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Abstract Frequent human activity and rapid urbanization
have led to an assortment of environmental issues.
Monitoring land-cover change is critical to efficient environ-
mental management and urban planning. The current study
had two objectives. The first was to compare pixel-based
random forest (RF) and decision tree (DT) classifier methods
and a support vector machine (SVM) algorithm both in
pixel-based and object-based approaches for classification
of land-cover in a heterogeneous landscape for 2010. The
second was to examine spatio-temporal land-cover change
over the last two decades (1990–2010) using Landsat data.
This study found that the object-based SVM classifier is the
most accurate with an overall classification accuracy of
93.54% and a kappa value of 0.88. A post-classification
change detection algorithm was used to determine the trend
of change between land-cover classes. The most significant
change from 1990 to 2010 was caused by the expansion of
built-up areas. In addition to the net changes, the rate of
annual change for each phenomenon was calculated to obtain
a better understanding of the process of change. Between
1990 and 2010, an average of 4.53% of lands turned to the
built-up annually and there was an annual decrease of about
0.81% in natural land. If the current trend of change con-
tinues, regardless of the actions of sustainable development,
drastic declines in natural areas will ensue. The results of this
study can be a valuable baseline for land-cover managers in

the region to better understand the current situation and
adopt appropriate strategies for management of land-cover.
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Introduction

Land-cover is a key variable in both space and time with which
to adjust parameters (e.g., exchange of carbon, water and en-
ergy) within and between earth systems (Brown de Colstoun
and Walthall 2006). Change in land-cover is an important var-
iable when assessing global changes that affect environmental
systems (Loveland andBelward 1997). Recently, issues related
to land-cover changes have attracted interest of those who
model spatial and temporal patterns of land conversion to those
who want to understand the causes and influences of land-
cover change (Keshtkar and Voigt 2016b; Wu et al., 2008).

In general, intense human activity has increased construc-
tion and agricultural lands and has led to destruction of forests,
meadows and other natural resources (Lambin and Geist
2003; Lawrence et al., 2012). Previous studies have indicated
that anthropogenic activities associated with construction pol-
lute the atmosphere, water, and soil (Kang et al., 2010; Li
et al., 2009). The destruction of forests and meadows contrib-
utes to the loss of biodiversity, releases carbon into the atmo-
sphere, and changes the surface albedo, which affects climate
change (Foley et al., 2005; Hua and Chen 2013). Therefore,
detailed and timely information about land-cover is essential
for land change monitoring, management of ecosystems, and
urban planning.

Previous researches have shown that some topographic fac-
tors (such as elevation and slope) influence the microclimatic
conditions of a region (Freitas et al., 2010; Zhao et al., 2014).
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These topographic factors influence moisture, temperature, and
solar radiation (Oke, 1987) and indirectly control the spatial
patterns of plant species and land-cover types (Shrestha and
Zinck, 2001; Deng et al., 2007). Moreover, topography is a
major factor influencing the type of human activity that is in-
fluential in shaping landscape patterns. In other words, with the
implementation of conservation measures, human choices re-
garding land-cover have changed greatly due to the impact of
topographic factors (Chen et al., 2001; Fu et al., 2006). A built-
up area tends begin in a flat area with good traffic conditions
and a water supply. Therefore, analysis of the relationship be-
tween land-cover and topographic factors can guide managers
for future land management and vegetation restoration.

Although there are several techniques that can be applied to
analysis and presentation of resource data, but geographic
information system (GIS) and remote sensing (RS) techniques
are recognized as powerful tools and are widely used for the
investigation of spatiotemporal dynamics of land-cover
(Keshtkar and Voigt 2016a; Zhao et al. 2014). The availability
of data in appropriate intervals and high/medium resolution
satellite images are useful for both visual and quantitative
assessments of land-cover dynamics over time (Keshtkar
and Voigt 2016a). On the other hand, analysis and representa-
tion of such data can be considerably facilitated through the
use of GIS techniques (Long et al. 2008).

Classification of satellite images is a common method for
extracting information related to land-cover patterns and
change. Several image classifier techniques have been devel-
oped, a comprehensive review of which can be found in Lu
and Weng (2007). Selection of appropriate classification
methods and imagery depends on the planned applicability
of the final product. Land-cover classification by satellite im-
ages can be based on pixels or objects. While analysis based
on pixels has been the dominant approach in the classification
of remote sensing images, object-based image analysis has
become more common in recent years (Blaschke 2010).
Pixel-based methods use only spectral information to classify
images, while object-based methods segment images into ho-
mogeneous regions (image segments) before classification
and can use non-spectral information in the segmented images
together with spectral information (e.g., mean, standard devi-
ation) for classification (Johnson, 2013; Myint et al., 2011).
Although some studies have compared thematic mapping ac-
curacy produced using different classification algorithms,
conflicting results have been obtained. For example, Adam
et al. (2014) and Rodriguez-Galiano and Chica-Rivas (2012)
reported that the random forest (RF) model achieved higher
classification accuracies than the support vector machines
(SVM) model. Conversely, Pal and Mather (2005) found that
both RF and SVM classifiers produced similar classification
accuracies. Also, Duro et al. (2012b), and Gislason et al.
(2006) reported that the RF model achieved higher
classification accuracies than the decision tree (DT)

model. While, Otukei and Blaschke (2010) discovered that
DT generally achieved better classifications than those obtain-
ed using SVM. Therefore, more research is required in this
area (especially for preparation of land-cover maps) to ascer-
tain the superiority of one method or group of methods over
others.

This study focuses on comparing various machine learning
algorithms, i.e., RF (Breiman 2001; Ghimire et al. 2010), DT
(Szantoi et al. 2015; Quinlan 1987), SVM (Szantoi et al. 2013;
Vapnik 1995), and object-based support vector machines
(OSVM, Duro et al. 2012b), to classifying Landsat image
2010. Furthermore land-covermaps of 1990 to 2010 produced
using multi-temporal Landsat images (TM and ETM+)
and the best classifier method. For this purpose, multispectral
images of the study area over a period of two decades
have been chosen to indicate the changes in land-cover phe-
nomena. Our specific objectives were to (1) compare pixel-
based and object-based classification methods for land-cover
mapping, (2) identify the land-cover dynamics in the study
area during the periods from 1990 to 2000, and 2000 to
2010 by using multi-temporal remotely sensed data and GIS,
and (3) analyze the relationship between land-cover and
topographic factors.

Materials and methods

Study area

The study area is located in central Germany and covers
6900 km2 (Fig. 1). Elevation ranges from 114 to 982 m.a.s.l,
with higher elevations concentrated in the Grosser Beerberg
Mountain located in the Thuringian Forest. The predominant
climate is of the continental type with an average annual
rainfall of 604 mm and an average annual air temperature of
8.6 °C (based onmonthly recording data of 18 stations, in Free
State of Thuringia from 1960 to 1990). The soil parent
material is mainly calcareous. The land-cover maps presented
five classes: forest, built-up area, grassland, farmland, and
water bodies (lakes, rivers, ponds, and reservoirs).

Landsat image collection and pre-processing

In this study, temporal coverage Landsat TM and ETM+ im-
ages from 1990 to 2010 with a standard spatial resolution of
30 × 30 m were obtained from the US Geological Survey
(USGS) archive (http://earthexplorer.usgs.gov/). The study
area is located into a southern and a northern Landsat image
(path 194, rows 24 and 25), which were mosaicked into a
single scene. Since Landsat ETM+ images from 2003 and
beyond have high rates of no data values, images from 2010
were collected from Landsat TM. Image registration was
performed by selecting an appropriate number of well-
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recognized ground control points (i.e., road intersections). A
second-order polynomial transformation was used to hold
down the root-mean-square error (RMSE). Eventually, images
with an error lower than a half-pixel (about 15 m) were regis-
tered. Moreover, the PCI Geomatica ATCOR model was used
for atmospheric correction (Geomatica 2013). Atmospheric
and terrain effects were removed to determine the true ground
reflectance of the Earth’s surface. This model requires infor-
mation, some of which is available in the metadata file, in-
cluding date and time of data acquisition, sensor type, coordi-
nation of the image center, and atmospheric definition area.
Atmospheric definition area was set up as Brural^ area and
atmospheric condition was determined as Bmid-latitude sum-
mer.^

Image classification

Images classification is one of the most important processes in
capturing detailed land-cover information. The model used in
this study operates in two stages. At the first stage, we com-
pared several classifiers that are considered to be suitable for
land-cover image classification. Training samples were select-
ed for training process before classification. After the selection
of training samples, different classification algorithms were
used to create the classified maps from Landsat 2010 image.
Then, the accuracy of classified maps was compared not only
by visual observation but also by statistical methods (Overall
accuracy and Kappa coefficient). The second stage involved
classifying all images (1990, 2000, and 2010) using the best

classification algorithm identified in the first stage and had a
process similar to that of first stage. Ultimately, all classified
maps undergo an accuracy evaluation.

Collection of training data

In this study, five land-cover categories (Built-up area, Forest
land, Framland, Grassland, Water bodies) have been deter-
mined with visual interpretation and analysis of the satellite
images. We gathered ground truth data (training and valida-
tion data) based on Quickbird images available in Google
Earth (http://earth.google.com). The geo-positional accuracy
of the Quicbird images was assessed by overlaying road and
topographic maps. This showed that the images were compa-
rable to that of the georeferenced Landsat images. For whole
of study area, a sample of ground truth points randomly col-
lected within the area covered by high-resolution Quickbird
images, overlaid selected points on the Quickbird images, and
then grouped these points to appropriate classes based on vi-
sual interpretation. A point was assumed as an especial class if
land-cover patches included at least one pixel. Based on visual
interpretation of the Landsat images, the training sites were
carefully determined and restricted to homogeneous regions
where class membership was permanent from 1990 to 2010.
We checked the separability of the training samples by
Jeffries-Matusita distance measure and optimized the sample
dataset until we achieved maximum stable accuracy. This op-
timizing task was carried out by removing training samples
that may have been sources of error or collecting new samples

Fig. 1 Location and elevation
model of study area
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to obviously misclassified categories. Finally, we used a sam-
ple of 1374 points were mapped from Quickbird images. We
split all ground truth points into training (85%) and evaluation
(15%) data.

Pixel-based image classification

Pixel-based image classification approaches either automati-
cally allocate all the pixels in an image to land-cover types or
classify them thematically pixel by pixel. In this study, three
different pixel-based machine learning classifiers were ap-
plied on each data set, namely (1) random forest, (2) decision
tree, and (3) support vector machines.

Decision tree

Decision tree (DT) is a non-parametric classification
method which can deal with various types of datasets
containing categorical variables. DT represents a set of
constraints or conditions that are hierarchically organized
and is composed of one root node (containing all data), a
number of internal nodes (splits), and a set of terminal
nodes (leaves). Each node in a decision tree has only one
parent node and two or more descendent nodes (Breiman
et al. 1984).

This model was run in R software (R Core Team, 2013)
using the rpart package (Therneau and Atkinson 1997)
which uses the Classification and Regression Tree algorithm
(CART; Breiman et al., 1984). In this study, Binformation
gain^ measure was considered for deciding between alterna-
tive splits. The rpart package has two main parameters to be
adjusted: The minimum number of observations in a node
(minsplit), and maximum depth of tree (maxdepth).
Although complex trees are more expressive and potentially
allowing higher accuracy, but they do not generalize the data
well and are more likely to overfit. Pruning the model by
setting the minimum number of observations in a node or
setting the maximum depth of the tree can avoid this prob-
lem. Therefore, we tried to examine several decision trees to
achieve a strong model.

Random forests

RF is a nonparametric algorithm which is considered as an
improved version of CART algorithm. RF method has two
key parameters that must be adjusted: the number of tree
(ntree) and the number of input variables (mtry). These two
parameters must be optimized to improve the classification
accuracy (Breiman 2001).

The splitting criterion used in this study was the Gini
coefficient, and the stop criteria to stop splitting, i.e.,
the minimum number of samples in a node and the mini-
mum impurity in a node were set 1 and 0, respectively, in

which values the decision trees will be full grown. We
used a grid-search approach based on the OOB estimate
of error to figure out the optimal combination for ntree
and mtry parameters (Tian et al. 2009). Finally, the opti-
mized parameters were entered into ImageRF in the
EnMAP-Box to classify satellite image (Waske et al.
2012).

Support vector machines

A support vector machine (SVM) is a discriminative
method that classifies data according to the statistical
learning theory (Vapnik 1995). In this study, SVM was
implemented using the radial basis function (RBF) ker-
nel. The SVM implementation of ENVI 4.8 software
(ITT Visual Solutions Inc., http://www.ittvis.com/) has
four parameters to be adjusted: the kernel width
Bgamma (γ),^ the penalty parameter (C), the number of
pyramid levels to use, and the classification probability
threshold value. Classification probability threshold is an
important value for the SVM classifier since all rule
probabilities less than this threshold are unclassified.
We set zero value for this threshold that means all
pixels had to be classified into one category. Also, we
set zero value for the pyramid parameter, which force the
model to processes the image at full resolution. By
default, the inverse of the number of bands is set for
the value of gamma. Studies have shown that the best
combination of γ and C depends on the training data and
cannot be known by default (Kuemmerle et al. 2009).

Object-based image classification

The image segmentation technique used consists of two
key steps: (1) edge-based segmentation and (2) full
lambda schedule merging. This procedure begins with
multiscale edge-based segmentation that divides the im-
ages into image objects with similar spatial, spectral and
textural characteristics. Over-segmentation and under-
segmentation errors can occur in image segmentation
(Kampouraki et al. 2008; Möller et al. 2007). A low
segmentation level generally results in many small seg-
ments which bring about over-segmentation. On the con-
trary, a high segmentation level results in a few large
segments that accord with different land-cover classes.
Hence, a precise analysis appears necessary when choos-
ing a segmentation scale (Liu and Xia 2010). Preventing
formation of over-segmented statements, which can be a
very difficult task, is one of fundamental phases in this
process. The full lambda schedule model was used to
solve over-segmentation problem; hence, segmentation
is used in the integration stage where all adjacent seg-
mentations, given their range and location features, are
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integrated (Robinson et al. 2002). Merging continues if
the algorithm catches a pair of adjacent regions, i and j,
such that merging cost, ti,j is less than a described
threshold lambda value, of 0 to 100. The full lambda
schedule algorithm is estimated as,

ti: j ¼

Oij j � Oj
�
�

�
�

Oij j þ Oj
�
�

�
�
� ui−u j
�
�

�
�
2

length ∂ Oi;Oj
� �� �

where Oi is region i of the image, │Oi│ denotes the area of
region i, ui is the average value in region i, uj is the average
value in region j, ║ui − uj║ is the Euclidean distance between
the spectral values of regions i and j, and length (∂(Oi , Oj))
denotes the length of the common boundary of Oi and Oj.

We classified several image segmentations of different
scales to identify the one with the highest overall accuracy.
This trial-and-error approach is often utilized in object-
based classifications (e.g., Dingle Robertson and King
2011; Duro et al. 2012b; Myint et al. 2011). Following
the image segmentation process, object features were select-
ed for use in the object-based classification.

Selecting object features for use in object-based clas-
sification can be based on user experience and previous
studies (e.g., Duro et al. 2012a; Pu et al. 2011; Yu et al.
2006) or a feature selection method can be used prior to
final classification (e.g., Qian et al. 2014; Van Coillie
et al. 2007). In this study, the inclusion of object features
was based on our knowledge and previous studies.
Consequently, we selected out 16 object features. These
16 features included 12 features calculated based on the
six multispectral bands, which is mean value and stan-
dard deviation of these bands. In addition, we chose in-
tensity, texture-variance, texture-mean, and NDVI
(Normalized Difference Vegetation Index) for classifica-
tions (Table 1). Finally, for executing SVM classification
method, we selected training samples for each land-cover
type based on the previously segmented and merged ob-
jects. All these processes have been done in ENVI
ZOOM (Version 4.8) software (ITT Visual Solutions
Inc., http://www.ittvis.com/).

Accuracy assessment

Accuracy assessment was based on the calculation of the over-
all accuracy, user’s accuracy, producer’s accuracy, and the
Kappa index. We also used McNemar test to assess the statis-
tical significance of superiority of each classification algo-
rithm over another. This test is based on a chi-square (χ2)
statistics, computed from two error matrices and given as,

χ2 ¼ f 12− f 21ð Þ2
f 12 þ f 21

where f12 denotes the number of cases that are wrongly clas-
sified by classifier one but correctly classified by classifier
two, and f21 denotes the number of cases that are correctly
classified by classifier one but wrongly classified by classifier
two (Manandhar et al. 2009).

Analyzing land-cover change

We calculated the net changes and annual changes in the
land-cover within the study area to compare the status of
this factor at different time periods. The net changes were
obtained by pixel based post-classification change detec-
tion algorithm. The post-classification change detection
method not only maps the changes magnitude, but also
determines the trend of changes (from-to) between land-
cover classes (Yuan et al. 2005). Net change was calcu-
lated as the difference in land-cover (in ha) between 1990
and 2010, whereas annual change rates (ACR) were cal-
culated for each time period j as:

ACRj ¼ SC j=CPBj
� �� 100
� �

=Y

where SC is the sum of changes in time period j, CPB is the
cover of each phenomenon at the beginning of time period j,
and Y donates the number of years between image A and
image B.

To assess whether land-cover change varied with altitude
and slope, we classified the digital elevation model (DEM)
into four classes (class 1 (<255 m), class 2 (255–393 m), class

Table 1 Image object features
used in object-based classification Object features Description

Spectral-mean Mean value of the pixels comprising the region in a specific band

Spectral-STD Standard deviation value of the pixels comprising the region in a specific band

Texture-mean Average value of the pixels comprising the region inside the kernel

Texture-variance Average variance of the pixels comprising the region inside the kernel

Intensity Intensity using the spectral-mean attributes and is measured in floating-point
values from 0 to 1.

NDVI Normalized Difference Vegetation Index: (band4 − band3)/(band4 + band3)
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3 (393–561 m), and class 4 (>561 m)) using Jenks natural
breaks classification method and calculated percentage of
net land change for each class. Likewise, we summarized
net land-cover changes for three slope classes: gentle (<5°),
moderate (5–10°), and steep (>10°).

Results

Class separability

The six reflective bands of the Landsat images were used as
the reference basis for the calculation of the separability index
of the collected spectra from the training sites indicating the
different classes. Table 2 shows pairwise spectral separability
values of different classes of training samples for 2010 image
classification. Values range from 0 to 2. The closer to 2, the
more separable training samples have been selected. Values
more than 1.8 indicate that class pairs have good separability,
while values less than 1 represent that the class pairs must be
joint into one class (Petropoulos et al. 2010). Observing the
values shown in Table 2, most of the class pairs are well
separated from each other with values more than 1.8.
Farmland and grassland have comparatively lower value
(1.65); and class separability value of pair of farmland and
built-up area (1.63) is also relatively lower than other pairs.
Thus, no class has to be combined into others because all
values are greater than 1. The selected training samples are
satisfactory to be used for classification.

Tuning of machine learning algorithm parameters

For the DTclassifier, the minsplit was set to 5 and examined a
set of maxdepth from 2 to 7, which yielded a total of 6 clas-
sified images. No minsplit value of less than 5 was selected
because setting minsplit to a very small value runs the risk of
overfitting. The results showed that the highest overall classi-
fication accuracy (percentage of correctly classified samples)
was achieved at a maximum depth value of 6. The structure of
the final decision tree is shown in Fig. 2.

To optimize the ntree and mtry parameters for the RF clas-
sification model, mtry settings from 1 to 6 were examined.
The range for the ntree parameter was 100 to 1000 at intervals
of 100, which resulted in 60 classifications. The results indi-
cated that the ntree setting of 900 combined with a mtry set-
ting of 2 produced the lowest OOB error rate (4.54%). The
highest OOB error rate (5.81%) was produced by a combina-
tion of a mtry setting of 1 with a ntree setting of 100 (Fig. 3b).

For SVM-based classifications, a grid-search approach was
used to find the optimal combination for γ and C parameters.
Therefore, the gamma was adjusted by considering a nested
cross-validation process, where γ (10−3, 10−2, 10−1, 1, 10, 102,
103). Also, we set the C parameter by considering a nested
cross-validation with C (10−2, 10−1, 1, 10, 102, 103). Results
from the grid search indicated that the γ value of 1 combined
with a C value of 10 produced the highest accuracy for the
SVM-based classifications (pixel and object-based methods)
(Fig. 3a).

Also, for object-based classifier, an iterative trial-and-error
approach was used to identify the best image segmentation
scale based on the highest overall accuracy. Results show that
the scale value of 50 without merging to reduce the number of
segments produced the highest accuracy for the object-based
classification method (Table 3).

Accuracy assessment and statistical comparisons

Classification was conducted on 2010 image using four
different machine learning classifiers, which were DT,
RF, SVM, and OSVM. The classification maps are
shown in Fig. 4. Analyzing the classification maps from
Fig. 4a–d visually, indicate that all classifiers can gener-
ate useful land-cover maps and produce consistent clas-
sification results.

In addition to visually observing the classification
maps, the accuracy of the classification maps was
assessed to quantitatively compare the performance of
these classifiers. The classification accuracy statistics
are summarized in Table 4. The results show that classi-
fication using OSVM provided the highest overall accu-
racy (93.54%) and Kappa coefficient (0.88). DT generat-
ed the least accurate classification map with 86.36%
overall accuracy and a Kappa coefficient of 0.76.
Classification maps generated by RF and SVM showed
much higher overall accuracy (90.28 and 90.93%, re-
spectively) than DT, but the values were slightly lower
than for OSVM.

For the OSVM, the classes with the highest producer’s
accuracy were those of water (96.58%), forests (96.31%),
and farmland (96.13%) followed by built-up areas
(94.06%). The lowest producer’s accuracy was obtained
for grassland (63.36%). User’s accuracy was higher for
water bodies (98.61%), forests (96.71%), and farmland

Table 2 Class separability of training samples of 2010 image

Separability
values

Forest Water Farmland Grassland Built-up area

Forest – 1.89 1.92 1.97 1.96

Water 1.89 – 1.99 1.99 1.99

Farmland 1.92 1.99 – 1.65 1.63

Grassland 1.97 1.99 1.65 – 1.83

Built-up area 1.96 1.99 1.63 1.83 –
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(94.57%), followed by grassland (87.74%). The lowest
user ’s accuracy was found for the built-up areas
(78.44%). All classes were easily separable by all classi-
fier algorithms applied. SVM and OSVM classifiers for
grassland showed relatively poor or indistinct producer’s
and user’s accuracy. For RF classification, this was for
grassland and built-up areas and for DT, it was water,
grassland, and built-up areas.

Also, we used the McNemar test to figure out whether a
statistically significant difference exists between different
machine learning algorithm. The McNemar test indicated
that the observed difference between pixel-based image clas-
sifications was not statistically significant (p > 0.05). For
pixel-based classifier methods and object-based classifier, a

statistically significant difference (p < 0.05) between DT and
OSVM algorithms (p = 0.004) was observed, while RF and
SVM algorithms did not show significant difference with
OSVM method (p > 0.05).

Analysis of land-cover change

Object-based classification (i.e., OSVM algorithm) was per-
formed on three Landsat images of 1990, 2000 and 2010.
Accuracy assessment result of each classification map is sum-
marized in Table 5. By counting the number of pixels of each
phenomena for each year, land-cover coverage information
can be obtained, which is shown as Fig. 5.

Fig. 2 Structure of the decision tree

Fig. 3 Heat maps resulted from grid search procedure. aOptimization of
the SVM parameters (C and γ). The F1 measure was used to determine
the best accuracy for the different combinations (n = 42) of parameters. b

Optimization of the RF parameters (mtry and ntree). The OOB sample
was used to determine the error rate for the different combinations
(n = 60) of parameters
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According to the change detection results, the most signif-
icant change occurred from 1990 to 2010 is caused by the
expansion of built-up area. Analysis of land-cover area

changes indicate that during this time period, built-up areas
increased from 2.8% to 5.5%. The built-up land was continu-
ously increased, and the farmland, grassland and forest were

Fig. 4 Land-cover maps of 2010 generated by a DT, b RF, c SVM, and d OSVM classification algorithms

Table 3 The classification result (overall accuracy) of values for image segmentation parameters used in the object-based method. Values in bracket
are the kappa coefficient

Scale level

Merge level 20 30 40 50 60 70 80

0 93.35
(0.882)

93.35
(0.882)

93.35
(0.882)

93.54
(0.884)

92.09
(0.853)

83.56
(0.715)

67.92
(0.352)

20 93.20
(0.879)

93.20
(0.879)

93.20
(0.879)

93.35
(0.880)

91.80
(0.847)

83.51
(0.697)

67.99
(0.352)

40 92.77
(0.870)

92.77
(0.870)

92.77
(0.870)

92.55
(0.863)

91.63
(0.843)

83.01
(0.691)

66.63
(0.326)

60 90.36
(0.822)

90.36
(0.822)

90.36
(0.822)

90.34
(0.819)

91.46
(0.840)

81.27
(0.678)

65.93
(0.321)

80 89.02
(0.794)

89.13
(0.794)

89.15
(0.797)

89.61
(0.803)

88.83
(0.789)

80.64
(0.656)

66.09
(0.313)

154 Page 8 of 15 Arab J Geosci (2017) 10: 154



continuously decreased. Grasslands decreased significantly
from 4.89 to 4.02% during 1990–2010. During this period,
forest area decreased from 32.38 to 32.26%. Also, the cover-
age of farmlands reduced from 59.21 to 57.58% in the same
time. The area of water increased a little.

Figure 5 only illustrates the static state of each phenome-
non in 1990, 2000, and 2010. Table 6 depicts the summarized
specific Bfrom-to^ change information. This table represents
the amount of change from one class detected in 1990 to
another class detected in 2010. The diagonal values in table
represent the area with no change. Forest and farmland are
moderately stable classes that don’t have significant change,
keeping 91.23% and 94.53% unchanged respectively. About
5.04% of forest change to farmland and 2.54% change to
grasslands. As for farmland, a small portion (2.94%) of the
area changes to built-up area and another small portions, i.e.,
1.69, 0.8, and 0.04%, changes to grassland, forest, and water
bodies, respectively. Comparatively, grasslands experience
the most dramatic change. Only about 56.35% of grasslands
were kept unchanged. 19.76 and 16.3% of grasslands alter
into farmland and forest, respectively.

Table 7 shows the ACR of land-cover classes for three time
periods, 1990–2000, 2000–2010, and 1990–2010. This table

indicates that mean annual deforestation rates were three times
higher in 1990–2000 compared to 2000–2010. The maximum
rate of annual change in water bodies belonged to the years
1990–2000 and was about four times higher than the rate of
the succeeding 10 years (2000–2010). Mean annual degrada-
tion rates of farmland and grassland in 1990–2000 were al-
most two times higher than the same rates in 2000–2010.
Also, the results showed that the ACR of built-up area for
1990–2000 and 2000–2010 was 3.53 and 4.09%, respectively.
Between the years 1990 and 2010, an annual average of about
4.53% of lands became built-up. Figure 6 illustrates the pro-
duced land-cover maps.

Land-cover changes in relation to topographic factors

The elevation distribution of each land-cover class is shown in
Table 8. Elevation in the study area is mostly less than 400 m.
The areas with an elevation of <255 m (class 1), 255–393 m
(class 2), 393–561m (class 3), and >561m (class 4) accounted
for 25.4, 36.5, 25.6, and 12.4% of the whole area, respectively.

The results show that more than 80% of class 1 and 60% of
class 2 lands are allocated to farmland; forest, and farmland
occupy approximately 47 and 42%, respectively, of class 3
lands; and more than 70% of class 4 land is covered by forest;
only 20% of class 4 land is farmland. The mean elevation of
each land-cover class is, in ascending order, built-up area
(about 290 m) <farmland (about 310 m) <water bodies (about
350 m) <forest and grassland (over 430 m). During the years
1990–2010, changes in class 1 land reduced the area of farm-
land by 98.6 km2 and increased built-up areas by 81.7 km2.
The most major change was related to the increase in built-up
lands, which was as much as 60.3 km2. The decrease of
38.5 km2 in grassland reflected the greatest change in class 3
land. Forest land underwent the largest change with a loss of
16.4 km2.

The results obtained from the division of the study area
based on slope show that about 61% of the area under study
has a slope below 5 degrees (4220.56 km2), and over 70% of
this slope category is farmland. More than 85% of built-up

Table 4 Summary of mapping
accuracy obtained by different
classifiers to the Landsat TM
2010 image

DT RF SVM OSVM

OA

(86.36)

K

(0.76)

OA

(90.28)

K

(0.85)

OA

(90.93)

K

(0.86)

OA

(93.54)

K

(0.88)

Class UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Forest 95.76 84.41 96.19 95.49 97.26 94.05 97.71 96.31

Water 99.17 56.70 99.00 93.86 99.20 94.07 99.61 96.58

Farmland 89.47 89.24 86.24 93.65 88.97 93.31 94.57 96.13

Grassland 66.39 81.53 83.54 61.06 80.77 56.33 87.74 63.36

Built-up 56.09 81.23 63.68 89.77 78.34 90.07 78.44 94.06

OA overall accuracy, K kappa coefficient, UA user’s accuracy, PA producer’s accuracy

Table 5 Summary of mapping accuracy obtained by object-based
SVM classifier to the Landsat 1990, 2000, and 2010 images

1990 2000 2010

OA
(89.75)

K
(0.84)

OA
(92.36)

K
(0.85)

OA
(93.54)

K
(0.88)

Class UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Forest 97.35 94.23 97.14 96.51 96.71 96.31

Water 99.66 96.99 96.97 96.76 98.61 96.58

Farmland 77.39 92.87 91.87 97.64 94.57 96.13

Grassland 97.16 61.65 84.35 65.37 87.74 63.36

Built-up 86.93 89.28 79.46 93.56 78.44 94.06

OA overall accuracy, K kappa coefficient, UA user’s accuracy, PA pro-
ducer’s accuracy
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areas occupy slopes below 5 degrees. Additionally, over 22%
of the study area (1532.28 km2) has a slope of 5–10 degrees.
Forest and farmland cover about 46 and 44% of this slope
gradient category, respectively. About 17% of the study area
has a slope greater than 10 degrees (1146.56 km2), about 75%
of which is covered by forest (Table 9). The mean slope gra-
dients of built-up land and farmland are less than 3.3°, while
those of forest, grassland, and water bodies are more than 5°.

Discussion and conclusion

This study compared various machine-learning algorithms
(i.e., RF, DT, SVM, and OSVM) with classifying Landsat
image 2010. Furthermore, land-cover maps of 1990, 2000,
and 2010 were produced using multi-temporal Landsat
images.

Land-cover classification

The results showed that SVM has the highest accuracy among
pixel-based methods compared with two other methods (i.e.,
RF and DT) (Table 4), although the McNemar test did not

show a significant difference in the performance of these three
models (p > 0.05). It is noteworthy that both RF and SVM
algorithms can obtain similar overall classification accuracies
which are usually greater than those acquired using DT-based
algorithms (Table 4). All in all, the classification results re-
ported here are generally in agreement with results reported by
some other authors such as Duro et al. (2012b), Gislason et al.
(2006), and Pal and Mather (2005).

The high overall accuracy of the SVM classifier can be
attributed to the ability of this method to optimally separate
hyperplanes into classes for comparison with pixel-based
methods (Licciardi et al., 2009) that may not be able to iden-
tify hyperplanes. SVMs also can generalize this optimal sep-
arating hyperplane to unseen samples with the minimum er-
rors between all separating hyperplanes. This allows them to
make the best class separation at the end of the classification.
Additionally, SVMs attain their assessment directly from the
training data in an appropriate space that is explained by a
kernel function.

In this study, classifications created by either pixel-
based or object-based image analysis produced to rough-
ly similar and visually acceptable representations of the
land-cover classes existing in the study area. The
McNemar test showed that there is no statistical basis
for preferring pixel-based to object-based classifiers. As
expected, the object-based classifier approach (i.e.,
OSVM) in comparison to the pixel-based classifications
obtained a more generalized visual appearance and more
contiguous representation of land-cover, which possibly
better shows how land-cover interpreters and analysts
recognize the landscape (Stuckens et al. 2000).

One weakness of the pixel-based method is the Bsalt and
pepper^ effect (Fung et al., 2008). The restriction of this
effect is not a problem in object-based methods. In the
present study, relatively higher accuracy was achieved
using a combination of segmentation and contextual infor-
mation coming from image objects. The use of segmenta-
tion to collect pixels into objects helped to decrease the

Fig. 5 Pie chart of land-cover coverage (%) from 1990 to 2010

Table 6 Change detection classification matrix for 1990–2010 based
on post-classification comparison to specify Bfrom–to^ transitions. The
amount of changes is demonstrated by percentage (%). Italicized entries
denote that there is no change in land-cover between two dates

1990

Class Forest Water Built-up Farmland Grassland

2010 Forest 91.23 15.98 2.20 0.80 16.30

Water 0.35 75.94 0.88 0.04 0.57

Built-up 0.84 3.64 76.26 2.94 7.03

Farmland 5.04 3.25 18.88 94.53 19.76

Grassland 2.54 1.19 1.79 1.69 56.35
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variability of the pixels and, thus, the salt and pepper ef-
fect. Class discrimination was higher using the object-based
method than the pixel-based methods, as shown by the
higher user accuracy for different classes (Table 4). Some
researchers (e.g., Benz et al., 2004; Fung et al., 2008) have
emphasized the advantages of object-based methods over
pixel-based classifiers, which is consistent with the results
of the present study. Although the accuracy of classification

is important when selecting a classification method, choos-
ing an image analysis approach is not always done based
on accuracy (Duro et al., 2012a). In situations in which the
statistical difference among the classification algorithms is
low, the end-user may select these models by considering
other factors. For example, being cost-free, user-friendly,
and easily available might encourage the user to select a
specific model.

Fig. 6 Time series of detailed land-cover maps for a 1990, b 2000, and c 2010

Table 7 Distribution of land-
cover classes (in Km2) and annual
change rates (ACR) for 1990–
2010

Year ACR in land-cover structure

1990 2000 2010 Δ%1990–2000 Δ%2000–2010 Δ%1990–2010

Forest 2234 2228.1 2225.5 −0.26 −0.12 −0.38
Water 44.6 45.3 45.5 1.57 0.44 2.02

Grassland 337.5 313.9 277.5 −6.99 −11.60 −17.78
Farmland 4084.9 4043.7 3972.7 −1.01 −1.76 −2.75
Built-up area 198.4 268.4 378.2 35.28 40.91 90.63
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Land-cover change

This study shows that urbanization of land-cover in the past
two decades has been rapid. This suggests that natural land
affected by human activity are rapidly transforming and being
damaged. Expansion of urban areas into agricultural and for-
est lands can decrease the effectiveness of rural areas as a
buffer zone between forests and agricultural and urban land
(DeFries et al. 2005). This can increase environmental impacts
such as diversity loss (Haines-Young, 2009), deforestation
(Keshtkar and Voigt, 2016a), land degradation (Bajocco
et al. 2012), and landscape fragmentation (Keshtkar and
Voigt, 2016b).

The main driving force for built-up area expansion
would appear to be the implement of the urban develop-
ment, termed BCritical Reconstruction,^ in the region
since 1990 (Tölle 2010). The implementation of this

policy caused open and empty areas around cities and
many lands (i.e., agricultural lands) in the countryside
to be converted quickly into industrial and urban areas
after the year 1990 (Loeb 2006). Therefore, transition
probability from other lands to built-up areas was ex-
tremely high in eastern regions (such as our study area)
during these years. It highlights the fact that an increase
in built-up area could be interpreted as a decrease in
natural lands (nature land = total land area – (farmland
area + built-up area); Lambin and Meyfroidt 2011).
Degradation and loss of natural and semi-natural lands
has become a profound concern which almost has affect-
ed the entire Western and Central Europe (CBD 2010;
GBO3 2010; Poschlod et al. 2005; Riecken et al. 2008).

Our study clearly shows the high vulnerability of grass-
lands in the study area. The grasslands are decreasing in our
study area, while previous studies warned that grassland

Table 8 Land-cover changes in
relation to elevation during
1990–2010

Forest Built-up Farmland Grassland Water

Mean (m) 1990 475 277 306 434 350

2010 472 295 310 430 340

Changes −3 18 4 −4 −10
1990 (km2) Class 1 81.3 105.2 1526.2 30.4 10.0

Class 2 690.4 66.3 1642.6 108.1 14.2

Class 3 837.5 22.0 750.2 138.4 19.3

Class 4 624.8 4.8 165.9 60.7 1.2

2010 (km2) Class 1 79.9 186.9 1427.6 46.2 12.5

Class 2 696.6 126.7 1609.8 76.0 12.6

Class 3 840.6 54.9 753.9 99.9 18.0

Class 4 608.3 9.7 181.4 55.5 2.4

Land-cover changes (km2) Class 1 −1.4 81.7 −98.6 15.8 2.5

Class 2 6.1 60.3 −32.8 −32.1 −1.6
Class 3 3.1 32.9 3.8 −38.5 −1.3
Class 4 −16.4 5.0 15.4 −5.2 1.2

Table 9 Land-cover changes
in relation to slope during
1990–2010

Forest Built-up Farmland Grassland Water

Mean (degree) 1990 9 3 3 7 6

2010 9 3 3 7 5

Changes 0 0 0 0 −1
1990 (km2) <5° 681.9 168.5 3194.6 151.6 23.9

5°–10° 679.9 26.4 713.4 101.8 10.8

>10° 592.5 2.7 150.9 58.9 6.7

2010 (km2) <5° 686.5 325.5 3054.0 127.9 26.7

5°–10° 681.9 38.6 728.8 72.3 10.6

>10° 583.4 11.9 161.7 48.0 6.5

Land-cover changes (km2) <5° 4.6 157.0 −140.6 −23.6 2.7

5°–10° 2.1 12.2 15.5 −29.5 −0.2
>10° −15.1 10.6 13.0 −6.8 −1.6
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deterioration could have a significant impact on ecosystem
services (i.e., the carbon cycle, regional economy and climate)
(Angell and McClaran 2001; Le Houérou 1996; Wen et al.
2013). Despite the fact that grasslands are the habitat for more
than 50% of vascular plant species in Central Europe (Lind
et al. 2009), the European Topic Centre for Biological
Diversity (ETC-BD) reports that grasslands are among the
endangered habitats in the European regions and only 20%
of them are in a favorable conditions (EU-COM 2009; Siehoff
et al. 2011).

Post-classification change detection results showed that
the destroyed forests had been primarily converted into
farmland or grassland. Table 6 indicates that deforestation
and reforestation are happening concurrently, but the speed
and amount of deforestation is greater. Settel (1946) reported
that after the World War II, timber exports from Germany
were particularly heavy and forest areas dramatically de-
creased consequently. Changes in national and regional pol-
icies caused the rate of deforestation to decline (FAO 2011).
The effect of this policy change is also visible in the results
of the present study. The annual rate of deforestation in the
second decade decreased significantly to one-third that of
the first decade. All in all, forests have shown the fewest
changes between the years 1990–2010 after water bodies.
This reflects the greater stability of these regions than others
in the study area.

In the present case study, most cultivated areas are located
near urban areas, highlighting the potential competition for
land between agricultural and urban uses. This is the reason
for the decline between 1990 and 2010 in these lands
(Table 7). Although the farmland area decreased due to devel-
opment, this category still covered the largest land area. It is
expected that land scarcity will cause more intensive use of
agricultural land in the future (Ewert et al., 2006), although the
decrease agricultural land can be compensated by a global
food system (d’Amoura et al., 2016).

Land-cover change in relation to topography

The results show that as slope and altitude increased, forest
areas also increased (Tables 8 and 9). Stretches of forest
areas concentrated in the high lands create continuous hab-
itat corridors which can be expected to have a significant
effect on conserving biodiversity in the study area
(Horskins et al. 2006). Unlike forest lands, however, the
area covered by other phenomena decreased as slope in-
creased. This is especially pronounced in the case of farm-
land and built-up areas. More than 75% of farmlands are
located at a slope below 5 degrees, and only about 5%
appear on slopes greater than 10 degrees. In particular,
our analysis results confirmed that increased urbanization
was not limited to the low, flat areas. Although built-up
areas spread significantly in areas with a slope of less than

5 degrees from 1990 to 2010, the development of these
lands has expanded into areas with higher slopes. The de-
velopment of built-up areas and farmland has caused the
destruction of natural lands, especially grasslands and for-
ests, which have lost 7 and 15 km2 of their area, respec-
tively. Most grasslands were located at high altitudes, but
their area decreased in the years 1990–2010 in all height
classes (except class 1). Grassland in classes 2 and 3 has
largely been replaced by built-up land. This may indicate
that the development of built-up areas and their penetration
into grassland is legally much easier than the penetration
into forest or farmland; perhaps grasslands have the fea-
tures necessary for urbanism. It should be noted that during
the years 1990–2010, changes in land-cover occurred gen-
erally in areas with a slope of less than 5 degrees; that
includes about 54% of total changes in these years. These
results suggest that incorporating terrain characteristics and
satellite images can be effective when developing conser-
vation measures for cultivated land and natural areas.

The results indicate that effective measures for protecting
agricultural land, grassland, and forests against urban devel-
opment is critical, considering the rapid economic develop-
ment that has recently taken place. Moreover, along with
protective measures, regeneration of destroyed lands must
also be considered. Environmental managers for implemen-
tation and monitoring of such processes and understanding
spatial distributions and patterns of land-cover require re-
fined base information such as more accurate land-cover
classification maps (Keshtkar et al., 2013). Also, understand-
ing how the topography influences land-cover diversity and
distribution could help ecologists and environmental man-
agers better manage wildlife habitat and thus promote eco-
system sustainability within the study area.
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