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Abstract Descriptive statistics, correlation, regression, and
geostatistical modeling are applied to assess the trace elements
of groundwater and their spatial distribution at the Rangpur
district of Bangladesh. A total number of 47 water samples
have been collected from wells at depth ranging from 10 to
53 m. The descriptive statistics results show that the mean
concentrations of iron (Fe), manganese (Mn), and barium
(Ba) have exceeded the permissible limits and those concen-
trations are alarming to human health and their surrounding
environments. Furthermore, Mn, Zn, Al, and Ba concentra-
tions reveal the highly positive skewed and are considered to
be extreme. The statistical results demonstrate that groundwa-
ter trace element quality is mainly related to natural/geogenic
sources followed by anthropogenic sources in the study area
even though they show significant correlations among them.

The multiple regression models are developed for prediction
of each trace element of groundwater samples. The spatial
analysis of groundwater trace elements is performed by
geostatistical modeling. The cross validation results reveal
that kriging models are produced to show the most accurate
spatial distribution maps for all trace elements except Ba con-
centration. The semivariogrammodels have demonstrated that
most of the elements have shown moderate to strong spatial
dependence suggesting less agronomic/residential area influ-
ences. The findings of the multiple regression model and the
correlation matrix are also consistent with the spatial analysis
results. It is anticipated that outcomes of this study will pro-
vide insights for decision makers taking adaptive measures for
groundwater trace element monitoring in Rangpur district,
Bangladesh.
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Introduction

Groundwater contamination with heavy metals is one of the
most important environmental issues in the world (Kumar
et al. 2012). Groundwater plays a major role in people’s live-
lihood and economy of Bangladesh as well. However, rapid
urbanization, agricultural activities, and natural geochemical
processes are affecting directly or indirectly on the chemical
composition of groundwater day by day. Rangpur Sadar
Upazila (a subdistrict, smaller administrative unit) in
Rangpur district of Bangladesh is currently facing the prob-
lems of garbage and solid waste disposal. These garbage and
solid waste get into groundwater from ceramics and small-
scale industries also along with other sources in the study area.
The high trace element content in groundwater can create
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hazardous effects for the people who consume groundwater in
the study area. This problem has become more acute due to
groundwater contamination from a variety of anthropogenic
and natural sources. Anthropogenic sources such as agricul-
ture, transportation, and other industries are responsible for
mobilization of groundwater contamination at local and re-
gional scales. Natural/geogenic sources such as chemical
weathering of rock and minerals can also lead to higher con-
centrations of trace metals that cause human health and toxic-
ity concern for terrestrial and aquatic life (Singh 2005). Awide
range of human health problems such as cancer, hypertension,
vascular disease, and lung disease happen due to the con-
sumption of contaminated groundwater (Smith et al. 2000).
Hence, continuous monitoring and assessment of the ground-
water trace metal quality in terms of drinking and irrigation
purposes help to save lives and environments.

The spatial distribution of trace elements in groundwa-
ter can assist in understanding possible sources and iden-
tifying extents of the contaminated area. The trace ele-
ment contamination is mainly controlled by the geological
and geochemical heterogeneity in the groundwater aqui-
fer. Geostatistical modeling is used to estimate the trace
element concentration at unmeasured points and non-
sampled locations to illustrate groundwater contamination
(Webster and Oliver 2001). A detailed explanation of the
geostatistical model has been well reported in various lit-
eratures (Isaaks and Srivastava 1989; Goovaerts 1997;
Webster and Oliver 2001). This model has been success-
fully applied to explore the spatial distribution of trace
metals in groundwater in many parts of the world
(Yalcin et al. 2007; Kumari et al. 2014). The interpolation
model is classified into geostatistical (e.g., simple kriging,
ordinary kriging) and deterministic (e.g., inverse distance
weighted) models (Burrough and McDonnell 1998).
These two models depend on the similarity of sampling
points. Among various interpolation models, the best
model for a particular data set is obtained by comparing
accuracy of their results (Ghanbarpour et al. 2013). The
BGS-DPHE (2001) assessed the spatial variation and pre-
diction of arsenic (As) contamination through kriging
geostat is t ical modeling at non-sampled si tes of
Bangladesh. A number of researchers have reported the
spatial variation of arsenic contaminations in groundwater
for the different areas of Bangladesh (Gaus et al. 2003;
Hossain et al. 2006; Hossain et al. 2007). This study has
been designed to apply various interpolation models to
compare spatial distribution of trace elements in ground-
water samples.

Multivariate approaches, principal component analysis,
and cluster analysis are useful tools for identifying com-
mon patterns in data distribution, leading to the reduction
of the initial dimension of data sets and facilitating its
interpretation (Franco-Uría et al. 2009). However, the

multivariate statistical approaches are quite difficult to
interpret and apply. Because these approaches often re-
quire a large number of data, they make somewhat unnec-
essary complexity and less clear understanding of the da-
ta. Simple statistical approaches offer more attractive op-
tions in earth sciences though the results may deviate
from the real situations (Gajendran and Thamarai 2008).
The correlation study provides an excellent tool for pre-
diction of parametric values with a reasonable degree of
accuracy (Mathur et al. 2010). The correlation and regres-
sion model of the groundwater quality parameters not on-
ly helps in assessing water quality but also provides im-
portant steps for implementing water quality management
practices (Kumar et al. 2011). The reliability of trace met-
al contents is predicted from the values of coefficient of
variance in the correlation matrix study. Groundwater
trace element assessment using a number of statistical
approaches, together with geostatistical modeling, has
not been much focused in Rangpur district, Bangladesh.

However, few studies have assessed heavy metals in
the coal mine area of northwest Bangladesh using some
indices and multivariate statistical techniques; for
instance, Bhuiyan et al. (2010) evaluated heavy metal
pollution by using multivariate approaches in the ground-
water system in a coal mine area of northwest
Bangladesh. The study showed that the mean concentra-
tions of Co, Ni, Cu, and Pb in the water samples
exceeded the WHO and Bangladesh standards and the
groundwater system is highly contaminated by anthropo-
genic sources. Unfortunately, very little information is
available about the status of trace element concentration
of groundwater and their spatial distribution in Rangpur
district, Bangladesh. The elevated trace elements like Fe,
Mn, and Ba concentrations in the groundwater system
are of great public concern on lives owing to their tox-
icity, persistence, and extensive bioaccumulation for the
study area. The need for a detailed systematic and careful
study identifying all possible sources, monitoring, and
creating a reliable trace element database is rising. The
main objective of the study is to assess trace elements of
groundwater and their spatial distribution in Rangpur dis-
trict, Bangladesh. Possible sources of trace elements and
their concentration area delineate based on statistical and
geostatistical modeling of element distribution.

Material and methods

Description of the study area

Rangpur district (a small administrative unit), located in the
northern part of Bangladesh, has been selected for the study.
Geographically, it is positioned between 25°18′N to 25°56′N
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and 88°58′N to 89°30′E. It is bounded by Nilphamari district
on the northeast, Gaibandha district on the northwest,
Kurigram district on the east, and Dinajpur district on the west
(Fig. 1). The study area is chosen primarily based on their
proximity of garbage pollution sources and environmental
significance. Samples have been collected from eight
Upazilas of the district. The Upazilas (a smallest administra-
tive unit, a subdistrict) are namely Rangpur Sadar, Pirgachha,
Mithapukur, Pirganj, Badarganj, Taraganj, Gangachara, and
Kaunia. Physiographically, the study area falls in the Old
Himalayan piedmont plain land (Islam et al. 2014). Overall,
about 80% area of the district consists of alluvial soil of the
Tista Basin and 20% Barind land. Groundwater is mainly
recharged by the monsoon rainfall. The climate of this region
is characterized by irregular monsoons, high temperature,
much humidity, and heavy rainfall. The highest average tem-
perature recorded in the months of May, June, July, and
August are about 32 to 36 °C while the lowest average tem-
perature is observed to be about 7 to 16 °C in the month of
January (Banglapedia 2006). The annual rainfall in the study
area is about 1448 mm. The groundwater quality at
Gangachara and Pirgacha Upazila (north and eastern parts of
the area) is mostly dominated by the Tista River.

Sampling and analytical procedure

A total number of 47 groundwater samples have been collected
for chemical analysis from randomly selected sampling points at
depth ranging from 10 to 53 m of the study area during the dry
season (April–June) in 2014 (Fig. 1). The sampling locations of
wells are recorded using a global positioning system (GPS)
(Kansas, USA). The information about well depths is collected
from the record preserved by the well owners and local govern-
ment engineering department (LGED). All groundwater samples
are collected in prewashed high-density polypropylene (HDPP)
bottles following the standard method of APHA-AWWA-WEF
(2005). However, 47 samples are put in a cooler box and trans-
ferred into the laboratory and kept in a freezer for subsequent
uses. The trace metal concentrations (i.e., As, Fe, Mn, Zn, Ba,
and Al) in water samples are measured by inductively coupled
plasma mass spectrometry (Thermo Scientific XSERIES 2 ICP-
MS) (Jarvis et al. 1996) which is linearly calibrated from 10 to
100 μg/l with custommulti-element standards (SPEX CertiPrep,
Inc., NJ, USA) before running the test samples. The accuracy and
precison of analyses are tested through running duplicate analy-
ses on selected samples. The relative standard deviation for mea-
sured elements are found to be within ±2%.

Fig. 1 Location map showing sampling sites of Rangpur district, Bangladesh
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Statistical and geostatistical analyses

Descriptive statistics techniques are used to deduce the normal
statistical parameters (maximum, minimum, mean and standard
deviation, variance) for groundwater trace metal quality. The
correlation matrix measures how well the variance of each vari-
able can be explained by relationships with each others (Liu et al.
2003). The terms Bstrong,^ Bmoderate,^ and Bweak/
insignificant^ are employed to correlation matrix analysis ac-
cording to the approach of Liu et al. (2003) and refer to absolute
values as >0.75, 0.75–0.50, and 0.50–0.30, respectively. When
more than two variables are considered simultaneously, multiple
linear regression model is used to evaluate their interdependency
(Adhikari et al. 2009). In the case of the multiple regression
model, the coefficient of determination, r2 value, is more easily
interpretable than the correlation coefficient, r, as a measure of
the degree of association, because r2 is equal to the proportion of
the total variability in the dependent variable that may be
attibuted to the effects of the independent variables. Statistical
analysis has been done using SPSS software (version 22) for
Pearson correlationmatrix andmultiple linear regression analysis
for the study. Pearson’s correlation matrix is applied to identify
the relationship among the pairs of elements.

Geostatistical modeling is applied for spatial distribution of
trace elements which is related to the groundwater system in
applied hydrogical studies. This model is well reported in the
most recent literatures (e.g., Kumari et al. 2014; Ağca et al.
2014; Bhuiyan et al. 2016). The spatial variability structure of
trace elements of grounwater data sets is assessed by the in-
terpolation techniques such as ordinary kriging (OK), simple
kriging (SK), and inverse distance weighting (IDW) for the
present study. These interpolation models are compared to
each other and show the best fit model for extracting the spa-
tial variability of trace elements in the study.

Kriging is a spatial interpolation model used to estimate the
value of discrete variables at an unsampled location based on the
data sets of discrete variables and structural features of a
semivariogrammodel. Kriging estimates accuracy and reliability
of the spatial distribution of the data sets. In the first step, the
spatial variation ismeasured by a semivariogrammodel (Burgess
andWebster 1980). The semivariogrammodel γ(h) is calculated
by Eq. 1, by Journel and Huijbregts (1978):

γ hð Þ ¼ 1

2n
∑n

i¼1 z xið Þ−z xi þ hð Þ½ �2 ð1Þ

where n is pair numbers of sample points divided by the stan-
dard distance called lag h (Burrough and McDonnell 1998).
z(xi) is the value of variable z at location point of xi.

The semivariogrammodel γ(h) is tested as the best fit mod-
el and is described by the nugget (C0), the sill (C), and the
range (A0) parameters. The second step, an appropriate
semivariogram model (e.g., spherical, exponential, Gaussian,

and circular), is chosen based on selecting the trial and error
basis. In the present study, spherical, exponential, Gaussian,
and circular models have been applied to estimate the spatial
dependence/autocorrelation of the groundwater trace ele-
ments. The level of random variation within the data set is
represented by the nugget, and the sill is equal to the variance
of the random variable (Webster and Oliver 2001).

Kriging models can be classified into various models. For
this study, ordinary kriging (OK) and simple kriging (SK)
models have been applied to show the spatial variation of trace
elements and to compare with the inverse distance weighting
(IDW) model. The OK model is calculated by Eq. (2), and to
ensure that the estimates are unbiased, the weights (λi) must
be equal to 1 (Ghanbarpour et al. 2013).

ẑ xoð Þ ¼ ∑n
i¼1λiz xið Þ ð2Þ

where ẑ is the measured value at the sampled point xo, z is the
observed value at point xi , λi is the weight assigned to the
point, and n represents the sampled number used for the esti-
mation (Webster and Oliver 2001). The OK model estimates
the local constant mean (Goovaerts 1997).

The SK model is determined by Eq. (3):

ẑ xoð Þ ¼ mþ ∑n
i¼1λi z xið Þ−m½ � ð3Þ

where m is the mean and all other variables are defined as
before, in Eq. 3.

For the IDW model, the weight (λi) depends on the dis-
tance to the predicted location. The weights are based on the
distance between the sample location and the prediction points
as well as the overall spatial autocorrelation to compare with
other kriging models. The weighting is controlled by the pow-
er of weights, such that if the power is greater the effect of the
points to the distance is greater than expected (Goovaerts
2000). The weighted value decreases with increasing distance
from the prediction point in the IDW model. The sum of the
weights (λi) is equal to 1 in IDW. The formula is presented in
Eq. 4:

λi ¼ d−pi0 =∑
n
i¼1d

−p
i0 ð4Þ

where di0 denotes the distance between the sample locations
and the prediction points. For instance, when the distance
becomes larger, the weight is reduced exponentially by a pow-
er parameter of p. Therefore, the IDW model produces a rel-
atively rough surface, which is dependent on the distance be-
tween sample points (Burrough and McDonnell 1998). In this
study, power parameters (p) of 1 and 2 are used to provide a
basis to compare the effect of various power parameters. Out
of these three models, the ordinary kriging model is applied
for constructing a spatial distribution map of the variables
because of its simplicity and prediction accuracy results for
the study (Gorai and Kumar 2013).

95 Page 4 of 14 Arab J Geosci (2017) 10: 95



A cross validation test is used to compare various interpo-
lation techniques and find an optimal model for each trace
element (Isaaks and Srivastava 1989). Semivariogram models
are tested and validated for each trace metal variable for
selecting the best one. The selected interpolation model is
employed to provide the best predictions of spatial variability
for each data set. Next, it removes each data set point, one at a
time, and predicts the associated value using the remaining
data points. So, the computed and predicted values can be
compared for all data points. The mean error (ME), mean
square error (MSE), root mean square error (RMSE), average
standard error (ASR), and root mean square standardized error
(RMSSE) values are assessed to establish the best fit model
performances. Hu et al. (2004) discussed several criteria for
using error measurements to judge the validation of interpola-
tion models. However, the minimum ME and RMSE deter-
mine the model having the most accurate prediction results.
The following errors are estimated by Eqs. 5 to 9:

ME ¼ 1

n
∑n

i¼1 pi−oið Þ ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑n

i¼1 pi−oi
�2

� �� �

s

ð6Þ

MSE ¼ 1

n
∑n

i¼1 psi−osið Þ ð7Þ

RMSSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑n

i¼1 psi−osið Þ2
� �

s

ð8Þ

ASE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑n

i¼1 pi−
∑n
i¼1pið Þ.

n

� �2
� �

s

ð9Þ

where n is the number of the observed point, o and p are the
observed values and predicted values at location i, os is the
standardized observed value, and ps is the standardized pre-
dicted value. After completing the cross validation process,
the geostatistical model offers a graphical representation of
the distribution of the groundwater trace elements. ArcGIS
(10.2 version) has been used for this interpolation model.

Results and discussion

Descriptive statistics of trace elements

The descriptive statistics of trace elements for the groundwater
samples are summarized in Table 1. According to the results, Fe
has the highest mean concentration in the groundwater, followed
by Mn, Ba, Zn, Al, and As. The ordering of trace element abun-
dance in the results is quite alike to those of Bodrud-Doza et al.

(2016) and Bhuiyan et al. (2016) but is different to that of Reza
et a l . (2010) . However, the mean values of Fe
(7726.46 ± 6559.34 μg/l) and Mn (684.48 ± 754.74 μg/l) are
higher than the drinking water quality standards set by DoE
(1997) and WHO (2011) at most of the sample locations of
southeastern parts: Pirganj and Pirgacha Upazila in the study
area. Trace element concentrations like As, Fe, Mn, Zn, Al,
and Ba are found to range from 0.5 to 42.8, 47 to 22,400, 85 to
4960, 6 to 234, 10 to 160, and 6 to 176μg/l with themean values
of 8.80 ± 10.01, 7726.46 ± 6559.34, 684.48 ± 754.74,
33.29 ± 38.99, 27.44 ± 28.62, and 44.55 ± 28.60 μg/l, respec-
tively (Table 1). The standard skewness should be within the
range ±2; otherwise, it is regarded as an extreme (Reimann
et al. 2008). Furthermore, Mn, Zn, Al, and Ba concentrations
show the highly positive skewed data and are considered to be
extreme in the groundwater samples. Similarly, in case of
kurtosis, these trace element concentrations are observed in the
scale of leptokurtic where its value laid on >3 whereas the Fe
concentration is found in the scale of platykurtic. The high Fe
concentration in groundwater is potential for human health
hazards since it is used by humans for drinking and cooking
purposes. Both Fe and Mn concentrations in groundwater are
detrimental because of the form and taste of the water and their
ability to cause staining. Islam et al. (2015) found similar findings
in assessing health hazards of metal concentrations in groundwa-
ter of Bangladesh. Merrill et al. (2012) have reported iron con-
sumption by women in rural northwestern Bangladesh where
potentially unpleasant organoleptic qualities of high iron contents
in the groundwater system are observed. The Ba concentration is
higher than the prescribed drinking water quality standards (DoE
1997) in the central and eastern parts such as theMithapukur and
Kaunia Upazila sampling locations (Fig. 1). However, the mean
concentrations of As, Al, and Zn are within acceptable limits for
drinking purposes. HighAs, low Fe, and lowMn in groundwater
of the Meghna floodplain in southeastern region of Bangladesh
are reported byReza et al. (2010), but these results differ from the
observations in the study area where very high concentrations of
Fe,Mn, andBa are observedwhich pose health and environmen-
tal implications for the people of Rangpur district, Bangladesh.

Box plots show As, Fe, and Mn concentrations for trace
elements of groundwater samples (Fig. 2). Assessment of
mean, median, maximum, and minimum concentrations of
Fe and Mn indicate that these high concentrations have
exceeded the permissible limit for drinking waters in most of
the sampling sites. On the other hand, a box plot of arsenic
(As) distribution is characterized by lower arsenic concentra-
tion below the standard limit. It is observed from Fig. 2 that
the length of the boxes in the case of Fe is relatively large in
comparison to that for the remaining arsenic (As) and Mn
concentrations, which reveals large spatial variation. It may
be attributed to very high concentrations of Fe generally avail-
able in the groundwater system at most sampling sites over the
study area. Figure 3 shows the concentration of trace metals in
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groundwater with respect to depth. Most of the metals exist in
the shallow aquifer at depth ranges from 19 to 32 m. The trace
metal concentrations in the groundwater system resulting
from the oxidation process of sulfide minerals reported here
are likely to be of concern to human health and the environ-
ment (Bhuiyan et al. 2010). For example, the oxidation pro-
cess of sulfide minerals such as pyrite is given in the following
equation (Garrels and Thompson 1960):

FeS2 sð Þ þ H2Oþ 7=2O2 aqð Þ→Fe2þ þ 2SO4
2− þ 2Hþ

Another example, sphalerite (ZnS) mineral in groundwater,
will release as Zn into the environment by oxidation through
the reaction below:

ZnS sð Þ þ 2O2 aqð Þ→Zn2þ þ SO4
2−

Likewise, the elevated Fe, Mn, and Ba concentrations re-
leased into the groundwater are probably due to the oxidation
of pyrite, siderite, and barite (Sakurovs et al. 2007). Fe andMn
are generally found in rocks andminerals in an insoluble form.
The high concentration of Fe in water is due to geogenic origin
and occurs naturally in soils, rocks, and minerals. It could be
originated from a rock-water interaction or weathering of an
iron-rich rock (Bloundi et al. 2009). It is also noted that a high

concentration of Fe has been found in the shallow aquifer at
depth ranges from 18 to 32m (Fig. 3a). About 97% samples of
the study area at depth ranges from 20 to 35 m are found to be
contaminated by Mn as they have exceeded the WHO’s per-
missible limit (Fig. 3b). Groundwater might be polluted by
Mn due to mobilization of either geogenic or enriched anthro-
pogenic sources in the chemical weathering of soils and min-
erals (Buragohain et al. 2010). It is assumed that Mn and Fe
have enhanced the development of iron bacteria which obtain
their energy for growth from the chemical reaction when Mn
reacts with dissolved oxygen. Water comes in contact with the
solid materials dissolving Fe and Mn, releasing their constit-
uents to the groundwater system (Haloi and Sarma 2012).
Generally, a high concentration of Ba has been found in
deeper aquifers that are sulfate depleted. This is because of
natural dissolution of barite minerals in aquifer where sulfate
has been bacterial reduced (Baldi et al. 1996). However, a
high Ba concentration has occurred in the shallow aquifer at
depth ranges from 19 to 32 m which are more vulnerable to
contamination of groundwater from geogenic sources
(Fig. 3c). The Zn concentration in groundwater is relatively
lower as a result of the leaching of Zn from piping and fittings
(Nriagu 1980). All the sampling points in the study area fall
below the international standard for Zn and As contents in
groundwater at depth ranges from 18 to 35 m (Fig. 3e).

Fig. 2 Box plots show the mean,
median, maximum, and minimum
values of As, Fe, and Mn
distributions in the study area

Table 1 Descriptive statistics and drinking standards of selected trace element concentrations in the study area

Elements
(μg/l)

Min Max Mean Std. deviation Skewness Kurtosis WHO
limits (2011)

DoE (1997) BIS (2012)

Acceptable limit Permissible limit

As 0.5 42.8 8.80 10.01 1.65 2.32 10 50 10 50

Fe 47 22,400 7726.46 6559.34 0.63 −0.45 3000–10,000 3000

Mn 85 4960 684.48 754.74 4.26 22.77 70 100 100 300

Zn 6 234 33.29 38.99 3.68 16.14 5000 5000 15,000

Al 10 160 27.44 28.62 3.60 14.20 200 30 200

Ba 6 176 44.55 28.60 2.23 8.53 700 10 700
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Arsenic (As) originates from an arsenic-rich bedrock of the
aquifer that infiltrates in groundwater pumped to the surface
through the tube wells. The low concentration of arsenic (0.5
to 42.8 μg/l) in groundwater in the northern region does not
support findings from the southwestern region with high con-
centrations of arsenic in groundwater (Hossain et al. 2007). It
is seen that the Al content of groundwater at the sampling
points of S-11 (19.8 m) and S-20 (26.8 m) is relatively high
as having exceeded their limits defined by DoE (1997)
(Fig. 3f). The relatively high concentration of Al in ground-
water is due to dissolution of Al from clay minerals and other
alumino-silicate minerals found in soils and rocks
(Buragohain et al. 2010).

Correlation matrix analysis

In the study, Pearson’s correlation matrix is generated in order to
find possible sources, origin, and covariance of trace elements of
groundwater samples (Table 2). A correlation matrix depicts
inter-elemental relationships as well as new associations between
the elements. Strong (p < 0.01) and significant correlations
(p < 0.05) are observed in the trace elements of groundwater
samples in the study area. Arsenic exhibits a weak significant
positive correlation with Fe (r = 0.494, p < 0.01), Zn (r = 0.399,
p < 0.01), and Ba (r = 0.322, p < 0.05) where arsenic shows an
insignificant correlation with Al (r = 0.102) and Mn (r = 0.254).
These associations reveal amalgam common sources of either

geogenic or anthropogenic origin. Fe shows a moderately signif-
icant positive correlation with Ba (r = 0.543) at p < 0.01while Fe
demonstrates an insignificant correlationwithMn (r = 0.024), Zn
(r = 0.145) andAl (r = 0.118). These correlations indicate similar
sources of geogenic origin andmobility (Haloi and Sarma 2012).
These results may be attributed to geogenic sources from the
parent rocks, and other anthropogenic sources are limited to
small-scale industries, domestic sewage, and agricultural
activities in the study area. Similar observations are reported by
Chapagain et al. (2010) in the deep groundwater quality in
Kathmandu, Nepal, where trace metal occurrences are possibly
influenced by redox levels and the nature of the underlying sed-
iment of groundwater. Mn reveals an insignificant negative cor-
relation with Zn (r = −0.005) where Mn depicts also an insignif-
icant positive correlation with Al (r = 0.017) and Ba (r = 0.046).
These metals indicate that a variety of sources are involved with
groundwater pollutants in the study area. Zn exhibits a weak
positive significant correlation with Al (r = 0.294, p < 0.05)
and Ba (r = 0.169). Ba shows a weak significant positive corre-
lation with Al (r = 0.438, p < 0.01), indicating an anthropogenic
origin of groundwater contamination. Since large-scale industries
do not exist in the study area, small-scale industries, agricultural
fertilizer, and stagnant water may contribute as the major sources
of this groundwater chemical alteration. It is hypothesized that
trace metals with a relatively significant positive correla-
tion possibly originated from the same pollution sources
(Mansouri et al. 2012).

Multiple regression model

A multiple regression technique is applied to develop suitable
models relating a given trace element to a set of statistically
most significant independent variables. Multiple regression
models for predicting As, Fe, Mn, Zn, Al, and Ba concentra-
tions from various known concentrations of trace elements in
the groundwater are presented in Table 3. Six independent
variables are observed to have a significant effect (‘t’ test for
the partial regression coefficients at 5% significance level) on
resultant dependent variables. The predictions of arsenic (As)
which is the dependent variable from the results of all inde-
pendent variables (Fe, Mn, Zn, Al and Ba) are fairly good. For

Fig. 3 Relative concentration of trace elements in groundwater, depth-wise in the studied sample (a–e). All concentrations are in units ofmicrograms per
liter

Table 2 Pearson correlation matrix among trace element
concentrations of groundwater samples

Elements As Fe Mn Zn Al Ba

As 1

Fe 0.494** 1

Mn 0.254 0.024 1

Zn 0.399** 0.145 −0.005 1

Al 0.102 0.118 0.017 0.294* 1

Ba 0.322* 0.543** 0.046 0.169 0.438** 1

***Correlation is significant at P < 0.05; correlation is significant at
P < 0.01
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example, the multiple r2 value 0.419 of arsenic (As) indicates
that 41.9% of the variation in arsenic (As) concentration could
be explained by variability in other five independent variables
used in the model. In predicting arsenic (As), the independent
variables such as Fe, Mn, and Zn concentrations have a statis-
tically significant effect at the 5% confidence level (Table 3).
Ba prediction with the multiple r2 value of 0.44% exhibits that
44% variability is observed in Ba concentration which could
be predicted to the combined effects of As, Fe, Mn, Zn, and Al
concentrations. Ba concentration is mostly dependent on Fe
and Al concentrations, indicating a statistically significant ef-
fect (Table 3). The regressionmodel ofMn shows that 9.5% of
variation in Mn concentration can be ascribed by this model.
Furthermore, Fe, Al, and Zn concentrations can be predicted
up to 43.3 and 27.3 and 24.6% variability accounted for in this
model. For predicting Fe concentration, independent variables
of arsenic (As) and Ba concentrations have statistical signifi-
cance. Similar multiple regression models are applied to pre-
dict groundwater quality parameters in various regions of the
world (e.g., Adhikari et al. 2009; Kumar et al. 2011; Sundari
et al. 2013).

Geostatistical modeling

The spatial distribution of trace element concentrations is ana-
lyzed by various interpolation techniques (SK, OK, and IDW)
over the study area. To extract spatial distribution of each trace
element, the most accurate interpolation technique is selected
using cross validation processes. The predicted and observed
values are compared for each models using the correctness
measures (Eqs. 5 to 9) to test the robustness of the predicted
models (Table 4). Table 4 presents the comparison of interpo-
lation models for the trace elements, based on accuracy mea-
sures. The choice of the best semivariogram model is based on
the ME, MSI, RMSE, RMSSE, and ASE criteria. A model is
considered as robust and accurate when the ME and MSE are
close to zero, RMSE and ASE are minimum as possible, and
RMSSE is close to 1 (Adhikary et al. 2010). Cross validation
results suggest that each trace metal provides more accurate
spatial distribution for the study area. As can be seen in
Table 4, for arsenic concentration, the SK technique is the op-
timal interpolation model using a spherical semivariogram
model in comparison with other two models (OK and IDW)
based on overall comparison of RMSE. In addition, Mn and Al
concentrations have shown the SK technique as the optimal
interpolation model using the circular semivariogram model.
Conversely, in the case of Fe concentration, the OK technique
using the Gaussian semivariogram model is the most accurate
interpolation model, while for Ba concentration, the IDW tech-
nique with a power parameter of 1 is the best interpolation
model using the semivariogram model because of minimum
root mean square error (RMSE). As a result, kriging interpola-
tion techniques (OK and SK) with various semivariogram

models give better performances for each trace element except
Ba concentration (Table 4). So, the SK technique is predicted as
the most accurate interpolation model for As, Mn, Zn, and Al
concentrations when compared with OK and IDW models.
However, IDW prediction is slightly less precise than kriging
interpolation techniques (OK and SK), in terms of RMSE.

The semivariogram (h) models are calculated and the scat-
ter plot of (h) vs. h (distance) prepared using ArcGIS (version
10.2). Different theoretical semivariogram models are used to
fit the estimated values and the model with the best fit value
and the smallest nugget value choice (Goovaerts 1997). The
elements nugget, sill, lag size, nugget/sill, and range of the
best fitted semivariogram models are shown in Table 5.
There are three classifications used for model explanation: if
the ratio is less than 25%, it shows strong spatial variation; if
the ratio is between 25 and 75%, it indicates moderate spatial
dependence; and if the ratio is more than 75%, then it repre-
sents weak spatial dependence (Shi et al. 2007). Figure 4
shows the experimental semivariogram model (binned sign)
around the omnidirectional semivariogram model (blue line)
and average of the semivariogram model (plus sign). Kriging
models (OK or SK) are produced to show the most accurate
spatial distribution maps for all elements except Ba concen-
tration (Table 5). The Gaussian semivariogram model is ob-
served to be the best fit model for Fe and Zn concentrations,
while the circular semivariogrammodel fit best for Mn and Al
concentrations. On the contrary, the spherical semivariogram
model fit well for As concentration (Table 5). The IDWmodel
is identified to be the best optimal model for Ba concentration,
where no spatial autocorrelation can be shown using
semivariogram analysis. The major ranges varied from 7.44
to 32.68 km where the greatest range was measured for Fe
(32.68 km) and the smallest one for Mn (7.44 km). The
Gaussian semivariogram model shows high spatial variability
for higher ranges of Fe concentration, while the circular
semivariogram model represents less spatial structure for low-
er ranges of Mn concentration. The ranges are varied due to
topographic and geometric factors of groundwater while large
distance and variation of trace element concentrations could
mostly be affected by precipitation, runoff, and fertilizer ap-
plication. In this study, the results show that Fe and Al con-
centrations are a strong spatial dependence (Fig. 4c, e) while
As, Zn, and Mn concentrations exhibit a moderate spatial
dependence in the semivariogram shapes (Fig. 4a, b, d). The
moderate to strong spatial dependence of trace elements has
been demonstrated in the less nugget effect in semivariogram
shape and is due to low variability of topography of ground-
water which varied in the residential area, agricultural area,
and industrial area. Similar observations are obtained from the
most recent study conducted in the central region of
Bangladesh by Bodrud-Doza et al. (2016), but these findings
differ from the observation of Bhuiyan et al. (2016) where the
weak spatial dependence has been reported in the large nugget

Arab J Geosci (2017) 10: 95 Page 9 of 14 95



effect in semivariogram shape in the southeastern part of
Bangladesh.

Spatial distribution maps of trace elements

The optimal interpolation model is applied to prepare the
spatial distribution maps of each trace element of ground-
water samples for the study (Fig. 5). Trace element con-
centrations exhibit complex distribution patterns with a
decreasing trend in the southeast to northwest directions
in the study area. The high concentrations of Fe, Mn,
and Zn are observed in the south and southeastern parts
of Pirganj and Pirgacha Upazila of the sampling area,
while the low concentrations of Al, Ba, and As are

identified in the northern part of Taragonj, Badargonj,
and Gangachara Upazila of Rangpur district, Bangladesh,
indicating heterogeneous point sources of groundwater pol-
lution (Fig. 5). This strongly indicates different sources
and processes of pollution, which is also confirmed by
the results of a low negative correlation between of Mn
and Zn in the earlier part of the paper. Enormously high
concentrations of As, Fe, and Zn are observed in south,
central, and southeastern parts such as Pirganj, Rangpur
Sadar, and Pirgacha Upazila of Rangpur district, suggest-
ing the existence of amalgamate sources of pollution
(Fig. 5a, b, d). The mean high concentrations of Fe and
Zn are identified in the central to southeastern parts such
as Rangpur Sadar, Mithapukur, Pirganj, and Pirgacha

Table 4 Comparison between
interpolation models for trace
elements of groundwater using
cross validation results

Trace elements Models Fit models ME RMSE MSE RMSSE ASE

AS SK Spherical −0.12 8.58 0.03 0.70 11.80

OK Exponential 0.04 9.03 0.00 1.03 8.16

IDW Power 2 −0.32 9.36 – – –

Fe SK Gaussian 86.82 5133.70 0.02 0.92 5556.78

OK Gaussian 63.74 5050.03 0.01 0.97 5253.79

IDW Power 1 20.27 5303.18 – – –

Mn SK Circular −44.53 735.77 −0.07 1.22 575.49

OK Circular −25.90 817.55 −0.03 1.11 729.73

IDW Power 1 −39.33 794.25 – – –

Zn SK Gaussian −2.19 37.04 −0.16 1.61 31.92

OK Gaussian 0.25 40.14 0.00 1.32 29.81

IDW Power 1 0.00 39.91 – – –

Al SK Circular −3.32 27.52 −0.25 2.03 12.01

OK Spherical −1.59 29.75 −0.04 1.36 18.73

IDW Power 1 −2.59 29.41 – – –

Ba SK Gaussian −2.13 26.22 −0.12 1.35 18.00

OK Exponential 0.23 26.59 0.02 1.39 18.03

IDW Power 1 −1.49 25.20 – – –

Bold face indicate best fitted models

ME mean error, RMSE root mean square error, MSE mean standardized error, RMSSE root mean square stan-
dardized error, ASE average standard error, SK simple kriging, OK ordinary Kriging, IDW inverse distance
weighting

Table 5 The optimal interpolation models and their best fit semivariogram models for each trace elements

Trace elements Models Best fit models Nugget Major range (Km) Sill Nugget/sill Lag size Effect of nugget/sill

As SK Spherical 0.52 178.01 1.15 0.45 2225.13 Moderate

Fe OK Gaussian 21,389,197.03 326.89 52,498,871.81 0.41 4086.20 Moderate

Mn SK Circular 0.02 74.44 0.83 0.02 930.62 Strong

Zn SK Gaussian 0.36 132.41 1.06 0.34 1655.18 Moderate

Al SK Circular 0.00 100.08 0.69 0.00 1251.07 Strong

Ba IDW Power = 1 – – – – – –

SK simple kriging, OK ordinary kriging, IDW inverse distance weighting
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Upazila of Rangpur district which might be attributed to
the combined effect of contamination from domestic sew-
age, small industries, and runoff from fertilized agriculture
fields (Dash et al. 2010). The urban area in the central
part (Rangpur Sadar) of the sampling site, passing through
a highway road, and some evidence of dumping waste
activities and brick field can support this statement
(Fig. 1). However, higher values of Fe, As, and Ba in
the southeastern part are also supported by a moderately
positive significant correlation of Fe with As and Ba
(Table 2). This is an alarming situation for human health
due to the higher concentration of these trace elements. In
fact, the high concentration of Fe in the eastern part of
Pirgacha Upazila of the sampling site is alarming, as max-
imum households depend upon groundwater for domestic
uses. The irregularities identified in the northern boundary
of Badargonj Upazila of the Mn distribution map have the
highest Mn values restricting its use for drinking purposes
(Fig. 4c). The Mn distribution pattern reveals an irregular
and complex trend in different directions. It shows an
increasing trend from central to northwest and a decreas-
ing trend southeast toward the central part (Rangpur Sadar
Upazila) of the study area. There should be a similar
origin for Mn and Zn concentrations, as they have dem-
onstrated different distribution patterns (Fig. 5) in compar-
ison to other elements. The low negative correlation
(Table 2) also confirmed the different processes involving
Mn and Zn concentrations. The distribution map of Al
slightly differs than the Ba distribution map, as it shows
an increasing trend from north to central parts
(Gangachara to Rangpur Sadar Upazila) of the study area
(Fig. 5e). This peripheral difference is confirmed by a
weakly positive correlation (Table 2) between Mn and
Al. The Ba distribution map depicts a relatively complex
spatial variability and trends in north to south directions
(Fig. 5f). However, the spatial distribution of Ba indicates
that the higher values of Ba are widespread, not localized
in any specific part of the study area. In addition, there is
no spatial autocorrelation between the samples based on
semivariogram models (Table 5). The IDW model has
been validated as the optimal spatial model to evaluate
the Ba spatial distribution map. So, proper measures
should be taken to check the groundwater trace element
quality as an urgent basis for the study area. However,
spatial analysis has been conducted based on a compara-
tively small set of sampling points (47 groundwater sam-
ples). It can be said that the more sampling points are
required for better understanding of the geogenic sources
of trace element contamination in the groundwater system.

�Fig. 4 Best fitted semivariogram models of trace elements in the study
area. a As concentration. b Fe concentration. c Mn concentration. d Zn
concentration. e Al concentration
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Fig. 5 Spatial distribution maps of trace elements by using optimal interpolation models. aAs concentration. b Fe concentration. cMn concentration. d
Zn concentration. e Al concentration. f Ba concentration
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Conclusions

This paper presents a set of statistical approaches such as
descriptive statistics, correlation, multiple regression, and
geostatistical modeling which are employed to evaluate the
trace elements of groundwater and their spatial distribution
in Rangpur district, Bangladesh. Trace elements show a dom-
inance in the following order of Fe >Mn > Ba > Zn > Al > As.
The descriptive statistics results show that the mean concen-
trations of Fe, Mn, and Ba have exceeded the permissible
limits, when compared with standard values in some places
of the southeastern part such as Pirganj and Pirgacha Upazila
of Rangpur district; those concentrations can aggravate the
risk to human health. In addition, Mn, Zn, Al, and Ba concen-
trations indicate the highly positive skewed data and are
regarded to be extreme in groundwater samples. The correla-
tion matrix results depict that some of the elements reveal a
moderately positive significant correlation, while others show
a low negative insignificant correlation with each other. The
multiple regressionmodels can predict groundwater trace met-
al quality with 5% significance level in Rangpur district,
Bangladesh.

The geostatistical models (kriging models) are effective
tools for initial decision makers of groundwater trace metal
assessment in Rangpur district, Bangladesh. The models
are able to find higher concentration trends of the trace
elements, which indicate hot spots in the study area.
Besides, these higher hot spots of Fe, Mn, and Ba concen-
trations could have originated from geogenic sources.
These geogenic pollutants are much alarming for ground-
water consumption in the study area. However, other an-
thropogenic sources are quite unpleasant. Further studies
are required to get adequate knowledge of uncertainty in
the sampling sites. On the basis of spatial distribution
maps, trace elements have shown different spatial distribu-
tion patterns. Correlation matrix and multiple regression
model results also supported the outcomes of elements
for the spatial distribution of groundwater samples. This
study provides sufficient background information on trace
elements, possible source, and controlling factors of
groundwater pollutants and their spatial distribution in
the study area. This paper is expected to help decision
makers taking adaptive measures for site-specific ground-
water trace element monitoring in Rangpur district,
Bangladesh.

Acknowledgements The authors are thankful to Nanjing University of
Information Science and Technology, China, and to the Department of
Environmental Sciences, Jahangirnagar University, Bangladesh, for dif-
ferent forms of support. The authors thank the Chinese Scholarship
Council (CSC) for the financial support. The authors are also thankful
to the Chemistry Division, Atomic Energy Center of Dhaka, Bangladesh,
for providing some technical supports during this study.

References

Adhikari PP, Chandrasekharan H, Chakraborty D, Kumar B, Yadav BR
(2009) Statistical approaches for hydrogeochemical characterization
of groundwater in West Delhi. India Environ Monit Assess 154:41–
52

Adhikary PP, Chandrasekharan H, Chakraborty D, Kamble K (2010)
Assessment of groundwater pollution in West Delhi, India using
geostatistical approach. Environ Monit Assess 167(1–4):599–615

Ağca N, Karanlık S, ÖdemişB (2014) Assessment of ammonium, nitrate,
phosphate, and heavy metal pollution in groundwater from Amik
Plain, southern Turkey. Environ Monit Assess 186:5921–5934. doi:
10.1007/s10661-014-3829-z

APHA-AWWA-WEF (2005) Standard methods for the examination of
water and wastewater. 20th Ed., APHA, AWWA and WEF,
Washington DC, USA

Baldi F, Pepi M, Burrini D, Kniewald G, Scali D, Lanciotti E (1996)
Dissolution of barium from barite in sewage sludges and cultures of
Desulfovibrio desulfuricans. Appl Env Microbiol 62(7):2398–2404

Banglapedia (2006) National Encyclopedia of Bangladesh. Dhaka:
Asiatic Society of Bangladesh. http://www.banglapedia.org/
httpdocs/english

BGS-DPHE (2001) Arsenic contamination of groundwater in
Bangladesh. In: DG Kinnburgh, PL Smedley, (eds) vol 1–4.
British Geological Survey Report WC/00/19, British Geological
Survey, UK, available at: http://www.bgs.ac.uk/arsenic/Bangladesh

Bhuiyan MAH, Parvez L, Islam MA, Dampare SB, Suzuki S (2010)
Evaluation of hazardous metal pollution in irrigation and drinking
water systems in the vicinity of a coal mine area of northwestern
Bangladesh. J Hazard Mater 179:1065–1077

BhuiyanMAH, Bodrud-DozaM, IslamARMT, RakibMA,RahmanMS,
Ramanathan AL (2016) Assessment of groundwater quality of
Lakshimpur district of Bangladesh using water quality indices,
geostatistical methods, and multivariate analysis. Environ Earth
Sci 75(12):1020. doi:10.1007/s12665-016-5823-y

BIS (2012) Bureau of Indian standards. Indian standard drinking water-
specification, 1st rev., 1–8pp

Bloundi MK, Duplay J, Quaranta G (2009) Heavy metal contamination
of coastal lagoon sediments by anthropogenic activities: the case of
Nador (East Morocco). Environ Geol 56(5):833–843. doi:10.1007/
s00254-007-1184-x

Bodrud-Doza M, Islam ARMT, Ahmed F, Das S, Saha N, Rahman MS
(2016) Characterization of groundwater quality usingwater evaluation
indices, multivariate statistics and geostatistics in central Bangladesh.
Water Sci 30(2016):19–40. doi:10.1016/j.wsj.2016.05.001

Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variations of lead,
arsenic, cadmium and aluminium contamination of groundwater in
Dhemaji district, Assam, India. Environ Monit Assess 170(1–4):
345–351. doi:10.1007/s10661-s10661-009-1237-6

Burgess TM, Webster R (1980) Optimal interpolation and isarithmic
mapping of soil properties. I: the semivariogram and punctual
kriging. J of Soil Sci 31:315–331

Burrough PA,McDonnell RA (1998) Principles of geographical informa-
tion systems. Oxford University Press, Oxford 333p

Chapagain SK, Pandey VP, Shrestha S, Nakamura T, Kazama F (2010)
Assessment of deep groundwater quality inKathmanduValley using
multivariate statistical techniques. Water, Air, Soil Pollution 210:
277–288. doi:10.1007/s11270-009-0249-8

Dash JP, Sarangi A, Singh DK (2010) Spatial variability of groundwater
depth and quality parameters in the National Capital Territory of
Delhi. Environ Manag 45:640–650. doi:10.1007/s00267-010-
9436-z

DoE (1997) Department of environment, the environment conservation
rules 1997. Government of the People’s Republic of Bangladesh,
Dhaka

Arab J Geosci (2017) 10: 95 Page 13 of 14 95

http://dx.doi.org/10.1007/s10661-014-3829-z
http://www.banglapedia.org/httpdocs/english
http://www.banglapedia.org/httpdocs/english
http://www.bgs.ac.uk/arsenic/Bangladesh
http://dx.doi.org/10.1007/s12665-016-5823-y
http://dx.doi.org/10.1007/s00254-007-1184-x
http://dx.doi.org/10.1007/s00254-007-1184-x
http://dx.doi.org/10.1016/j.wsj.2016.05.001
http://dx.doi.org/10.1007/s10661-s10661-009-1237-6
http://dx.doi.org/10.1007/s11270-009-0249-8
http://dx.doi.org/10.1007/s00267-010-9436-z
http://dx.doi.org/10.1007/s00267-010-9436-z


Franco-Uría A, López-Mateo C, Roca E, Fernández-Marcos ML (2009)
Source identification of heavy metals in pastureland by multivariate
analysis in NW Spain. J Hazard Mater 165:1008–1015

Gajendran C, Thamarai P (2008) Study on statistical relationship between
ground water quality parameters in Nambiyar river basin,
Tamilnadu, India. Inter J in Pollution Rese 27(4):679–683

Garrels RM, Thompson ME (1960) Oxidation of pyrite by iron sulfate
solutions. Am J Sci 258:57–67

Gaus I, Kinniburgh DG, Talbot JC, Webster R (2003) Geostatistical anal-
ysis of arsenic concentration in groundwater in Bangladesh using
disjunctive kriging. Environ Geol 44:939–948

Ghanbarpour MR, Goorzadi M, Vahabzade G (2013) Spatial variability
of heavy metals in surficial sediments: Tajan River Watershed, Iran.
Sustain Water Q and Ecol 1–2:48–58

Goovaerts P (1997) Geostatistics for natural resource evaluation. Oxford
University Press, New York

Goovaerts P (2000) Geostatistical approaches for incorporating elevation
into the spatial interpolation of rainfall. J Hydro 228:113–129

Gorai AK, Kumar S (2013) Spatial distribution analysis of groundwater
quality index using GIS: a case study of Ranchi Municipal
Corporation (RMC) area. Geoinformation Geostatistics: An
Overview 1:2. doi:10.4172/2327-4581.1000105

Haloi N, Sarma HP (2012) Heavy metal contaminations in the ground-
water of Brahmaputra flood plain: an assessment of water quality in
Barpeta District, Assam (India). Environ Monit Assess 184(10):
6229–6237

Hossain F, Bagtzoglou AC, Nahar N, Hossain MD (2006)
Statistical characterization of arsenic contamination in shallow
tube wells of western Bangladesh. Hydro Process 20:1497–
1510. doi:10.1002/hyp.5946

Hossain F, Hill J, Bagtzoglou AC (2007) Geostatistically based manage-
ment of arsenic contaminated ground water in shallow wells of
Bangladesh. Water Resour Manag 21:1245–1261. doi:10.1007/
s11269-006-9079-2

Hu K, Li B, Lu Y, Zhang F (2004) Comparison of various spatial inter-
polation methods for non-stationary regional soil mercury content.
Environ Sci 25(3):132–137

Isaaks EH, Srivastava RM (1989) An introduction to applied
geostatistics. Oxford University Press, New York 561p

Islam MS, Islam ARMT, Rahman F, Ahmed F, Haque MN (2014)
Geomorphology and land use mapping of northern part of
Rangpur District, Bangladesh. J Geosci Geom 2(4):145–150. doi:
10.12691/jgg-2-4-2

Islam ARMT, Rakib MA, Islam MS, Jahan K, Patwary MA (2015)
Assessment of health hazard of metal concentration in groundwater
of Bangladesh. Am Chem Sci J 5(1):41–49 2015, Article
no.ACSj.2015.006

Jarvis KE, Gray AL, Houk RS (1996) Handbook of inductively coupled
plasma mass spectrometry. Blackie Academic and Professional
Chapman and Hall, London and New York

Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press,
London

Kumar KS, Singh G, Rao GV, Mouli SC (2011) Spatial distribution and
multiple linear regressions modeling of ground water quality with
geostatistics. Intern J of Appl Engi Res 6(24):2719–2730

Kumar PJS, Delson PD, Babu PT (2012) Appraisal of heavy metals in
groundwater in Chennai city using a HPI model. Bull Envi Contam
Toxic 89:793–798

Kumari S, Singh AK, Verma AK, Yaduvanshi NPS (2014)
Assessment and spatial distribution of groundwater quality in
industrial areas of Ghaziabad, India. Environ Monit Assess
186(1):501–514. doi:10.1007/s10661-013-3393-y

Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the
assessment of groundwater quality in a black foot disease area in
Taiwan. Sci Total Environ 313(743):77–89

Mansouri B, Salehi J, Etebari B, Moghaddam HK (2012) Metal concen-
trations in the groundwater in Birjand flood plain, Iran. Bull Environ
Contam Toxicol 89:138–142

Mathur P, Sharmaa S, Soni B (2010) Multiple regression equations
modeling of ground water of Ajmer-Pushkar Railwayline region,
Rajasthan (India). J Environ Sci Engi 52(1):11–14

Merrill RD, ShamimAA, Ali H, Jahan N, Labrique AB, Christian P,West
PKJ (2012) Groundwater iron assessment and consumption by
women in rural northwestern Bangladesh. Int J Vitam Nutr Res
82(1):5–14. doi:10.1024/0300-9831/a000089

Nriagu JO (1980) Zinc in the environment. Part I, ecological cycling.
Wiley, New York

Reimann RC, Filzmoser P, Garrett RG, Dutter R (2008) Statistical data
analysis explained: applied environmental statistics with Wiley

Reza AHMS, Jean JS, Lee MK, Liu CC, Bundschuh J, Yang HJ, Lee JF,
Lee YC (2010) Implications of organic matter on arsenic mobiliza-
tion into groundwater: evidence from northwestern (Chapai-
Nawabganj), central (Manikganj) and southwestern (Chadpur)
Bangladesh. Water Res 44:5556–5574

Sakurovs R, French D, Grigore M (2007) Quantification of mineral mat-
ter in commercial cokes and their parent coals. Int J Coal Geol 72:
81–88

Shi J, Wang H, Xu J, Wu J, Liu X, Zhu H, Yu C (2007) Spatial distribu-
tion of heavy metals in soils: a case study of Changxing. China
Environ Geol 52(1):1–10. doi:10.1007/s00254-006-0443-6

Singh VP (2005) Toxic metals and environmental issues. Sarup & Sons,
New Delhi 362p

Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking
water by arsenic in Bangladesh: a public health emergency. Bull
World Health Org 78:1093–1103

Sundari R, Hadibarta T, Rubiyatno A, Malik FA, Aziz M (2013)Multiple
linear regression (Mlr) modeling of wastewater in urban region of
southern Malaysia. J Sust Scie Manag 8(1):93–102

Webster R, Oliver MA (2001) Geostatistics for environmental scientists.
Wiley, New York 330p

WHO (2011) Guidelines for drinking-water quality, 3rd ed., vol. 1,
Recommendations. WHO, Geneva

Yalcin MG, Battaloglu R, Ilhan S (2007) Heavy metal sources in Sultan
Marsh and its neighborhood, Kayseri, Turkey. Environ Geol 53(2):
399–415. doi:10.1007/s00254-007-0655-4

95 Page 14 of 14 Arab J Geosci (2017) 10: 95

http://dx.doi.org/10.4172/2327-4581.1000105
http://dx.doi.org/10.1002/hyp.5946
http://dx.doi.org/10.1007/s11269-006-9079-2
http://dx.doi.org/10.1007/s11269-006-9079-2
http://dx.doi.org/10.12691/jgg-2-4-2
http://dx.doi.org/10.1007/s10661-013-3393-y
http://dx.doi.org/10.1024/0300-9831/a000089
http://dx.doi.org/10.1007/s00254-006-0443-6
http://dx.doi.org/10.1007/s00254-007-0655-4

	Assessment of trace elements of groundwater and their spatial distribution in Rangpur district, Bangladesh
	Abstract
	Introduction
	Material and methods
	Description of the study area
	Sampling and analytical procedure
	Statistical and geostatistical analyses

	Results and discussion
	Descriptive statistics of trace elements
	Correlation matrix analysis
	Multiple regression model
	Geostatistical modeling
	Spatial distribution maps of trace elements

	Conclusions
	References


