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Abstract Drastically disturbed soils caused by opencast min-
ing can result in the severe loss of soil structure and increase in
soil compactness. To assess the effects of mining activities on
reconstructed soils and to track the changes in reclaimed soil
properties, the variability of soil properties (soil particle dis-
tribution, penetration resistance (PR), pH, and total dissolved
salt (TDS)) in the Shanxi Pingshuo Antaibao opencast coal-
mine inner dump after dumping and before reclamation was
analyzed using a geostatistics method, and the number of soil
monitoring points after mined land reclamation was deter-
mined. Soil samples were equally collected at 78 sampling
sites in the study area with an area of 0.44 km2. Soil particle
distribution had moderate variability, except for silt content at
the depth of 0–20 cmwith a low variability and sand content at
the depth of 20–40 cm with a high variability. The pH showed
a low variability, and TDS had moderate variability at all
depths. The variability of PR was high at the depth of 0–
20 cm and moderate at the depth of 20–40 cm. There was
no clear trend in the variance with increasing depth for the
soil properties. Interpolation using kriging displayed a high

heterogeneity of the reconstructed soil properties, and the spa-
tial structure of the original landform was partially or
completely destroyed. The root-mean-square error (RMSE)
can be used to determine the number of sampling points for
soil properties, and 40 is the ideal sampling number for the
study site based on cross-validation.

Keywords Land reclamation . Soil quality . Mining
activities . Geostatistics . Loess Plateau

Introduction

As one of the most important mainstay industries in the
energy market, opencast coal mines are primarily located
in Northwestern China in vulnerable environments, such as
Shanxi Province, Inner Mongolia, and Shaanxi Province
(Wang et al. 2013). The surface soil and vegetation in these
areas had been destroyed by opencast mining, leading to
the destruction of the local ecological environment and the
loss of natural conditions (Jacinthe and Lal 2006; Wang
et al. 2014). To achieve optimal productivity of the mine
soils, the most fundamental and important step is to con-
struct optimal physical, chemical, and biological soil con-
ditions (Nikolic and Nikolic 2012; Papadopoulou-Vrynioti
et al. 2014). Therefore, it is important to understand recon-
structed soil properties and their spatial distribution to se-
lect the appropriate land reclamation measures. By con-
trast, designing site-specific management strategies for
precision reclamation, or applying simulation modeling,
also requires soil data at a much finer scale, which are
obtained primarily by on-site detailed sampling across the
mapping units and land use or management practices
(Gaston et al. 2001; Kariuki et al. 2009). The soil monitor-
ing network plays an important role in detecting the spatial
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distribution of soil properties and in making sustainable
land reclamation decisions (Liu et al. 2014). Therefore, it
is necessary to construct a monitoring network of recon-
structed soil properties and to track the changes in soil
properties over reclamation time.

Opencast coal mining is an anthropogenic activity that
changes the antecedent soil profile and the physical, chemical,
and biological soil properties (Shukla et al. 2004a). Soil dis-
turbance caused bymining leads to the loss of aggregation, the
destruction of soil structure, increased bulk density, reduced
porosity, and subsoil contamination (Shukla et al. 2004b). To
interpret and correctly predict the effects of mining activities
in a mining area, an understanding of the level of degradation
and the spatial distribution of the area is essential.
Geostatistics is a useful tool for analyzing spatial variability,
interpolating between point observations, and ascertaining the
interpolated values with a specified error using a minimum
number of observations (Burrough et al. 1997; Burrough
2001).

Reconstructed soils are generally heterogeneous, and this
heterogeneity stems from partial mixing and irregular spread-
ing of topsoil materials (Jacinthe and Lal 2006). Several at-
tempts have been made to identify the variability of soil prop-
erties using a geostatistics method for agricultural soil (Hu
et al. 2008; Wang et al. 2010; Barik et al. 2014; Hu et al.
2014), and only a few accounts exist for reconstructed soils
in mining areas (Akala and Lal 2001; Shukla et al. 2004b;
Shukla et al. 2007; Nyamadzawo et al. 2008). The previous
studies mainly analyzed the spatial variability of the fertility
index (including total organic carbon and total nitrogen) for
reconstructed soils after land reclamation and the effect of land
reclamation on soil properties (Schroeder 1995; Bendfeldt
et al. 2001; Shukla and Lal 2005; Nyamadzawo et al. 2008).
However, the effects of mining activities on reconstructed soil
properties and spatial variability caused by mining were not
thoroughly investigated, and some physical properties (in-
cluding soil particle distribution and soil penetration resis-
tance) were not evaluated.

For reconstructed soils, this variability could be further
amplified due to the random distribution of soil properties
introduced by mining activities. Heavy machinery is com-
monly used during dumping, and consequently, these soils
tend to be compacted. Both the volume and geometry of soil
macropores are negatively affected by compaction
(Schjonning and Rasmussen 2000). Thus, the objectives of
this study were to (i) assess the spatial variability of soil prop-
erties (including soil particle distribution and soil penetration
resistance) on reconstructed soils after dumping and before
reclamation using a geostatistics method and to analyze the
effects of opencast mining activities on soil properties and (ii)
to determine a monitoring network of soil properties based on
a geostatistical method to track the changes in soil properties
after land reclamation.

Study site

The study area was an opencast coal mine in Shanxi Pingshuo,
which is the largest opencast coal mining area in China and
includes the Antaibao, Anjialing, and East opencast mines.
The Pingshuo opencast coal mine is located along the border
of Shanxi Province, Shaanxi, and Inner Mongolia of the east
Loess Plateau with the geographic coordinates 112° 17′
28″∼112° 28′10″ E, 39° 25′ 6″∼39° 36′5″ N, as shown in
Fig. 1.

This mining area has a typical temperate arid to semi-arid
continental monsoon climate and a fragile ecological environ-
ment. The altitude of the original landform is 1300–1500 m,
and the terrain is loess hills with grass vegetation. The average
annual rainfall is approximately 450 mm, with 65% falling
from June to September. The average annual evaporation,
however, is approximately 2160 mm, 4.6 times more than
the rainfall. This region was once primarily a landscape of
forest and prairie; however, during the last 200 years, the
primary vegetation has been damaged and has led to chronic
erosion problems. Its chestnut soils are characterized by low
levels of organic matter and poor structure. The extensive
mining activities have caused the fragile eco-environmental
situation to worsen in this area. The original landform, geo-
logical strata, and ecosystem no longer exist.

The soils of the original landform in this mining area con-
sist of thick topsoil and low soil fertility. Opencast mining
activities, such as excavation, transport, and dumping, have
significantly disturbed the soils, and the soil profile has been
greatly changed. The land reclamation in the Pingshuo open-
cast coal mine began 20 years ago (Bi et al. 2010). The top 0–
100-cm soils from the opencast mining operations were re-
moved, preserved from wind and water erosion, and stored
separately. After dumping, the 100-cm-thick topsoil was used
to cover the surface of the dump, and some of the reclaimed
area has been used for agriculture (Li et al. 2012). The specific
study area is located in the inner dump of the Antaibao mine
with an area of 0.44 km2. The study site was on the top plat-
form of the inner dump at an altitude of 1474–1480 m. It was
dumped in 2012, and no vegetation was planted.

Methodology

Soil sampling and analysis

In June 2013, equally spaced soil samples at 78 sampling sites
were collected using an auger at the depths of 0–20, 20–40,
40–60, and 60–80 cm (Fig. 2). The sampling sites were ran-
domly arrangedwithin a distance of 60–80m. All soil samples
were air-dried, and the clods were broken using steel rolling
pins in order for the soil to pass through a 2-mm mesh. Soil
particle distribution and soil compaction at the depths of 0–20
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and 20–40 cm, soil pH, and total dissolved salt (TDS) at all
soil depths were measured. Soil particles of soil samples were

analyzed using a laser particle size analyzer Longbench
Mastersizer 2000 (Malvern Instruments, Malvern, England).
Soil pH was determined with a potentiometer using 1:5 water
extracts. Soil electrical conductivity (EC) was measured with
a soil TDS meter TDS11 (Lovibond, Germany), and total
dissolved salt (TDS) was determined by the empirical equa-
tion developed by Marion and Babcock (1976). Soil penetra-
tion resistance (PR) was determined using a penetrometer
TJSD-750-II (Top Instruments, Hangzhou, Zhejiang, China).

Statistical analysis

Descriptive statistics, including the mean, median, standard
deviation, coefficient of variation (CV), maximum, minimum,
and the Kolmogorov-Smirnov (K-S) test were obtained for
each measured soil variable using SPSS 19.0. Geostatistical
methods were used to study the spatial variability of the re-
constructed soil properties (Goovaerts 1998; Akramkhanov
et al. 2014). Geostatistics is based on the theory of a region-
alized variable, which is distributed in space with spatial co-
ordinates and shows spatial autocorrelation such that samples
close together in space are more alike than those that are fur-
ther apart (Black et al. 2014).

The geostatistics approach consists of the following two
parts: the first is the calculation of an experimental variogram
from the data and model fitting, and the second is the estima-
tion at unsampled locations (Jang et al. 2013; Jamshidi et al.
2014). The semivariogram of each soil property was con-
structed using the following model:

γ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
Z xið Þ−Z xi þ hð Þ½ �

2

ð1Þ
Fig. 2 Layout of the soil sampling points in the study area

Fig. 1 Schematic diagram of the geographical location

Arab J Geosci (2017) 10: 46 Page 3 of 13 46



where γ (h) is the semivariance for the internal distance
class h, h is the lag interval, and N (h) is the total number of
sample pairs for the lag interval h. Z(xi) is the measured sam-
ple value at point i, and Z(xi + h) is the measured sample value
at point i + h. Based upon the minimization of the sum of the
squared deviations between the experimental and theoretical
semivariograms, the spherical model, exponential model, and
Gaussian model were selected to further investigate the spatial
structure.

The fitted model provides information about the spatial
structure, as well as the input parameters for kriging interpo-
lation. Among the several estimation methods, kriging is the
most popular because it is a collection of generalized linear
regression techniques for minimizing and estimating the var-
iance defined from a prior model for a covariance (Candela
et al. 1988). Kriging is not only used to estimate unsampled
areas; it is also used to build probabilistic models of uncertain-
ty about unknown, but estimated, predicted values (Machuca-
Mory and Deutsch 2013). The kriging estimates can also be
mapped to reveal the overall trend of data (Goodchild et al.
2009).

The ratio of the nugget to the total sill value (NSR) was
used to define distinct classes of spatial dependence for the
soil variables. If the ratio was 25%, the variable was consid-
ered strongly spatially dependent. If the ratio was between 25
and 75%, the variable was considered moderately spatially
dependent, and if the ratio was >75%, the variable was con-
sidered weakly spatially dependent (Cambardella et al. 1994).

Similar to conventional statistics, a normal distribution for
the variable under study is desirable in linear geostatistics
(Clark and Allingham 2011). The ArcGIS 10 software was
used for modeling the semivariogram and producing the con-
tour map using kriging techniques. The best-fit model with the
lowest value of root mean square was selected for each soil
property. Three variogrammodels, i.e., spherical, exponential,
and Gaussian models, were fitted, and nugget, sill, and range
were estimated to provide information about the spatial vari-
ation of each soil property.

Determination of the sampling number for soil monitoring

Determination of the sampling number using the conventional
statistics method

The Technical Specification for Soil Environmental
Monitoring of China (HJ/T 166-2004) provides a method to
determine the sampling number for monitoring soil properties
based on conventional statistics, and it was selected for com-
parison with the geostatistics method in this study. The spatial
relationship of the sampling points is not considered when
calculating the sampling number using the conventional sta-
tistics method. The calculation formula of the sampling

number provided by The Technical Specification for Soil
Environmental Monitoring of China is as follows:

N ¼ t2CV
2=m2 ð2Þ

where N is the sampling number and t is a value under a
certain freedom for a selected confidence level (95% is gen-
erally selected for soil environmental monitoring), and it can
be determined according to Appendix A in Technical
Specification for Soil Environmental Monitoring of China,
CV is the coefficient of variation in %, and m is a relatively
acceptable deviation in %, which is generally limited to 20–
30% for soil environmental monitoring.

Determination of the sampling number using the geostatistics
method

Cross-validation is performed to determine the optimal sam-
pling number (Aute et al. 2013). Split sampling is performed
by omitting some data values during model calibration for
later use to test the fitted model. If the data points are rather
limited, the validation process uses the Bfractious point^meth-
od. Cross-validation involves removing one data point at a
time. The value from the omitted point is fitted using an
adopted kriging model based on the remaining n − 1 points,
and the estimated value is compared to the one observed for
this point. The root-mean-square error (RMSE) is used to
measure the accuracy of the kriging method using the follow-
ing model (Chaouai and Fytas 1991):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
�

n ∑
n

i¼1
Y x1ð Þ−Y* xið Þ� �2

s

ð3Þ

where Y(x1) is the measured value, Y∗(xi) is the predicted val-
ue, and n is the sampling number. The kriging interpolation is
hypothesized to be the most accurate when the RMSE is at a
minimum and is stable, and the sampling number is the most
rational at this time.

In this study, 10, 20, 30, 40, 50, 60, and 70 sampling points
were randomly selected from a total of 78 sampling points to
perform the kriging interpolation. By analyzing the prediction
accuracy of the reconstructed soil properties under different
sampling points in the study area, the optimal sampling num-
ber for reconstructed soil monitoring was determined accord-
ing to the minimum prediction error.

Results

Variability of soil properties

Descriptive statistics, including mean, standard deviation,
median, CV, and minimum and maximum for the values
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of soil particle distribution, PR, TDS, and pH in the re-
constructed soils are presented in Table 1. The mean and
median values were used as the primary estimates of the
central tendency, and the standard deviation, CV, mini-
mum, and maximum were used as the estimates of vari-
ability from each site. Normality tests were conducted
using the significance level of the K-S test, and all the
values of soil particle distribution, PR, and pH passed the
normality test (p > 0.05), except for TDS.

The mean and the median values were mostly similar,
with the majority of median values either equal to or
smaller than the mean values for all soil properties. This
indicated that the outliers did not dominate the measures
of central tendency. Similar means and medians for sev-
eral soil physical, chemical, and biological properties and
for grain and biomass yields were also reported in other
studies (Cambardella et al. 1994; Shukla and Lal 2005;
Nyamadzawo et al. 2008). Soil particle distribution had
moderate CV, except for silt content at the depth of 0–
20 cm with a low CV and sand content at the depth of 20–
40 cm with a high CV (>35%). The pH showed a low CV
(<15%), and TDS had moderate CV (15–35%) at all
depths. The CV for PR was high at the depth of 0–
20 cm and moderate at the depth of 20–40 cm. A lower
CV for pH has been reported in several other reports
(Shukla et al. 2004b). The high CV for soil compaction
properties has also been documented by other investiga-
tors (Ussiri et al. 2006; Barik et al. 2014). Overall, the
descriptive statistics showed low soil variability in the
study area.

Spatial variability of soil properties

Soil properties may vary due to intrinsic or extrinsic
sources of variability. Descriptive statistics cannot dis-
criminate between these two sources of variability.
Therefore, the examination of the spatial correlation struc-
ture of each soil property was further explored. The ex-
perimental site also displayed differences in its spatial
dependence as determined by its semivariograms
(Table 2). The semivariance ideally increases with the
distance between a sample location or lag distance to a
more or less constant value (the total sill). The distance
that the semivariance attains after a constant value is
known as the range of spatial dependence (Cambardella
et al. 1994). Samples separated by a distance closer than
the range are spatially correlated, and those separated by a
distance greater than the range are independent. The ex-
perimental semivariograms for all measured soil proper-
ties for all depths exhibited spatial structure. The
semivariogram models and best-fitted model parameters
are provided in Table 2. The semivariograms of the clay
content at all depths, the silt content at a 0–20-cm depth,
the sand content at a 0–20-cm depth, the PR at a 20–40-
cm depth, and the TDS at a 0–20-cm depth were fitted
to a spherical model with the nugget effect. The
semivariograms of the silt content at a 20–40-cm depth,
the sand content at a 20–40-cm depth, the pH except at a
40–60-cm depth, and the TDS at a 40–60-cm depth were
fitted to exponential model with the nugget effects, and
the semivariograms of the PR at a 0–20-cm depth, the pH

Table 1 Descriptive statistics for the soil properties

Soil properties Depth (cm) Mean Standard deviation Median Minimum Maximum CV (%) K-S p

Clay content (%) 0–20 13.27 3.18 12.61 7.91 20.51 23.96 0.235

20–40 14.25 4.00 13.83 3.42 22.04 28.03 0.286

Silt content (%) 0–20 58.41 7.16 57.87 43.41 75.19 12.26 0.822

20–40 58.28 9.81 58.18 13.89 79.46 16.84 0.338

Sand content (%) 0–20 28.32 8.11 27.26 10.55 46.33 28.64 0.724

20–40 27.47 11.08 25.32 6.03 82.70 40.35 0.522

PR (kPa) 0–20 5037.94 1932.61 5298.40 706.70 8535.30 38.36 0.765

20–40 7765.81 1427.88 7589.70 4417.50 9983.90 18.39 0.509

pH 0–20 8.50 0.15 8.51 8.05 8.75 1.72 0.157

20–40 8.49 0.18 8.50 8.08 8.93 2.13 0.966

40–60 8.46 0.18 8.46 8.05 8.82 2.14 0.868

60–80 8.51 0.20 8.53 8.09 9.02 2.38 0.917

TDS (%) 0–20 0.0055 0.0013 0.005 0.003 0.010 24.06 0.006

20–40 0.0056 0.0015 0.005 0.003 0.012 25.87 0.007

40–60 0.0053 0.0015 0.005 0.001 0.012 28.50 0.006

60–80 0.0059 0.0018 0.005 0.004 0.012 29.54 0.006
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at a 40–60-cm depth, and the TDS at a 20–40-cm depth
were fitted to Gaussian model with the nugget effects. The
existence of a positive nugget effect in some of the vari-
ables can be explained by sampling error, short-range var-
iability, and unexplained variability (Burgos et al. 2006).
The nugget semivariance was generally low for the pH
and TDS but high for the soil particle and PR for all
depths. A higher nugget value tends to mask the spatial
variability of the attributes. No definite trend for the nug-
get variance was obtained with increasing depth. All
semivariograms are generally well structured with a small
nugget effect, indicating that the sampling density is ade-
quate to reveal the spatial structures (McGrath et al.
2004).

The nugget variance expressed as a percentage of the total
semivariance enabled a comparison of the relative size of the
nugget effect among the soil properties (Trangmar et al. 1985).
The NSR is useful for defining the spatial dependence of those
attributes for which the range values are similar. Using NSR,
the semivariograms indicated moderate spatial dependency
for most of the parameters in the study area (Table 2). The
strong spatial dependency (NSR <25%) was obtained for pH
concentration at the depths of 20–40 and 60–80 cm and TDS
at the depths of 20–40 and 60–80 cm. However, the range
values were only similar at a 40–60-cm depth for TDS and
pH.

Spatial distribution of soil properties

The results of the spatial dependence enabled the presen-
tation of kriged maps of the different variables. Figures 3,

4, 5, and 6 show the contour maps obtained by simple
kriging for the soil properties. Maps for each variable
were maintained on the same scales and with the same
contour intervals to allow for easier comparison. In gen-
eral, the maps showed high variability, which was also
obtained in the results of the statistical methods
(Table 1). These maps help understand the variability of
the soil properties in the study site by providing a visual
representation and greater spatial detail.

The spatial variability of soil particle distribution at
the depth of 0–20 cm was higher than that at the depth
of 20–40 cm. The clay content distribution had no obvi-
ous trend at the depth of 0–20 cm, and the areas with
high clay content were distributed in the northern, cen-
tral, and southern and were shaped as strips. The spatial
variability of clay content was very low at the depth of
20–40 cm, and it had relatively uniform content within
the study area. The distribution of silt content and sand
content had a good complementary. The silt content was
high in northeast and central and low in northwest and
southwest at the depth of 0–20 cm and showed a
northwest-southeast direction distribution. The sand con-
tent distribution was the opposite; it was low in the
northeast and central and high in northwest and south-
west and had a northwest-southeast direction distribution.
At the depth of 20–40 cm, the silt content was high in
the area from northwest to southeast and low in the other
areas, and the sand content was opposite the sand
content.

The PR was highest in western at the depth of 0–
20 cm, followed in central, northern, and southern, and

Table 2 The parameters of the variogram models for the soil properties

Soil properties Depth (cm) Best model Nugget Sill Range (m) NSR (%)

Clay content (%) 0–20 Spherical model 3.347 11.06 280.16 30.27

20–40 Spherical model 11.96 16.79 1219.19 71.24

Silt content (%) 0–20 Spherical model 27.97 53.09 803.98 52.69

20–40 Exponential model 69.11 102.25 1080.00 67.59

Sand content (%) 0–20 Spherical model 36.20 68.13 584.44 53.14

20–40 Exponential model 89.79 117.61 780.00 76.35

PR (kPa) 0–20 Gaussian model 1,674,729.20 4,609,877.50 516.27 36.33

20–40 Spherical model 748,508.80 2,316,078.70 395.78 32.32

pH 0–20 Exponential model 0.01 0.02 319.08 57.66

20–40 Exponential model <0.01 0.03 194.83 1.20

40–60 Gaussian model 0.03 0.04 1230.04 77.09

60–80 Exponential model 0.01 0.05 325.69 4.97

TDS 0–20 Spherical model 7.23 8.38 362.22 86.26

20–40 Gaussian model 1.45 11.16 960.00 13.00

40–60 Exponential model 1.18 10.94 292.45 10.80

60–80 Gaussian model 1.91 3.60 1012.22 52.93
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it was relatively low in the other areas. With the increase
of soil depth, the variability had a slight increase; at the
depth of 20–40 cm, the area with high PR increased, but
the distribution pattern where the PR was high in north-
ern, central, and southern was unchanged. The results
where the variability of PR at the depth of 0–20 cm was
less than that at the depth of 20–40 cm was opposite to
the other findings in agricultural land (Junior et al. 2006).
A significant horizontal spatial distribution in the PR sug-
gested that compaction effects by heavy machinery oper-
ations were not equally the same all over the field, which

may be due to the effects of dumping technology and
variations in the other soil properties (Barik et al. 2014).

In the study area, the reconstructed soils were alkaline. The
change trend in pH was not obvious at the depth of 0–80 cm,
and the variation and distribution direction were not different
at the four soil depths. The heterogeneity of soil pH was low-
est at the depth of 40–60 cm, and the range of soil pH was
between 8.05 and 8.82 with a decreasing trend from southeast
to northwest. The soil pH slightly decreased after disturbance
in the study area, but it maintained a consistent level with the
original topography.

Fig. 3 Spatial distribution (contour map) of the soil particles (a 0–20 cm sand content, b 20–40 cm sand content, c 0–20 cm silt content, d 20–40 cm silt
content, e 0–20 cm clay content, and f 20–40 cm clay content; unit: % )
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The soil was non-salinized in the study area, and only the
TDS values at the depths of 0–20 cm in northeast and 40–60
and 60–80 cm in northern were near 0.01% and belonged to
salinized soil. With the increase of soil depth, TDS had no
obvious change, and the TDS at the depth of 40–60 cm was
higher than that at the other three soil depths.

Discussion

Mechanism of spatial variability of reconstructed soil
properties

The spatial variability of a regionalized variable under study is
given by its sill values. The CVof the soil properties was high,
and there was no clear trend with increasing soil depth. The
large CV indicated the heterogeneity of the reconstructed soils
(Nyamadzawo et al. 2008; Kamberis et al. 2012). The hetero-
geneity in the reconstructed soils after dumping and before
reclamation may be a result of mining activities. If the spatial
distribution of soil properties is consistent, then the spatial
variability is caused by structural factors (Zhang et al. 2010;
Papadopoulou-Vrynioti et al. 2013). In this study area, the
distribution of soil properties had no similarity, and this indi-
cated that the spatial variability mainly arose from random
factors rather than structural factors. For a large-scale coal
mine, the disturbance by large mechanical recycling opera-
tions and humans has far-reaching impacts on soil develop-
ment. The excavation, transport, and dumping activities sig-
nificantly disrupted the soils, which created the spatial

variability of the soil properties. Severe soil compaction and
vegetation destruction also led to the loss of soil aggregates
and soil structure (Shukla et al. 2004a; Jacinthe and Lal 2006;
Rozos et al. 2013). Therefore, it is important to reclaim the
land and restore vegetation to disturbed soils in mining areas.

The optimal rational sampling number for soil monitoring

In 2011, the Land Reclamation Regulation was promulgated
in China. Article 31 of the Regulation claims that soil proper-
ties should be monitored and assessed to propose some sug-
gestions and measures for soil improvement when the
destroyed land in a mining area is reclaimed for agricultural
land. The study site had no plants and would soon be
reclaimed, and thus, the changes in the soil particle distribu-
tion, PR, pH, and TDS after reclamation should be monitored
(Shukla et al. 2004a). Therefore, the number of monitoring
points should be determined, and themonitoring points should
be planned (Rozane et al. 2011).

A total of 10, 20, 30, 40, 50, 60, 70, and 78 sample points
were randomly selected from 78 sample points for cross-val-
idation, and the RMSEs of the different soil properties at dif-
ferent depths were calculated. For accurate results, the selec-
tion process was repeated three times (i.e., three treatments)
(Rodeghiero and Cescatti 2008). The RMSEs of the soil prop-
erties are shown in Table 3. The RMSE values of the clay
content, silt content, sand content, and PR decreased with
increasing sample sites at the depths of 0–20 and 20–40 cm
and were stable at 40, 50, 40, and 50 sample points for the 0–
20-cm depth and 40, 40, 40, and 50 sample points for the 20–

Fig. 4 Spatial distribution
(contour map) of the soil
penetration resistance (a 0–20 and
b 20–40 cm; unit: kPa)
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40-cm depths. The RMSE values of the pH had a similar trend
at the four depths and were stable at 50 sample points for all
depths. The RMSE values of the TDS showed a large fluctu-
ation and then stabilized when the number of sample points
was 50 at the depths of 0–20 and 20–40 cm, and it decreased
with increasing sample points at the depths of 40–60 and 60–
80 cm but stabilized at 50 and 70 sample points, respectively.

The rational sampling number calculated by the conven-
tional statistical methods was less than 20 (Table 4) and was

between 30 and 50 based on the geostatistical method. To not
only meet the accuracy requirements of the regulated stan-
dards but also to consider the spatial relationship between
the sampling points, the rational sampling number was deter-
mined as 40 in the study area. After the determination of
sampling number, an optimal sampling scheme can be de-
signed. Some optimal environmental monitoring networks
have been designed using the MSANOS software (Barca
et al. 2015), a multifactor map (Youssef et al. 2015;

Fig. 5 Spatial distribution
(contour map) of the pH (a 0–20,
b 20–40, c 40–60, and d 60–
80 cm)
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Bathrellos et al. 2017), and the variance quadtree algorithm
method (Minasny et al. 2007), and these methods were good
references for reclaimed soil monitoring in mining areas.
Therefore, the next research priority should be focused on
the sampling scheme for reclaimed land monitoring.

In local studies, the application of the procedure is able to
present direct spatial variability of reconstructed soil proper-
ties and determine the optimal soil sampling number for

reclaimed land monitoring. Therefore, the monitoring scheme
of the soil properties of reclaimed land in these areas is easily
designed during the early planning stages. The optimal soil
sampling number of an area can be logically estimated.
Therefore, engineers, planners, decision makers, and environ-
mental managers can utilize the proposed procedure in new
and existing mined land reclamation projects. Additionally,
the proposed methodology may be used by the local

Fig. 6 Spatial distribution
(contour map) of the TDS (a 0–
20, b 20–40, c 40–60, and d 60–
80 cm; unit: %)
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authorities to guide the adoption of policies and strategies
aiming towards mined land reclamation monitoring.

Conclusions

The following conclusions can be drawn from our findings.

1. There was moderate spatial variability of the soil proper-
ties in reconstructed soils after dumping and before recla-
mation according to statistical and geostatistical analyses.

2. A geostatistical analysis was useful for estimating the soil
properties and interpreting the spatial variability, and con-
siderable heterogeneity of these variables was observed
from the contour maps.

3. Mining activities significantly disrupted the mine soils,
and the spatial structure of the original landform was par-
tially or completely destroyed. Land reclamation is an
important measure in developing soil properties.

4. Based on traditional statistical and geostatistical methods,
further monitoring of the soil properties is necessary to
evaluate the effects of reclamation over time. Cross-
validation can be used to test the accuracy of the
geostatistics, and RMSE can be used to measure the ac-
curacy of the kriging method and determine the optimal
number of sampling points in the monitoring of soil
properties.
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