision surface which maximizes the margin among the
classes (Pourghasemi et al. 2013).

Although many kernel functions have been previously
proposed and used, only some have been found to work
well for a wide variety of applications including LSM (Xu
et al. 2012). Given the fact that, when used for LSM, any
change in SVM kernel function coincides with changes in
the resulting susceptibility map, an obvious question that
arises is that “with so many different kernel functions to
choose from, which is the best for LSM?” The question as
such is not new. The key difference between this paper
and the mentioned literature earlier is that we will system-
atically compare within one single framework these func-
tions and their direct consequences on the resulting maps
and their respective accuracies in this study. Considering
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the fact that hazard management and mitigation costs are
directly related to the spatial extension of potentially haz-
ardous areas, it seems obvious that more accurate and
specific susceptibility maps will critically reduce both
economic and social costs in the provision of measures
aimed at decreasing the risk of living with landslides. In
using of SVM for LSM, it is believed that any change in
SVM kernel function leads to changes in resultant land-
slide susceptibility map. By considering this importance,
another difference of this study with other studies which
are done in this field is that this research focused on a
comparative approach of applying different kernel func-
tions of SVM in order to identify the most effective func-
tion for LSM, unlike the previous studies. In the follow-
ing sections, first, the study area will be introduced and
further described; then, four different types of SVM ker-
nel functions including linear, polynomial, radial basis
function (RBF) and sigmoid function will be used for
LSM purpose. Accordingly, the obtained results for each
different previously mentioned kernels will be compared
considering the result of accuracy assessment phase.

Study area

The study area was the Izeh basin, which is located in the
eastern part of the Khuzestan province, Iran (Fig. 1). The
region is important for the whole of southern Iran in terms
of the agricultural activities because of the significant
amount of hydropower plants. Landslides are common in
Izeh basin, and so far, in 2014, the occurrences of 109
landslide events have been recorded by the Ministry of
Natural Resources (MNR) Iran. The information of these
landslides has been gathered from several field surveys.
The temperature regime in the Izeh basin is directly relat-
ed to elevation parameters. The annual average precipita-
tion within the study area strongly depends on elevation
and varies from 453 to 671 mm. Averages of the annual
temperature range from a high of 33.00 to a low of
1.00 °C.

The geology of this area is very complicated, and there
are several faults that make this area highly susceptible to
landslides and mass movements (see Fig. 1). For the
modelling of future landslides and the creation of land-
slide susceptibility maps, the unstable geology formations
need to be considered. In particular, the dominant constit-
uents of sedimentary rocks need to be differentiated, pre-
dominantly marl, shale, limestone, gypsum and siltstone
within the southern parts of the study area. To summarize,
it is anticipated that proximity to faults and the dominant
constituents of sedimentary rocks contribute to slope in-
stability and potentially to landslide occurrence.
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Fig. 1 Map of the study area: Northern Iran (/eff) and location with the Izeh basin with known landslides (right)

Material and methods rivers and drainage area were extracted from a 1:50,000
topography map, while the fault and lithology maps were
obtained from Iranian standard 1:100,000-scale geologic
maps. In addition, the slope and aspect criteria were de-
rived from 30-m shuttle radar topography mission
(SRTM) digital elevation model (DEM). Land use/cover
maps were derived from Landsat ETM+ satellite images

with a 30-m spatial resolution by the method of maxi-

Landslide influencing factors and data processing

The most important factors in the occurrence of a land-
slide are slope and aspect (Feizizadeh and Blaschke
2012). Moreover, the slopes between 7° and 10° are the
decisive factor for a landslide to occur. Other factors that

play their roles in this phenomenon include distance to
river, drainage density, distance to fault, precipitation, dis-
tance to road, lithology and land use/cover. Note that
these factors were selected based on the physical proper-
ties of the study area, data availability and reviewing re-
lated literatures (Yalgin 2008; Nandi and Shakoor 2009;
Ozdemir 2011; Feizizadeh and Blaschke 2011; Feizizadeh
et al. 2012; Moradi et al. 2012; Kayastha et al. 2012;
Feizizadeh and Blaschke 2013a, b; Feizizadeh et al.
2013a, b; Shadman Roodposhti et al. 2014; Jaafari et al.
2014; Feizizadeh et al. 2014; Faraji Sabokbar et al. 2014).
The proposed LSM model starts with these selected nine
causal criteria. Relevant dataset was used to prepare maps
for each of these factors as input for the LSM. Roads,

mum, and the accuracy was 95.63%.

Finally, the annual reports of the Iranian Meteorological
Organization from a number of 23 stations have been used
to generate precipitation map. A landslide inventory dataset
(109 known landslide events) and information on historic
landslides (MNR, Ministry of Natural Resources, Khuzestan
Province 2010), which are 121 landslides in total, have also
been used for further training and validation of the model.
After the preprocessing and preparation of the spatial datasets,
all necessary geometric thematic editing was done on the orig-
inal datasets. Respectively, all vector layers (with different
resolutions) were converted into raster format with a 30-m
resolution, and the spatial datasets were processed. Figure 2
depicts the spatial distribution of all criteria for LSM model.
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One-class support vector machine

Support vector machine (SVM) is a supervised learning meth-
od derived from statistical learning theory and the structural
risk minimization principle (Boser et al. 1992; Vapnik 1995;
Vapnik 1998). It separates the classes with a decision surface
that maximizes the margin between the classes (Abe 2010).
The surface is often called the optimal hyperplane, and the data
points closest to the hyperplane are called support vectors. The
support vectors are the critical elements of the training set.
However, typically, SVMs are an example of a linear two-
class classifier which seeks to maximize the margin between
the two classes (Fig. 3a); it could be used for one-class classi-
fication purpose, where one tries to detect one class and reject
the others (Fig. 3b) (Gunn 1997; Mufioz-Mari et al. 2010).
The one-class support vector machine (OC-SVM) was pro-
posed by Scholkopf et al. (2001) as a support vector method-
ology to estimate a set that encloses most of a given random
sample wherex; € R?. Eachy; is first transformed via a map
¢ : RY— H where H is a high (possibly infinite)-dimensional
Hilbert space generated by a positive definite kernelk(x;, ;).
The kernel function corresponds to an inner product in H
throughk(x;, v;) = (p(x;), ©(1;)). The OC-SVM attempts to find a
hyperplane in the feature space that separates the data from the
origin with maximum margin (the distance from the hyperplane
to the origin). In the event that no such hyperplane exists, slack
variables &allow for some points to be within the margin, and
the free parameter v € [0, 1] controls the cost of such violations.
In fact, v can be shown to be an upper bound on the fraction of
points within the margin (outliers) (Schélkopf et al. 2001). The
hyperplane in feature space induces a generally nonlinear sur-
face in the input space. More precisely, the OC-SVM as pre-
sented by Scholkopf et al. (2001) and Tax and Duin (1999)
requires the solution of the following optimization problem:

min 1 1 1
W@b{EHWHergglfrp} (1)

Subject to(w, (x;))>p—¢;,  &>0. (2)

Fig. 3 Typical support vector

machine classifiers. a Two-class
SVM (Gunn 1998). b One-class
SVM (Muinoz-Mari et al. 2010)

Here, w is a vector perpendicular to the hyperplane in H, and
p is the distance to the origin. Since the training data distribu-
tion may contain outliers, a set of slack variables & > 0 is intro-
duced to deal with them (which allows for penalized constraint
violation), as usual in the SVM framework. The parameter
ve [0, 1] controls the trade-off between the number of exam-
ples of the training set mapped as positive by the decision
function f{x)=sng(w, ®(x;)) —p and having a small value of
[wlito control model complexity. Finally, it must be noted that
it is possible to separate landslide and nonlandslide patterns
either through one two-class support vector machine (TC-
SVM) or two OC-SVMs, which the latter produces more con-
servative decision regions (Elshinawy et al. 2010).

Kernel functions

The performance of the SVM model depends on the choice of
the kernel parameters. Accordingly, the selection of the kernel
function is very important in SVM modelling (Xu et al. 2012).
However, new kernels are being proposed by researchers, four
kinds of them are often used: linear kernel, polynomial kernel,
RBF kernel (often called Gaussian kernel) and sigmoid kernel
as the last one (Gunn 1997; Hsu et al. 2010; Pradhan 2012;
Hong et al. 2015a, b).

Linear

The linear kernel was proposed by Campbell et al. (2006) as a
simplest kernel function. A linear kernel function which is a
popular method for a linear modelling is defined by the fol-
lowing:

T
k(x,«,xj) = X; ,Xj (3)
There are some situations where the linear kernel becomes

more appropriate. In particular, when the number of features is
very large, one may just use the linear kernel (Hsu et al. 2010).

b
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Polynomial

The polynomial kernel is a nonstationary kernel and a popular
method for nonlinear modelling (Gunn 1997; Hsu et al. 2010)
and can then be written as follows:

k(xi7xj) = (inTrxj + r)d7’Y >0 (4)

where 7 is the gamma term in the kernel function for all kernel
types except linear, d is the polynomial degree, and r is the
bias term in the kernel function.

Radial basis functions

RBFs have received significant attention (Hsu et al. 2010),
most commonly with a Gaussian of the form

k(wi,3;) = exp (=) 7 > 0 (5)

where v > 0 is a parameter that controls the width of Gaussian.
It plays a similar role as the degree of the polynomial kernel in
controlling the flexibility of the resulting classifier (Ben-Hur
and Weston 2010).

Sigmoid

The sigmoid kernel is defined as (Gunn 1997; Hsu et al. 2010)
follows:

k(xi,xj) = tanh(wxl»r,xj + r) (6)

The use of such a kernel is equivalent to a neural network
with one hidden layer. This kernel depends on two parameters
~and r, which can cause problems during its implementation.

Separability measure

With respect to the fact that identifying landslide-prone loca-
tions was the goal of the present study, the separability assess-
ment focused on distinguishing the landslide from the
nonlandslide class. Separability was assessed through the
Jeffries-Matusita (JM) separability approach that used both
training subsets including landslide and nonlandslide loca-
tions. The JM distance between a pair of class-specific prob-
ability functions is defined as follows (Richards and Jia 2006):

1= (Vo) ) a)

where p(x|w;) and p(x|w;) are the conditional probability densi-
ty functions for the feature vector x, given in data classes of
w; = landslide andw; = nonlandslide events, respectively. Under
normally distributed classes, this becomes the following:

Jj=2(1-¢?) (10)
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2 270 I+l
(11)

In this notation, m; and m; correspond to class-specific,
expected landslide values, and }’; and }; are unbiased esti-
mates for the class-specific covariance matrices of landslide
and nonlandslide subsets, respectively. In the natural loga-
rithm function, [ jand[} jare the determinants of }; and },
(matrix algebra). JM separability measure takes on a maxi-
mum value of 2.0, and values above 1.9 indicate excellent
separability (Richards and Jia 2006). For lower separability
values, it should be taken into consideration to improve the
separability by editing the position of nonlandslide points,
which are located in landslide-prone areas.

Model implementation

Implementation of the proposed methodology includes three
steps: in step 1, test and train landslide subset are randomly
selected from landslide inventory database. Nonlandslide test
and train subsets are produced in nonlandslide areas with re-
spect to the widely used Jeffries-Matusita (JM) separability
measure. In step 2, two OC-SVMs (i.e. for landslide and
nonlandslide data points) were performed with respect to each
proposed kernel function. Then, a five-class susceptibility
map was produced from each two OC-SVMs of respective
kernel functions. Finally, in step 3, a two-step approach of
accuracy assessment was applied to make a more robust com-
parison between resultant susceptibility maps of proposed ker-
nel functions. The overall process of the comparative LSM is
schematically presented in Fig. 4.

Preparing test and train landslide and nonlandslide points

Here, the achieved value for the landslide and nonlandslide
separability measures was equal to 1.977, which suggests
that the two landslide and nonlandslide training subsets
may be distinct with high separability. Figure 5 also depicts
the visual separation of landslide and nonlandslide subsets
for every nine criteria using minimum, maximum and mode
diagrams.

Training and classification

The proposed model of LSM is based on the OC-SVM
classification technique that could be considered as a
quantitative soft computing method within which less
subjectivity is guaranteed. In this respect, following the
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Fig. 4 Schematic representation of the overall comparative LSM process

accomplishments of necessary data preprocessing steps,
each criterion of the study area was divided into a
30 m x 30-m square grid, which contains 2130,613 pixels,
laid out in 1583 columns and 1799 lines. Accordingly,
after importing the preprocessed data into the MatLab
environment, an evaluation matrix is then constructed to
be used in the classification process. Experimental results
not only showed that OC-SVM is more efficient com-
pared to TC-SVM algorithms while producing results of
similar accuracy, but also it requires less time and storage
space to run compared to TC-SVMs (Manevitz and
Yousef 2001; Senf et al. 2006). As a result, two OC-
SVMs were applied for each selected kernel function to
construct the respective susceptibility maps in a further
step.

Landslide susceptibility values can be assessed and
expressed in different ways. Previous studies of LSM typical-
ly use four or five categories of susceptibility potential
(Gorsevski et al. 2006; Yal¢in 2008; Nandi and Shakoor
2009; Gorsevski and Jankowski 2010; Feizizadeh and
Blaschke 2013a, b; Pradhan 2012; Shadman Roodposhti
etal. 2014). In the present study, each of the proposed suscep-
tibility maps is divided into five susceptibility classes namely
very low, low, moderate, high and very high using 2D scatter
plots and nine fuzzy if-then rules (Figs. 6 and 7). Figure 6
illustrates how fuzzy if-then rules have been used for pattern
classification problems.

Validation of models and obtained results

Model validation is a fundamental step when developing a
susceptibility map and for the determination of its prediction
ability in any natural hazard study. The prediction capability
of LSM and its resultant output is usually estimated by using
independent information such as landslide inventory dataset.
In this regard, the test landslide subset has been used and two-
step evaluation procedures were conducted for validation of
each LSM map. In order to make more robust comparison
between resultant susceptibility maps of proposed kernel
functions, root-mean-square error (RMSE) and percent bias
(PBIAS) measures alongside with relative operating charac-
teristics (ROC) curve were used to validate results as follows:

Step 1: RMSE and PBIAS measures

Step 1 consists of using two separate estimators (i.e. RMSE
and PBIAS) in order to assess operational efficiency of the
obtained LSMs. The RMSE is a frequently used measure of
the differences between values predicted by a model or an
estimator and the values actually observed (Hyndman and
Koehler 2006), while PBIAS measures the average tendency
of the estimated values to be larger or smaller than their ob-
served ones (Yapo et al. 1996). Table 1 shows the estimator
assessment results of each SVM kernel function for both land-
slide and nonlandslide subsets, respectively.

@ Springer
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<« Fig. 5 Visual illustration of landslide and nonlandslide subset separations
for every nine criteria including a slope, b aspect, ¢ distance to river, d
drainage density, e distance to faults, f mean annual rainfall, g distance to
roads, h lithology and i land use/cover

Both selected estimators identified RBF as the best method
for LSM (Table 1). In terms of RMSE, however, the difference
is very small between the two best kernel functions (i.e. poly-
nomial and RBF); the comparison of estimator assessment
results confirms that the RBF method seems superior to the
others. Positive values indicate overestimation bias, whereas
negative values indicate model underestimation bias. Here,
comparison of the four LSM models shows that while all the
proposed kernel functions tend to underestimating the bias in
landslides and nonlandslide susceptibility values, RBF
underprediction is much less severe (Table 1). The lower rate
of underprediction of each model yields much greater esti-
mates of accuracy and precision compared to the other
models.

Step 2: ROC curve analysis and simple overlay

In the second step of the accuracy assessment workflow, the
proposed LSM maps were evaluated by calculating the ROC
curve (Fawcett 2006; Nandi and Shakoor 2009; Shadman
Roodposhti et al. 2014) and percentage of known landslides
in various susceptibility classes. The ROC curve is a useful
method of representing the quality of deterministic and prob-
abilistic detection and forecast systems (Swets 1988; Pradhan
2012). In the ROC method, the area under the ROC curve

Very High High Moderate

e
=N

S
S . -
~
@ -
% @e High Moderate Low
2 - e Py
5:) .. - ~ -
03 |&
¢ -
5 .
Low Very Low

0.6 1
Resistance

Fig. 6 Selected if-then rules for 2D scatter plots to interactively classify
two bands of landslide and nonlandslide susceptibilities (resistance) for
different kernel functions

(AUC) values, ranging from 0.5 to 1.0, are used to evaluate
the accuracy of the model. If the AUC is close to 1, the result
of the test is excellent. On the contrary, the closer the AUC to
0.5, the fairer the result of the test (Pradhan 2012).

Two concise and representative test datasets, including 50
recent and historic landslide points and 50 randomly selected
nonlandslide locations (same number to occurred landslide
events) of the study area, were used for further implementa-
tion of the ROC method. The purpose of selecting these num-
bers of landslide and nonlandslide points is in order to achieve
an appropriate dispersion in the study area. When ROC curves
of these four LSMs were considered together, their overall
performances are seen to be close to each other. However, as
expected, the obtained results confirm that the RBF method
(AUC = 0.893) seems to be the most successful model and to
be superior to the others. Table 2 shows the estimated AUC
and standard error value of each ROC curve.

The LSM results were also verified using the test landslide
inventory itself. Accordingly, the 50 landslide locations were
overlaid on the proposed LSMs (Table 3). The result shows
that no recorded landslide appears in neither low- nor very
low-susceptibility zones. This holds true for all four proposed
susceptibility maps. Also, except the case of sigmoid LSM
within which 12 landslides fall into the moderate-
susceptibility zone, the same numbers of landslide events oc-
cur for the moderate-susceptibility zones of all other LSMs,
namely six. The respective numbers of landslide events in the
high and very high susceptibility zones vary for all four resul-
tant maps (Table 3).

In addition to the previously mentioned, it should be men-
tioned that while the RBF-based susceptibility map shows the
most reliable results regarding the number of occurred land-
slide events in high- and very high-susceptibility zones (i.e. 44
occurred landslide events), the sigmoid kernel function seems
to not work reliably to the same extent (i.e. 38 occurred land-
slide events).

Discussion

The application of the SVM has been successfully demon-
strated in this paper for the spatial prediction of landslide
susceptibility.

The application of the SVM has been gaining significant
attention in hazard mapping. It is believed to be an effective
method since it has gained several advantages including ro-
bustness to noise, nonlinear decision boundaries, easily
implementable probabilistic outcome and an inherent capabil-
ity to deal with high-dimensional classification problems
(Ballabio and Sterlacchini 2012). In addition, the susceptibil-
ity map produced by SVM appears to have a lower spatial
variability when compared with the ones produced by other
LSM techniques, while retaining a superior prediction
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Fig. 7 Final landslide a
susceptibility maps for different
kernel functions including a
linear kernel, b polynomial
kemel, ¢ RBF kernel and d
sigmoid kernel
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performance (Ballabio and Sterlacchini 2012). Based on these
capabilities, the mean objectives of this research were to apply
SVM for LSM and to investigate the differences in terms of
the functions used. We started from the assumption that the
performance of the SVM model significantly depends on the

Table 1  Estimator assessment results of each SVM kernel function

Linear ~ Polynomial ~RBF Sigmoid

Landslide RMSE  0.555 0.515 0.514 0.717
PBIAS —0.483 —0.434 —0432  -0.692

Nonlandslide ~RMSE 0377 0.358 0.351 0.373
PBIAS —-0.243 —0.220 -0.211  —0.253

choice of the kernel parameters. Therefore, in the present
study, a comparative LSM study was performed by using
OC-SVM with four different types of kernel functions namely,
linear, polynomial, RBF and sigmoid.

Regarding the fact that SVM is a kernel-based algorithm, it
uses a kernel function to transform data from input space into
a high-dimensional feature space in which it searches for a

Table 2 Results of ROC curve analysis for each SVM kernel function

Linear Polynomial RBF Sigmoid
AUC 0.882 0.889 0.893 0.828
Std. dev. 0.035 0.034 0.033 0.043
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Table 3 Number of landslide events for each LSM susceptibility class

Linear ~ Polynomial RBF  Sigmoid
Very low susceptibility 0 0
Low susceptibility 0
Moderate susceptibility 6 6 6 12
High susceptibility 14 12 11 15
Very high susceptibility 30 32 33 23

separating hyperplane (Bak 2009). However, the validation
results from both accuracy assessment steps (prior and poste-
rior to map classification) showed that RBF kernel followed
by polynomial kernel assumes to be more reliable in LSM
among other applied kernel functions. In other words, accord-
ing to both statistical estimator assessment results of each
SVM kernel function for landslide and nonlandslide test sub-
sets, RBF kernel demonstrated less prediction error (Table 1),
which conclusively demonstrates more accurate prediction
with respect to ROC curve analysis and simple overlay results
(Tables 2 and 3). Thus, after elaboration of detailed compari-
son studies, we notice that the RBF kernel performance
followed by polynomial kernel function assumes to be the best
kernels for LSM while the sigmoid kernel seems to be the least
suitable. In addition, if compared with other landslide suscep-
tibility maps previously produced for the study area using
subjective (AHP and Fuzzy-AHP) and hybrid (Fuzzy
Shannon Entropy) methodologies (Feizizadeh et al. 2013b),
resultant landslide susceptibility maps of two superior kernel
functions (i.e. RBF and polynomial) appear to be far more
specific in their spatial delineation of landslide-prone areas
where higher accuracy is guaranteed.

Conclusion

The main goal of this paper was to generate landslide suscep-
tibility map via support vector machine (SVM). Four pro-
posed kernels including linear, polynomial, radial basis func-
tion (RBF) and sigmoid function of SVM classifier have been
found feasible and able to produce reliable susceptibility maps
in terms of both accuracy and performance speed regardless of
expert’s opinions. However, detailed results revealed that the
RBF-based landslide susceptibility map yields the most pre-
diction accuracy and it is identified as the most efficient kernel
functions for LSM. The results of accuracy assessment anal-
ysis prior and posterior to map classification also show that the
RBF followed by polynomial kernel function is the most ac-
curate kernel function for LSM. While the susceptibility map
created with the sigmoid function contains the largest portion
of landslide-prone areas (high- and very high-susceptibility
classes together) followed by the least prediction accuracy, it

possesses the least prediction efficiency in comparison with
the other three kernel functions.

Ultimately, we need to state that the obtained landslide
prediction maps were not only accomplished for the sake of
comparison. The authors will provide all four versions with
respective explanations to the responsible authorities in Izeh
for risk management. The information provided by these maps
shall help citizens, planners and engineers to reduce losses
caused by existing and future landslides by means of preven-
tion, mitigation and avoidance. The results are therefore useful
for explaining the driving factors of the known existing land-
slides, for supporting emergency decisions and for supporting
the efforts on the mitigation of future landslide hazards in the
Izeh basin.
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