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Abstract The mineralogical and geochemical characteris-
tics of the Upper Triassic Baluti shale from the Northern
Thrust Zone (Sararu section) and High Folded Zone
(Sarki section) Kurdistan Region, Iraq, have been investi-
gated to constrain their paleoweathering, provenance, tec-
tonic setting, and depositional redox conditions. The clay
mineral assemblages are dominated by kaolinite, illite,
mixed layers illite/smectite at Sararu section, and illite >
smectite with traces of kaolinite at Sarki. Illite, to be not-
ed, is within the zone of diagenesis. The non-clay min-
erals are dominated by calcite with minor amounts of
quartz and muscovite in Sararu shale; and are dominated
by dolomite with amounts of calcite and quartz in Sarki
shale. Baluti shale is classified as Al-rich based on major
and minor elements. The chemical index of alteration
(CIA) is significantly higher in the Sararu than the Sarki
shales, suggesting more intense weathering of the Sararu
than the Sarki shales. The index of compositional variabil-
ity (ICV) of the Sararu shale is less than 1 (suggesting it
is compositionally mature and was deposited in a tecton-
ically quiescent setting). More than 1 for Sarki shales
(suggest it is less mature and deposited in a tectonically
active setting). Most shale of the Baluti plot parallel and
along the A-K line in A-CN-K plots suggest intense
chemical weathering (high CIA) without any clear-cut ev-
idence of K-metasomatism. Clay mineral data, Al enrich-
ment, CIA values, and A-CN-K plot suggest that the
source area experienced high degree of chemical

weathering under warm and humid conditions, especially
in Sararu. Elemental ratios critical of provenance (La/Sc,
Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/
Eu*CN) shows slight difference between the Sararu and
Sarki shales; and the ratios are similar to fine fractions
derived from the weathering of mostly felsic rocks. The
Eu/Eu*CN, Th/Sc, and low K2O/Al2O3 ratios of most
shales suggest weathering from mostly a granodiorite
source rather than a granite source, consistent with a
source from old upper continental crust. Discrimination
diagrams based on major and trace element content point
to a role of the felsic-intermediate sources for the deposi-
tion of Baluti Formation, and probably mixed with mafic
source rocks at Sararu section. The chondrite-normalized
rare earth elements (REE) patterns are similar to those of
PAAS, with light REE enrichment, a negative Eu anoma-
ly, and almost flat heavy REE pattern similar to those of a
source rock with felsic components. The source of sedi-
ments for the Baluti Formation was likely the Rutba
Uplift and/or the plutonic-metamorphic complexes of the
Arabian Shield located to the southwest of the basin;
whereas the Sararu shale was affected by the mafic rocks
of the Bitlis-Avroman-Bisitoun Ridge to the northeast of
Arabian Plate. The tectonic discrimination diagrams, as
well as critical trace and REE characteristic parameters
imply rift and active setting for the depositional basin of
the shale of Baluti Formation. The geochemical parame-
ters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate
that these shales were deposited under oxic environment
and also show that Sarki shale was deposited under more
oxic environment than Sararu.
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Introduction

The mineralogy and geochemistry of siliciclastic sediments
have been widely used to determine the degree of weathering
(Nesbitt and Young 1982; Fedo et al. 1995; Nyakairu and
Koeberl 2001; Ghandour et al. 2003; Hosseininejad et al.
2012; Srivastava et al. 2013; Akinyemi et al. 2013; Zhang
et al. 2013), source rock composition (Tawfik et al. 2011;
Cao et al. 2012; Armstrong-Altrin et al. 2012, 2014; Dai
et al. 2016), tectonic setting (Dickinson and Suczek 1979;
Bhatia 1983; Verma and Armstrong-Altrin 2013), and diagen-
esis (Zaid 2015; Zaid and Gahtani 2015; Zaid et al. 2015), as
well as paleogeographic reconstruction of provenance
(Zimmermann and Spalletti 2009; Armstrong-Altrin 2015).

The shale-dominated Baluti Formation (Upper Triassic
strata) is distributed in the Northern Thrust Zone and High
Folded Zone in North Iraq (Fig. 1a). The Baluti Formation
consists mainly of shale with intercalations of thin bedded
dolomitized limestones. It varies in thickness from 35 to
60 m in surface sections; but it varies between 25 and 80 m
in the subsurface sections (Buday 1980). However, fossils are
rare and not age diagnostic (Bellen et al. 1959). Therefore, the
age of the formation is arbitrary and determined by its strati-
graphic position between the proved Upper Triassic (Norian)
Kurra Chine Formation and the overlying Sarki Formation
(Liassic) (Fig. 2). However, Hanna (2007) suggested the for-
mation age to be Carnian based on the assemblage
palynozones; whereas, equivalent formations in west Iraq
may be eroded (Jassim et al. 2006).

The Baluti Formation has not been fully studied by geolo-
gist, except for a few ones which included general description
(Bolton 1958; Bellen et al. 1959) and age determination
(Hanna 2007). Moreover, there are no previous studies avail-
able on the mineralogy and geochemistry. Similarly, there are
no studies that focused on provenance, tectonic setting, and
paleoweathering of the Baluti Formation. In this paper, there-
fore, the authors examine the mineralogy and geochemistry of
the Al-rich shale of the Baluti Formation through two sections
in the Sararu section in the Northern Thrust Zone and Sarki
section in the High Folded Zone. The aim of this study is to
ident i fy the source rock character is t ics and the
paleoweathering as well as the paleo-oxygenation conditions
of the Upper Triassic in the northeast margin of the Arabian
Plate.

Geological background

The Baluti Formation belongs to tectonostratigraphic
megasequence AP6, which the latter started from Mid-
Permian to Early Jurassic (255–182 Ma). During Late
Permian time, the Neo-Tethys Ocean opened when one or
more narrow blocks of continental crust drifted away from

the NE margin of Gondwana. This megasequence (AP6)
was deposited on the north and east facing passive margin of
the Arabian Plate. The unconformity at the base of the
megasequence was a break up unconformity (Jassim and
Goff 2006).

Renewed rifting occurred within this passive margin in
Mid-Late Triassic time (Fig. 1b) creating a broad and highly
restricted intra-shelf basin in Mesopotamia separated from the
open ocean by a narrow rift with alkali basalts and an outer
ridge of thinned continental crust on which an open marine
carbonate platform developed (Numan 1997; Jassim and Goff
2006). This phase of rifting was followed by slow thermal
subsidence in Norian-Liassic time and led to the formation
of a passive margin megasequence along northern and eastern
margins of the Arabian plate, and the development of the
Mesopotamian basin. The Rutba Uplift developed in the area
now representing west Iraq, northeast Jordan, east Syria, and
northwest Saudi Arabia (Fig. 1). The Upper Permian and
Lower Triassic sediments were deposited on a broad platform
(Jassim and Goff 2006).

The Arabian Shield (the southwestern part of Arabian
Plate) is composed of accreted Neoproterozoic juvenile vol-
canic arcs, gneisses, metagabbros, metavolcano-sedimentary
sequences, granites, and gabbro-diorite complexes (Stern
1994). At about 580–540 Ma, the Arabian Shield crust stabi-
lized, accompanied by continental-scale uplift, erosion, and
the development of intra-mountain basins and rifting
(Moghazi 2003; Avigad et al. 2005).

The lower contact with the underlying Norian Kurra Chine
Formation comprises of monotonous dark brown and black
limestone ranging in thin and thick-bedded, with occasional
beds of thick bedded fetid dolomite with slump structures, and
papery shale. The upper boundary of Baluti Formation is con-
formable with the Liassic Sarki Formation, which is com-
posed of about 300 m of carbonate rocks. The Baluti
Formation attains a thickness of 66 m and consists of gray
shale with thin bedded carbonate rocks at Sararu section,
and 43 m of gray to grayish black shale interbedded with thin
layer of carbonate rocks at Sarki section. Hanna (2007) esti-
mated the age of the formation by assemblage palynozones
that the upper part of Baluti Formation is of Carnian (Julian)
age. He suggested the prevalence of shore zone depositional
environment with influence of fresh water for the lower por-
tion of the upper part of the formation. He proposed the influ-
ence of open marine conditions on the deposition of the upper
portion of the formation.

Sampling and methods

Twenty-seven fresh shale samples were collected from
two outcrop sections (Sararu section = 15 samples and
Sarki section = 12 samples) of Baluti Formation for
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whole-rock geochemical analyses. The studied samples
are collected from two outcrop sections: The first locality
lies at Sararu Village which is located at about 26 km

northwest of Amedi Town, at latitude 37° 14′ 21″ N and
longitude 43° 16′ 56″ E in the Northern Thrust Zone. The
second locality is about 15 km southeast of Amedi Town,
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in the core of Gara anticline near Sarki Village which is
situated at latitude 36° 59′ 34″ N and longitude 43° 32′
23″ E in High Folded Zone (Fig. 1). Details of sample
locations and lithology are presented in Fig. 2. Samples
for geochemical analysis were first crushed and then pow-
dered to 200 mesh with an agate pulverizer. The mineral-
ogy of 15 shale samples (8 from Sararu and 7 from Sarki
shales) was determined by conventional x-ray diffraction
(XRD) method using Philips PM8203 x-ray diffractome-
ter with Ni-filtered CuKα radiation using 40 kV–40 mA
at the x-ray laboratories of the Iraqi Geological Survey,
Baghdad, Iraq. The samples were analyzed using a scan
range from 3° to 50° 2θ for the crushed bulk samples and
from 3° to 20° 2θ for the clay fraction at an interval of
0.02° 2θ per second using a rotating sample holder. The
clay sized fraction (<2 μm) was separated out from the
shale by disaggregating and dispersing the sample in dis-
tilled water by pipette method, and oriented slides were
prepared to obtain a good reflection (Friedman and
Johnson 1982; Hardy and Tucker 1988). The oriented
mounts were run under three separate conditions: air-dry
state, after ethylene glycol treatment at 25 °C for 15 h,
and after heating to 550 °C for 1 h for discrimination
be tween kao l in i t e and ch lo r i t e . For the semi -
quantification of the identified principal minerals, peak

areas of the specific reflections of the main clay minerals
were calculated (Grim 1968; Carroll 1970).

The twenty-seven samples were analyzed for major
oxides (TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O,
K2O, and P2O5) and SO3 by x-ray fluorescence (XRF);
trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr,
Nb, Mo, Ba, Hf, Th, and U); and rare earth elements
(REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Ho,
Tm, Yb, and Lu) were analyzed by inductively coupled
plasma-mass spectrometry (ICP-MS) in the ALS inter-
national laboratory in Spain. Loss on ignition (LOI)
data was determined from the total weight after drying
the samples in oven 100 °C for 24 h, to remove mois-
ture content, next ignition the samples at 1000 °C for
2 h in the Depar tment of Geology laboratory
(Salahaddin University, Kurdistan Region, Iraq). SiO2

was calculated after subtracting the summation of major
elements and LOI from 100.

Chemical analysis for major elements has precisions
up to 3 %; whereas it varies between 1 and 8 % for the
trace and REEs. Internationally recognized standard ma-
terials GBM908-5 and OGGeo08 were used as refer-
ences. Based on these standards, the accuracy and pre-
cision of the analysis were within ±2 % for elements
Nb, Sr, Sc, Th, U, V, Zr, Cu, Pb, Zn, Mo, Ni, Pr, Nd,
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Yellowish grey calcareous shale  
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Fig. 2 Columnar sections of
Baluti Formation: a Sararu and b
Sarki sections
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Sm, Ho, and Tm; ±5 % for Ba, Hf, Rb, Y, La, Ce, Eu,
Tb, Dy, Er, and Lu; and ±10 % for Gd and Yb.

Comparison of data between the present study and the pub-
lished data of Post Archean Australian Shale (PAAS) was
done whenever possible. The REE data were normalized to
the chondrite values of Taylor and McLennan (1985). The
normalized Eu anomaly (Eu/Eu*)CN is also a useful discrim-
inator between samples and between plate tectonic settings
(McLennan 1989; Eu/Eu* = EuCN/(SmCN × GdCN)

1/2, where
the subscript CN denotes chondrite normalized values). The
normalized REE data to PAAS are a useful discriminator for
the source rock (Dai et al. 2016; Ce/Ce* = CePN/(0.5 LnPN +
0.5 PrPN) and Eu/Eu* = EuPN/(0.5 SmPN + 0.5 NdPN) where
the subscript PN denotes PAAS normalized values.

The chemical index of alteration (CIA), plagioclase
index of alteration (PIA), and index of compositional
variation (ICV) were calculated following the methods
of Nesbitt and Young (1982), Fedo et al. (1995) and
Cox et al. (1995), respectively. CaO was corrected by
the methodology proposed by McLennan et al. (1993),
in which CaO values were accepted only if CaO <
Na2O; when CaO > Na2O, it was assumed that the
concentration of CaO equals Na2O.

Results

Mineralogy

Mineral compositions from XRD analyses are listed in
Table 1 and representative XRD diagrams are shown in
Fig. 3. The Sararu and Sarki samples show a contrast-
ing mineralogy. The Sararu samples are mainly com-
posed of clay minerals associated with calcite, quartz,
and small amounts of muscovite; and the principal clay
minerals are illite, kaolinite, and mixed layer illite/smec-
tite. However, the Sarki samples are composed of clay
minerals associated with dolomite, quartz, and calcite;
and the clay minerals are illite, smectite, with trace
amounts of kaolinite. Calcite and quartz represent
92.67 and 6.40 %, respectively, of the non-clay minerals
in Sararu shale while dolomite, quartz, and calcite rep-
resent 50.46, 32.25, and 15.92 %, respectively, in Sarki
shale (Table 1). Marine shales contain relatively higher
calcite content than non-marine shales. However, calcite
varies from 22 to 80 vol % in marine shales with values
less than 4 vol % are detected in non-marine shales
(Ghandour et al. 2003).

The clay minerals identified in the <2-μm fractions
are illite, kaolinite, and mixed layer illite/smectite. Illite
and kaolinite are generally the dominant clay minerals
in the Sararu samples and their proportions range from
27.00 to 57.60 and from 6.90 to 54.40 %, respectively.

Illite and smectite are the dominant clay minerals in the
Sarki samples and their proportion range from 63.20 to
72.70 and from 20.90 to 36.80 %, respectively. The
Kübler Index (KI) values for the samples range between
0.80 and 1.20 Δ2θ (average = 1.0 Δ2θ) in Sararu and
from 0.70 to 1.00 Δ2θ (average = 0.83 Δ2θ) in Sarki
section (Table 1); the modal illite crystallinity value is
0.69 Δ2θ, typical values of a high diagenetic zone
(Merriman and Frey 1999). The average of illite chem-
istry and kaolinite crystallinity indices are 0.59 and 0.15
for Sararu and are 0.55 and 0.23 for Sarki.

Geochemistry

Themajor, trace, and rare earth elements analysis results of the
Al-rich shale from Baluti Formation are presented in Tables 2
and 3.

Major elements

The Upper Triassic shale rocks show significant mineral-
ogical variability, which is reflected in the variation of
the chemical composition (Table 1). The shale of the
Baluti Formation has high CaO content in Sararu section
(17.36–38.92 %, average 33.09 %) and 4.12–35.84 %,
average 14.00 % in Sarki section. The higher content
of CaO has a great dilution effect on other oxides. The
SiO2 content in the Sararu section ranges between 4.86
and 18.38 % with an average of 9.12 %; and it varies in
the Sarki section from 11.72 to 27.64 % with an average
of 19.06 %. Al2O3 ranges from 9.95 to 23.94 % with an
average of 14.60 % in the Sararu section; whereas it
varies in the Sarki section between 12.03 and 30.91 %
with an average of 19.43 %. The TiO2 content of both
sections is relatively low; it ranges between 0.30 and
0.79 % with an average of 0.48 % in Sararu; and ranges
between 0.25 and 0.78 % with an average of 0.49 % in
the Sarki section. The content of Fe2O3 in the shale of
the Sararu section ranges between 4.29 and 7.12 % with
an average of 5.64 %; on the other hand, it ranges be-
tween 5.69 and 11.73 % with an average of 8.23 % in
the Sarki section. The enrichment of CaO as well as the
significant correlation between CaO and LOI (r = 0.780,
n = 12) in the Sarki section (Table 4) suggest that LOI
and CaO are incorporated into calcite rather than plagio-
clase. Al2O3 and K2O content can be related to the pres-
ence of mica and clay minerals (r = 0.916, n = 12) and
Al distribution that is controlled by the content of clay
minerals (McLennan et al. 1983). The Na2O content is
principally related to clay minerals and it significantly
correlates with K2O (r = 0.886 and 0.753, n = 15 and
12 for Sararu and Sarki, respectively) as shown in
Table 4. Higher Fe2O3 could be related to the presence
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of iron oxide, heavy minerals, or hematite cement. MgO
is significantly correlated with CaO (r = −0.754, n = 15)
in the Sararu section. CaO content is mostly related to
the presence of calcite cements or skeletal fragments
(Khanehbad et al. 2012). Significant correlation between
Al2O3 and Fe2O3 in the Sarki shale (Table 4) implies that
Fe is partly controlled by clay minerals. The high K2O/
Na2O ratios (35.89 and 41.06 for Sararu and Sarki, re-
spectively) are due to the presence of K-bearing minerals
such as mica and illite (Khanehbad et al. 2012). In these
samples, TiO2 has a positive correlation with Al2O3

(r = 0.772 and 0.930, r = 12 and 15 for Sararu and
Sarki, respectively), which suggests that TiO2 is possibly
associated with phyllosilicate minerals (Dabard 1990) or
may largely occur in kaolinite because Ti can substitute
Al (Dai et al. 2015). It also indicates chemical
weathering in the source area that caused the concentra-
tion of these residual elements (Dokuzi and Tanyolu
2006). The ternary diagram based on major and minor
elements (Al2O3, TiO2, and Zr), that are usually consid-
ered the least mobile during chemical weathering was
first suggested by Garcia et al. (1994). In this study, all
the samples fall in the line of Al-rich shales and are
classified as Al-rich shale (Fig. 4).

Trace elements

Large ion lithophile elements (Rb, Ba, and Sr)

In comparison with PAAS (Table 2), the Upper Triassic
samples generally tend to display more depleted large ion
lithophile element (LILE) patterns. The mean LILE con-
centrations of the shale are slightly to moderately deplet-
ed; whereas the mean Sr concentrations are moderately
enriched (especially in the Sararu section). The Sr enrich-
ments are in accordance with high carbonate (calcite in
Sararu and dolomite in Sarki). The Rb and Ba have sig-
nificant positive correlation coefficients with Al2O3 in
Sarki (0.944 and 0.967, respectively; n = 12) and weak
in Sararu (0.462 and 0.483, respectively; n = 15). The
correlation coefficients of K2O with Rb in Sarki is 0.882
and with Ba is 0.938 (n = 12) and in Sararu is 0.894 with
Rb and is 0.661 (n = 15) with Ba, as shown in Table 4.
These correlations suggest that their distributions are con-
trolled by kaolinitic, smecitic, and illitic phyllosilicate
phases. No positive correlations have been found between
Sr and other oxides, except with CaO (0.820 in Sararu
and 0.793 in Sarki); this indicates the association of Sr
in the carbonate phase (Yan et al. 2007).

Table 1 Semi-quantitative mineralogical composition and crystallographic parameters of the shale from the Baluti Formation

Sample
no.

Non-clay minerals 100 % Clay minerals 100 %

Calcite
%

Dolomite
%

Quartz
%

Muscovite
%

Kaolinite
%

Illite
%

Smectite
%

Illite-smectite
%

Illite crystallinity
index

Illite chemistry
index

Kaolinite
crystallinity
index

Sararu section

BS.1 91.45 – 7.43 1.12 10.70 51.80 – 37.50 0.80 0.88 0.15

BS.3 89.30 – 10.70 – 46.00 27.00 – 27.00 1.20 0.58 0.05

BS.5 95.10 – 4.90 – 41.80 30.70 – 27.50 1.00 0.85 0.05

BS.7 95.10 – 4.90 – 44.50 29.40 – 26.10 1.20 0.58 0.04

BS.9 94.25 – 4.89 0.86 38.80 30.60 – 30.60 0.80 0.13 0.03

BS.11 91.92 – 6.73 1.35 54.40 30.80 – 14.80 1.00 0.51 0.05

BS.13 91.27 – 6.72 2.01 6.90 57.60 – 35.50 1.20 0.72 0.72

BS.15 92.96 – 5.63 1.41 14.90 35.90 – 49.20 0.80 0.45 0.13

Average 92.67 6.40 0.84 32.30 36.7 0 31.00 1.00 0.59 0.15

Sarki section

B.1 63.45 27.74 8.81 – 3.10 68.40 28.50 – 0.75 0.45 0.32

B.3 13.14 9.54 77.32 – 6.30 67.60 26.10 – 1.00 0.70 0.19

B.5 11.06 55.89 33.05 – 6.90 65.40 27.70 – 0.70 0.44 0.42

B.7 – 84.09 15.91 – 5.40 67.80 26.80 – 0.95 0.53 0.20

B.8 9.84 64.18 25.98 – 6.70 71.10 23.20 – 0.90 0.68 0.18

B.10 7.24 41.21 42 9.55 6.40 72.70 20.90 – 0.83 0.38 0.32

B.12 6.70 70.59 22.71 – – 63.20 36.80 – 0.70 0.71 –

Average 15.92 50.46 32.25 1.36 4.97 68.00 27.00 – 0.83 0.55 0.23
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High-field strength elements (Th, U, Y, Zr, Nb, and Hf)

The Baluti shales, compared with the PAAS, are char-
acterized by depletion of high-field strength elements
(HFSE) except Nb (in Sarki). High-field-strength ele-
ment concentrations show significant positive correla-
tions with SiO2, Al2O3, Na2O, K2O, and TiO2 (except
U with Na2O and K2O in the Sararu section; as
displayed in Table 4); this indicates their clay mineral
control. The average Th/U ratio in Sararu (2.09) is low-
er than in the Sarki shale (2.82) and both are lower than
PAAS (4.7; Taylor and McLennan 1985). The Th/Sc
ratio, a good indicator of provenance, has average

values of 0.77 and 0.61 for the Sararu and Sarki shales,
respectively. Furthermore, strong positive correlation be-
tween Zr and Hf as attested by their high correlation
coefficients (0.957 and 0.991 as in Table 4), indicates
they are similar during magmatic differentiation (Dokuzi
and Tanyolu 2006). Both shales in Sararu and Sarki
show strong positive correlation between Zr and TiO2

(r = 0.771 and 0.936, respectively); this suggests the
concentration of certain accessory minerals such as zir-
con, monazite, ilmenite, and rutile. Y has strong positive
correlation with REE (particularly with Ho and Dy) in
Sararu and Sarki (0.986 and 0.863, respectively) due to
the similar geochemical affinities. The significant
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positive correlation of REE with SiO2, Al2O3, and TiO2

(Table 4) indicates that the REEs are controlled mainly
by clay minerals in the shale.

Transition trace elements (Sc, V, Cr, Co, Ni, Cu, and Zn)

As observed for the great majority of the other trace
elements, the transition trace element (TTE) contents
of the studied shales are also depleted relative to those
of the PAAS (Table 2). However, the higher concentra-
tions of Cr (58.1 ppm on average) in the shale of the
Sararu section indicate a proportion of mafic rocks in
their source area (Taylor and McLennan 1985;
Wronkiewicz and Condie 1990). The Th/Cr ratio, a
good i nd i c a t o r f o r p r ov enance (Cond i e and
Wronkiewicz 1990), has average values of 0.106 and
0.148 in the Sararu and Sarki shales, respectively
(Table 2). In general, most of the TTEs in the Baluti
shale are positively correlated with Al2O3 and TiO2

(Table 4), indicating that they are mainly concentrated
in the phyllosilicates.

Rare earth elements

Concentration of rare earth elements from La to Lu are
significantly lower in studied shale compared with those
of PAAS, and are nearly similar in the studied sections
(Table 3). The results suggest that the major control
over the REE concentrations is the dilution effect
caused mostly by carbonate (correlation coefficient be-
tween CaO and ΣREE is −0.608 for the Sarki section).

Chondrite and PAAS-normalized REE patterns are
given in Fig. 5 indicating LREE enrichment with higher
(La/Yb)CN ratios (10.76 and 10.13 for Sararu and Sarki,
respectively) relative to PAAS (9.15), and slight to
moderate negative Eu anomalies (Eu/Eu*CN is 0.68
and 0.61 in Sararu and Sarki, respectively). The mean
REEs are depleted relative to the PAAS (Fig. 5a–c).
The patterns show enrichment in light REE (LREE)
and depletion in heavy REE (HREE) in addition to flat
HREE pattern. The significant correlation of REE with
Al2O3, TiO2, Th, and Zr indicates that REE distribution
is likely controlled by the collective influence of
phyllosilicate, zircon, and opaque phases. The Baluti
shales have highly enriched LREE patterns where (La/
Sm)CN = 3.67 and 4.18 for Sararu and Sarki, respective-
ly; moreover, these are slightly lower than PAAS (4.33;
Taylor and McLennan 1985). The studied shale has flat
to moderately fractionated HREE patterns which (Gd/
Yb)CN = 1.83 and 1.61 for Sararu and Sarki, respective-
ly (Fig. 5a–c; Table 3). Weak negative and no Ce
anomalies (Ce/Ce*PN) for Sararu shale (0.95–1.07; aver-
age 0.99) and weak for Sarki (0.92–0.98; average = 0.96)T
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as shown in Fig. 5d–f. Europium in Sararu shale gen-
erally exhibit positive, with some samples showing neg-
ative, anomalies (Fig. 5d, f) with an average (Eun/

Eun
*
PN) = 1.03 and the Sarki shale shows negative

anomalies in REE distribution patterns (Fig. 5e, f) with
an average Eun/Eun

* = 0.94.

Table 4 Correlation matrix for the shale from the Baluti Formation, Sararu and Sarki sections

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O MnO TiO2 P2O5 SO3 LOI Rb Sr Ba Th U Y Zr Nb Mo Hf Sc V Cr Co Ni Cu Zn REE

SiO2 1

Al2O3 .914 1

Fe2O3 .914 .967 1

CaO -.827 -.831 -.741 1

MgO -.237 -.284 -.406 -.279 1

Na2O .755 .788 .755 -.808 .035 1

K2O .794 .916 .815 -.914 .030 .753 1

MnO -.599 -.654 -.723 .189 .815 -.330 -.337 1

TiO2 .881 .930 .968 -.671 -.473 .796 .768 -.724 1

P2O5 .149 .055 .059 -.153 .148 -.271 .093 .078 -.128 1

SO3 -.433 -.404 -.298 .776 -.621 -.532 -.610 -.205 -.208 -.089 1

LOI -.950 -.984 -.981 .780 .376 -.752 -.857 .700 -.952 -.104 .315 1

Rb .860 .944 .903 -.837 -.182 .866 .882 -.591 .884 -.167 -.556 -.901 1

Sr -.401 -.391 -.262 .793 -.686 -.545 -.628 -.280 -.181 -.032 .971 .290 -.537 1

Ba .852 .967 .922 -.852 -.179 .786 .938 -.573 .867 .032 -.540 -.924 .966 -.523 1

Th .877 .931 .971 -.671 -.469 .762 .779 -.713 .988 -.019 -.223 -.957 .862 -.173 .869 1

U .671 .744 .855 -.362 -.662 .503 .510 -.774 .870 .046 .144 -.802 .610 .211 .648 .893 1

Y .839 .810 .869 -.644 -.365 .725 .697 -.522 .929 -.157 -.226 -.855 .764 -.212 .732 .912 .786 1

Zr .907 .897 .913 -.778 -.268 .828 .786 -.606 .936 -.208 -.439 -.902 .926 -.424 .871 .902 .689 .91 1

Nb .881 .860 .886 -.757 -.249 .830 .758 -.563 .924 -.246 -.442 -.868 .902 -.424 .839 .889 .679 .930 .995 1

Mo -.369 -.339- -.223 .756 -.700 -.503 -.581 -.323 -.135 -.066 .976 .245 -.493 .993 -.484 -.132 .238 -.179 -.380 -.386 1

Hf .922 .911 .910 -.788 -.277 .781 .811 -.620 .926 -.156 -.421 -.917 .915 -.416 .874 .893 .677 .910 .991 .978 -.366 1

Sc .893 .992 .967 -.792 -.336 .757 .910 -.670 .934 .064 -.378 -.979 .933 -.347 .967 .945 .779 .812 .879 .847 -.302 .892 1

V .445 .523 .623 -.018 -.855 .171 .225 -.828 .639 .124 .528 -.606 .319 .570 .372 .657 .860 .497 .379 .342 .607 .400 .553 1

Cr .665 .791 .819 -.367 -.692 .503 .561 -.852 .842 .002 .214 -.824 .637 .232 .667 .845 .898 .673 .643 .603 .295 .666 .803 .908 1

Co .715 .652 .675 -.614 -.102 .364 .552 -.349 .563 .417 -.195 -.693 .481 -.202 .528 .573 .540 .598 .545 .500 -.174 .584 .612 .445 .512 1

Ni .160 .216 .329 .281 -.839 -.074 -.080 -.636 .385 .030 .764 -.314 .002 .784 .024 .394 .664 .315 .112 .084 .819 .132 .240 .917 .724 .328 1

Cu .489 .549 .501 -.624 .186 .341 .605 -.022 .383 .499 -.248 -.534 .352 -.321 .465 .412 .335 .396 .325 .278 -.280 .365 .502 .257 .374 .839 .167 1

Zn .822 .792 .783 -.866 .090 .759 .770 -.331 .687 .217 -.731 -.771 .828 -.691 .842 .704 .419 .612 .771 .751 -.680 .744 .765 .099 .346 .533 -.218 .476 1

REE .851 .781 .848 -.608 -.390 .462 .664 -.541 .810 .312 -.202 -.854 .633 -.136 .692 .848 .792 .863 .758 .747 -.126 .782 .801 .585 .658 .779 .380 .545 .620 1

0.700 significant at 0.01 level  0.581 significant at 0.05 level no of samples= 12

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O MnO TiO2 P2O5 SO3 LOI Rb Sr Ba Th U Y Zr Nb Mo Hf Sc V Cr Co Ni Cu Zn REE

SiO2 1

Al2O3 .260 1

Fe2O3 .234 -.059 1

CaO -.621 -.468 -.115 1

MgO .153 -.073 -.053 -.754 1

Na2O .483 .167 .152 -.910 .876 1

K2O .431 .213 -.075 -.861 .825 .886 1

MnO .117 .155 .223 -.705 .775 .774 .684 1

TiO2 .654 .772 .263 -.397 -.279 .152 .136 .020 1

P2O5 -.374 -.183 .112 .639* -.620 -.672 -.540 -.327 -.083 1

SO3 -.599 -.505 .109 .512 -.122 -.255 -.304 -.215 -.526 .425 1

LOI -.767 -.684 -.289 .472 .188 -.247 -.251 .031 -.953 .164 .453 1

Rb .615 .462 .036 -.960 .719 .921 .894 .672 .443 -.672 -.495 -.506 1

Sr -.387 -.334 .147 .820 -.726 -.745 -.890 -.562 -.147 .564 .389 .255 -.787 1

Ba .702 .483 .158 -.808 .448 .732 .661 .371 .615 -.610 -.411 -.694 .872 -.546 1

Th .659 .737 .259 -.334 -.346 .075 .080 -.072 .989 -.060 -.516 -.957 .379 -.104 .594 1

U .375 .497 .031 -.700 .438 .535 .649 .381 .329 -.180 -.348 -.401 .650 -.687 .561 .312 1

Y .689 .671 .286 -.448 -.161 .228 .212 .082 .933 -.227 -.583 -.901 .512 -.167 .727 .945 .312 1

Zr .834 .525 .331 -.813 .333 .706 .637 .467 .771 -.472 -.535 -.822 .852 -.545 .890 .738 .515 .819 1

Nb .709 .632 .172 -.924 .506 .803 .748 .601* .684 -.564 -.584 -.709 .949 -.670 .897 .626 .624 .721 .947 1

Mo -.057 .215 -.118 .143 -.317 -.321 -.008 -.110 .161 .567 -.122 -.118 -.156 -.035 -.219 .204 .369 .132 -.076 -.096 1

Hf .751 .725 .211 -.813 .275 .630 .611 .438 .841 -.448 -.631 -.852 .844 -.568 .856 .798 .558 .852 .957 .962 -.009 1

Sc .710 .750 .271 -.481 -.176 .248 .225 .067 .983 -.217 -.564 -.962 .533 -.219 .717 .981 .366 .972 .838 .751 .105 .888 1

V .469 .650 .250 -.035 -.613 -.224 -.199 -.246 .907 .262 -.346 -.839 .063 .129 .287 .929 .171 .790 .491 .346 .361 .559 .845 1

Cr .269 .620 .332 -.054 -.458 -.106 -.241 -.148 .763 .047 -.269 -.649 .092 .253 .292 .745 -.003 .716 .395 .331 .130 .485 .723 .743 1

Co .487 .813 .141 -.418 -.175- .204 .251 .090 .896 -.184 -.500 -.844 .499 -.263 .608 .893 .425 .896 .716 .678 .333 .801 .910 .786 .761 1

Ni .256 .552 .221 .161 -.707 -.345 -.309 -.368 .782 .367 -.156 -.708 -.076 .355 .178 .814 .079 .695 .314 .175 .421 .382 .721 .910 .779 .743 1

Cu .022 .428 .402 -.222 .001 .218 .016 .207 .394 -.129 -.034 -.311 .249 .093 .322 .347 .122 .438 .312 .346 .012 .359 .405 .264 .787 .556 .397 1

Zn .427 .460 .319 -.217 -.223 .048 -.032 -.163 .596 -.071 -.090 -.661 .200 .109 .468 .639 .174 .650 .463 .366 .177 .451 .629 .570 .647 .612 .619 .518 1

REE .671 .672 .257 -.348 -.284 .126 .117 -.046 .955 -.179 -.550 -.924 .424 -.088 .659 .970 .228 .986 .765 .648 .118 .809 .978 .846 .755 .893 .763 .409 .648 1

0.647 significant at 0.01 level  0.515 significant at 0.05 level no of samples= 15
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Discussion

Clay mineralogy

Baluti shales at Sararu section yield clay mineral assemblage
dominated by illite and kaolinite with occurrences of mixed
layer illite/smectite. Neither chlorite nor discrete smectite were
found in the Sararu shales. At the Sarki section, the clay as-
semblage is found to be dominated by illite with subordinate
quantities of smectite and sporadic occurrence of kaolinite.
Kaolinite has been accepted for a long time as a product of
chemical weathering. Kaolinite formation is, therefore, fa-
vored under tropical to subtropical humid climatic conditions
(Chamley 1989; Hallam et al. 1991). In addition to the detrital
origin, kaolinite may also develop by diagenetic processes that
is indicated by the Al enrichment of the studied shale.

Illite typically is formed under conditions completely dif-
ferent from those under which kaolinite and smectite were
formed. Illite is typically formed in soils with little chemical
weathering in cold and/or dry climates, and in areas of high
relief where physical erosion is predominant. Illite has no
climatic significance; however, low illite crystallinity index
may attribute to cold or dry climate conditions with minimum
hydrolysation (Singer 1984; Ghandour et al. 2003) as in illite
of Sarki section. The relative abundance of kaolinite to smec-
tite is clearly influenced by hydraulic sorting and relative sea
level changes. Kaolinite tends to concentrate in sediments of
non-marine and marginal marine settings, whereas smectite is
reported to have higher relative abundance from normal ma-
rine shales. This could be attributed to the hydraulic segrega-
tion of clay minerals (Raucsik and Merényi 2000). Smectite,
on the other hand, favors conditions of pronounced dry sea-
sons alternating with less-pronounced wet seasons (Singer
1984). Numerous mineralogical and chemical studies of

smectitic minerals suggest that smectite from most Mesozoic
sediments are mainly soil-derived minerals (Chamley 1989;
Ghandour et al. 2003). Smectite may be volcanogenic in ori-
gin (Hallam et al. 1991), being derived directly from the
weathering and alteration of volcanic materials. Kaolinite
crystallinity and illite chemistry indices in Sarki samples are
higher than that of Sararu; these reflect the well kaolinite crys-
tallinity and Al-rich (muscovitic) illite in the Sararu samples.
Accordingly, it may suggest that the Sararu shale was depos-
ited under tropical to subtropical and the Sarki shale deposited
under drier climate.

Palaeoweathering conditions

Alteration of the rocks during weathering resulted in depletion
of alkali and alkaline earth elements and preferential enrich-
ment of Al2O3 (Nesbitt et al. 1980). Consequently, the
weathering condition can be measured in terms of the molec-
ular percentage of the oxide components, using the indexes of
CIA, PIA, and ICV (Hu et al. 2015). Since there is no direct
method to distinguish and quantify the contents of CaO be-
longing to silicate fraction and non-silicate fraction (carbon-
ates and apatite), we used in this study the method reported by
McLennan et al. (1993) to calculate the CaO in silicate frac-
tion is used in current study; the molar proportion of Na2O is
taken as the molar proportion of CaO of the silicate fraction.

The chemical index of alternation (CIA) is one of the most
widely used indexes with higher values suggesting more in-
tense chemical weathering (Armstrong-Altrin et al. 2004).

CIA ¼ Al2O3= Al2O3 þ CaO* þ Na2Oþ K2O
� �� �� 100

(Nesbitt and Young 1982).
In general, CIAvalues close to 100 are due to more intense

weathering which produces residual clays enriched in kaolin-
ite and Al oxy-hydroxides. Different parent materials have
different initial CIA values. For example, basalts have a CIA
of <45 (Sheldon 2003), felsic rocks 55–60, and shales 70–75
(Nesbitt and Young 1982; Maynard 1992).

The CIA values in Baluti shale vary from 68.90 to 86.08
(average = 81.11) in the Sararu section and from 67.15 to
83.03 (average = 71.53) in the Sarki section. The former av-
erage is higher than PAAS (=75; Taylor and McLennan 1985)
and the latter is lower; this implies that the Baluti Formation
sedimentary rocks suffered intense degree of weathering for
Sararu, and high to moderate for Sarki. Nesbitt and Young
(1982) and Nyakairu and Koeberl (2001) used a ternary dia-
gram Al2O3–CaO + Na2O–K2O (A–CN–K) to infer the
weathering history at the source area. The studied samples plot
in a tight group on the A–K join, and close to the muscovite
point for Sarki shale and close to illite point for Sararu shale
(Fig. 6).
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Fig. 4 Al–Ti–Zr ternary diagram (wt%) for the shale of the Baluti
Formation (fields after Garcia et al. 1994). SPG is strongly peraluminous
granite and CAS is calc-alkaline suites
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In addition, plagioclase index of alteration (PIA) and index
of compositional variation (ICV) can also provide indication
of the degree of weathering in the source region.

PIA ¼
h
Al2O3–K2Oð Þ=

�
Al2O3 þ CaO* þ Na2O–K2O

i
� 100

(Fedo et al. 1995)

ICV ¼ CaOþ K2Oþ Na2Oþ Fe2O3 þMgOþMnOþ TiO2ð Þ=Al2O3

(Cox et al. 1995)
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Fig. 5 Chondrite and PAAS normalized rare earth elements plot for shale samples from the Baluti Formation. a–c Chondrite-normalized. d–f PAAS-
normalized. Chondrite and PAAS normalization values are from Taylor and McLennan (1985)
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The maximum value of PIA is 100 for completely altered
materials and weathered plagioclase has a PIA value of 50.
PIA values for Baluti shale range from 96.28 to 99.01 (aver-
age = 98.52) in Sararu and from 96.14 to 98.17 (aver-
age = 97.23) in Sarki, which suggest intense plagioclase
weathering in the source area.

The ICV (Cox et al. 1995) is potentially useful to evaluate
the degree of chemical weathering, which depicts formation of
aluminous clay minerals over the framework silicate minerals.
Moreover, the sediments with ICV > 1 are compositionally
immature with the first cycle of sediments deposited in tec-
tonically active settings. On the other hand, those with
ICV < 1 are compositionally mature and are deposited in a
tectonically quiescent or cratonic environment where sedi-
ment recycling is active (Weaver 1989; Cox et al. 1995).
The ICV values for the Baluti shale vary from 0.48 to 1.76
(average = 0.76) at Sararu and from 0.81 to 2.07 (aver-
age = 1.34) at Sarki. On the basis of average ICV values, it
can be interpreted that the shale at Sararu is compositionally
mature and deposited in tectonically quiescent or cratonic envi-
ronment; whereas, it is compositionally less mature and deposit-
ed in tectonically active settings at Sarki. Thus, the variability in
ICV values may be due to both variations in source-rock com-
position and differences in weathering (Potter et al. 2005).

Provenance

The geochemical signatures of clastic sediments are fre-
quently used to infer their provenance characteristics,

because they reflect the source rock composition, hydrau-
lic sorting during transport, deposition, and diagenesis
(Taylor and McLennan 1985; Condie et al. 1992; Cullers
1995; Madhavaraju and Ramasamy 2002; Armstrong-
Altrin et al. 2004; Nagarajan et al. 2007; Shadan and
Hosseini-Barzi 2013; Absar and Sreenivas 2015). The
trace elements concentrated in mafic (Sc, Cr and Co)
and in silicic (La, Th, and REE) sediments, the REE pat-
terns and the size of the Eu anomaly are considered as
important tools to characterize the source rock composi-
tion (e.g., Cullers et al. 1979; Garver and Scott 1995;
Girty et al. 1996; Armstrong-Altrin et al. 2004; Shynu
et al. 2013; Zaid and Gahtani 2015; Dai et al. 2016).

Al2O3/TiO2 ratios of most clastic rocks are essentially used to
infer the source rock compositions because the Al2O3/TiO2 ratio
increases from 3 to 8 for mafic igneous rocks, from 8 to 21 for
intermediate rocks, and from 21 to 70 for felsic igneous rocks
(Hayashi et al. 1997). In the Sararu shales, the Al2O3/TiO2 ratio
ranges from 17.81 to 38.86 and in Sarki shales it varies between
30.52 and 48.12 (Table 2). Thus, the Al2O3/TiO2 ratio of this
study suggests that felsic-intermediate igneous rocks were the
probable source rocks for the shales of the Baluti Formation.

Taylor and McLennan (1985) and McLennan and Taylor
(1991) suggest that the REEs, Th, Sc, Co, Ti, and HFSEs (Zr,
Hf) are especially useful for monitoring source area composi-
tion. These elements have very short residence times in sea-
water and are transferred almost quantitatively into the sedi-
mentary record. Additionally, this includes both incompatible
(Th, REEs, HFSEs) and compatible elements (Sc, Co, Ti),
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ratios of which are useful in differentiating felsic from mafic
source components. However, the ratios such as La/Sc, Th/Sc,
Th/Cr, Th/Co, Eu/Eu*CN, and Eu/Eu*PN are significantly dif-
ferent in felsic and basic rocks and may allow constraints on
the average provenance composition (Wronkiewicz and
Condie 1990; Cox et al. 1995; Cullers 1995; Dai et al.
2016). The ratios of the studied shales are compared with
those of sediments derived from felsic and basic rocks as well
as to Upper Continental Crust (UCC) and PAAS values
(Table 5). These ratios for Sararu are higher than that for
Sarki shale (except Th/Cr), and the comparison suggests that
these ratios are within the range of felsic rocks. Th/Sc–Zr/Sc
diagram (McLennan et al. 1993) shows that the samples of the
Baluti shale are clustered between felsic volcanic and grano-
diorite and it is clear that the Sararu samples are clustered
toward the intermediate rocks (Fig. 7).

The provenance of Baluti Formation is carried out based on
the concentrations of some elements, ratios, and plotting on
the diagrams. Floyd and Leveridge (1987) plot K2O versus Rb
to distinguish between the sediments derived from acidic to
intermediate rocks and those derived from basic rocks. Most
of the studied shale of the Baluti Formation lies in the field of
acid and intermediate compositions with some samples of
Sararu shale that falls in the basic field (Fig. 8).

The other bivariate plot to discriminate provenance is La/
Th versus Hf (Floyd and Leveridge 1987; Gu et al. 2002;
Spalletti et al. 2012) that is useful for providing source areas
composition. The average La/Th values of the shale from
Sararu and Sarki sections are 3.84 and 4.14, respectively
(Table 2). The samples in both sections show higher values
in respect to PAAS (2.61) and UCC (2.8). The studied samples
are scattered in the felsic toward the andesitic field (Fig. 9).

The chondrite and PAAS-normalized REE patterns and Eu
anomaly in the sedimentary rocks provide important clues
regarding the source rock characteristics (Taylor and
McLennan 1985). The REE distribution patterns for the two
studied sections are similar to that of the average PAAS and
UCC (Taylor and McLennan 1985). The REE patterns for

Sararu and Sarki nearly coincide except for smaller negative
Eu anomaly size for Sararu shale (Fig. 5a–c). Higher LREE/
HREE ratios and negative Eu anomalies are generally found
in felsic rocks, whereas the mafic rocks exhibit lower LREE/
HREE ratios and no or small Eu anomalies (Cullers 1994).
The Baluti shales show LREE enriched and flat HREE pat-
terns with negative Eu anomalies (Fig. 5a–c). However, the
Baluti shales show high LREE/HREE ratios (9.59 and 9.11 for
Sararu and Sarki sections, respectively) and negative Eu
anomaly (Eu/Eu*CN; 0.68 and 0.61 for the Sararu and Sarki
sections, respectively). This suggests that these sedimentary
rocks were mainly derived from the felsic source rocks. The
(Gd/Yb)CN ratios (1.83 and 1.61 for Sararu and Sarki sections,
respectively) of Baluti shales are less than 2, which suggests
that these shales were derived from the less HREE-depleted
source rocks (Nagarajan et al. 2007). The similar chondrite-
normalized REE patterns (except the Eu anomalies) of Sararu
and Sarki shales (Fig. 5a–c) suggest that both sediment groups
were likely derived from the same source regions. Cerium in
Sararu shale exhibits very weak negative or no anomalies
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Fig. 7 Th/Sc–Zr/Sc diagram (McLennan et al. 1993) shows that sand-
stone and shale cluster around average granite with minor contribution
from granodiorite. Values of granite, granodiorite, and felsic volcanic are
after Condie (1993)

Table 5 Elemental ratios for the
Al-rich shale of the Baluti
Formation compared with those
of fine-fractions derived from
felsic and mafic source rocks

Elemental ratio Average of studied shale Range of sedimentsa UCCb PAASb

Sararu Sarki Felsic rocks Mafic rocks

Eu/Eu* 0.68 0.61 0.40–0.94 0.71–0.95 0.65 0.71

Th/Sc 0.77 0.61 0.84–20.50 0.05–0.22 0.79 0.90

Th/Co 0.88 0.74 0.67–19.40 0.04–1.40 0.63 0.63

Th/Cr 0.11 0.14 0.13–2.70 0.018–0.046 0.30 0.13

Cr/Th 9.46 6.74 4.00–15.00 25.00–500 3.30 7.53

La/Sc 2.96 2.49 2.50–16.30 0.43–0.86 2.21 2.40

UCC Upper Continental Crust, PAAS Post Archean Australian Shale
a Cullers (1994); Cullers and Podkovyrov (2000); Cullers et al. (1988)
b Taylor and McLennan (1985)
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(Fig. 5d, f) and in Sarki has weak negative anomalies
(Fig. 5e, f). Several factors, including the rocks in the
source area, groundwater or hydrothermal leaching, seawa-
ter, and Fe–Mn oxyhydroxide mineralization, may control
the Ce anomaly (Dai et al. 2016). The geochemical com-
position of the source rock is one of the important factors
controlling the Ce anomaly. Xiao et al. (2004) suggest the
source rock dominated by basalts do not show a Ce
anomaly and Dai et al. (2016) consider the source rock
dominated by felsic and felsic-intermediate rocks are char-
acterized by weakly negative Ce anomalies, and the shales
with input from these terrigenous materials usually have
weak Ce anomalies. Source rocks comprising mafic basalt
are characterized by strong positive Eu anomalies (Xiao
et al. 2004) and thus shales with input from these terrige-
nous materials have positive Eu anomalies Eu/Eu*PN).
Shale with input of felsic-intermediate terrigenous materials
usually displays distinct negative Eu anomalies.
Accordingly, the different shape of PAAS-normalized pat-
terns (shape of Ce anomaly and Eu anomaly; Fig. 5d–f)
may suggest the felsic-intermediate source rock for the
studied shales with influence of the Sararu shale by mafic
rocks.

Based on these geochemical data, it is suggested that the shale
of the Sarki succession was derived from the Arabian Shield and
Rutba Uplift. It was exposed to southwest of the studied area and
no volcanism was occurring during the deposition. However, the
Sararu succession was fed from the Arabian Shield and Rutba
Uplift and exposed to the southwest; some sediment were de-
rived from the Bitlis-Avroman-Bisitoun Ridge that contain some
occurrence of volcanic rocks located to the north and northeast-
ern of the basin (Fig. 1b). Surdashy (2012) suggest the south
direction for paleo-current during the Upper Triassic.

Tectonic setting

The chemical composition of the source rock is a function of the
tectonic setting and exerts major control on the chemistry of
sedimentary rocks. Therefore, it can be directly related to plate
tectonic processes and it has been traditionally used to identify
their tectonic setting of unidentified basins (Taylor and
McLennan 1985; Roser and Korsch 1986; McLennan and
Taylor 1991; Girty and Barber 1993; Purevjav and Roser 2012;
Yan et al. 2012). Nevertheless, in recent years, tectonic discrim-
ination depends onmajor elements that has received considerable
criticism (Armstrong-Altrin and Verma 2005; Ryan and
Williams 2007; Verma and Armstrong-Altrin 2013; Tobia and
Shangola 2016). Trace elements, particularly those that are rela-
tively immobile with low residence times in seawater (i.e., La,
Nd, Th, Zr, Hf, Nb, and Ti) are reliable fingerprints for tectonic
setting discrimination (McLennan et al. 1990; Gu 1996;
LaMaskin et al. 2008).

Verma and Armstrong-Altrin (2013) proposed two discrim-
inant functions based on major elements for the tectonic dis-
crimination of siliciclastic sediments. The three main tectonic
settings are: island or continental arc, continental rift, and
collision. The tectonic discrimination depends on the silica
contents; high silica (SiO2 = 63–95 %) and low silica rocks
(SiO2 = 35–63 %). These two diagrams were constructed
based on worldwide examples of Neogene-Quaternary
siliciclastic sediments from known tectonic settings. The dia-
grams were evaluated by Armstrong-Altrin et al. (2014) who
suggested that these diagrams can be measured as a successful
tool for discriminating the tectonic setting of older sedimen-
tary basins, which may consist of one or more tectonic assem-
blages. The discriminant function based on major elements of
low silica diagram was used for the studied samples of the
Baluti Formation (Fig. 10). Most of the Sararu samples fell
in the rift (passive continental margin) field and of the Sarki in
the collision (active continental margin) field.

A number of studies have used the REE distribution in
sediments to determine or infer their plate tectonic settings
(e.g., Bhatia and Crook 1986; McLennan et al. 1990;
McLennan and Taylor 1991; Girty and Barber 1993; Mader
and Neubauer 2004; Verma and Armstrong-Altrin 2013).
These studies show that sediments deposited in the continental
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Fig. 9 La/Th versus Hf diagram for the shale of the Baluti Formation
(fields after Floyd and Leveridge 1987)

Sararu shale 

Sarki shale 

10

1

0.1

0.01
101 100 1000

Rb (ppm) 

K
2O

 w
t%

 

Fig. 8 K2O versus Rb diagram of the shale of the Baluti Formation
(fields after Floyd and Leveridge 1987)

757 Page 18 of 23 Arab J Geosci (2016) 9: 757



margin are characterized by LREE enrichment (indicated by
high La/Sm) and high total rare earth elements (ΣREE), on the
other hand, those from young undifferentiated oceanic arcs
have lower La/Sm, lower ΣREE, and lack for Eu anomaly.
Therefore, the REE patterns of sediments deposited in conti-
nental margins can generally be differentiated from those

derived from undifferentiated oceanic arcs. Continental mar-
gins can be classified into passive and active types. Passive
margin provenance is characterized by REE patterns being
uniform and similar to PAAS (Bhatia 1985; McLennan
1989). Sediments deposited at active continental margins gen-
erally show a REE pattern intermediate between a Btypical
andesite pattern^ and PAAS or in some cases indistinguish-
able from PAAS itself (McLennan 1989). Thus, the most ac-
tive continental margin sediments display intermediate REE
abundances, variable LREE enrichments and variable nega-
tive Eu anomalies, with Eu/Eu*CN in the range of 0.6–1.0
(McLennan 1989). Compared to the average PAAS, the
Upper Triassic shale of Baluti Formation has relatively lower
LREE [(i.e., (La/Sm)CN, (La/Yb)CN ratios] and higher Eu/
Eu*CN ratios (Table 3), suggesting deposition in an active
continental margin rather than passive margin tectonic envi-
ronment (McLennan 1989; Asiedu et al. 2000)

Paleoredox conditions and trace element enrichments

Some trace elements and their ratios are considered as useful
tools for determination paleoredox conditions of the clastic
rocks. Some multi valence trace elements such as V, Mo, U,
and Ni, their mobilization, precipitation, and concentration are
mostly controlled by redox conditions and thus considered as
redox-sensitive elements that are usually enriched in anoxic
sediments (Dypvik 1984; Yarincik et al. 2000; Yang et al.
2004; Guo et al. 2007). The elemental ratios such as U/Th,
V/Cr, V/Sc, and Cu/Zn have been used to evaluate paleoredox
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conditions (Hallberg 1976; Jones and Manning 1994;
Akinyemi et al. 2013). The ratio of U to Th may be used as a
redox indicator with U/Th ratio being higher in organic rich
mudstones (Jones and Manning 1994). U/Th ratios below
1.25 suggest oxic conditions of deposition, whereas values
above 1.25 indicate suboxic and anoxic conditions (Jones and
Manning 1994; Nath et al. 1997). The present study shows low
U/Th ratio (0.48 and 0.36 in Sararu and Sarki, respectively);
this indicates that these shale samples were deposited in an oxic
environment. Numbers of authors have used V/Cr ratio as an
index of paleo-oxygenation (Dill 1986; Dill et al. 1988;
Nagarajan et al. 2007; Akinyemi et al. 2013). Bjorlykke
(1974) reported the incorporation of Cr in the detrital fraction
of sediments and its possible substitution for Al in the clay
structure. Vanadium may be bound to organic matter by the
incorporation of V4+ into porphyrins, and is generally found
in sediments deposited in reducing environments (Shaw et al.
1990). According to Jones andManning (1994), the V/Cr ratios
above 2 indicate anoxic conditions, whereas values below 2
suggest more oxidizing conditions. In the present study, the
V/Cr ratios of the Sararu shale vary between 1.26 and 2.54 with
average = 2.09, and from 1.30 to 2.33 with average = 1.71 from
Sarki. This indicates that they were deposited in an oxic depo-
sitional environment with an indication that some of the Sararu
shale is deposited under less oxygen. V/Sc was also used to
differentiate the redox condition; the samples of Sararu fall in
the suboxic and for the Sarki within the oxic fields (Fig. 11).
The Cu/Zn ratio is also used as a redox parameter (Hallberg
1976). According to Hallberg (1976), high Cu/Zn ratios indi-
cate reducing depositional conditions, while low Cu/Zn ratios
suggest oxidizing conditions. Therefore, the low Cu/Zn ratios
in the studied shale samples (Table 2) indicate that they were
deposited under oxidizing conditions. Accordingly, the oxic
conditions are most predominant for the deposition of the
Baluti and Sarki shales deposited under more oxic environment
than Sararu shale.

Conclusions

The clay minerals of the Baluti shale comprise kaolinite, illite,
andmixed layers illite/smectite at the Sararu section; and illite >
smectite with traces of kaolinite at Sarki. Calcite and minor
amount of quartz are the main non clay fractions in Sararu;
and dolomite with subordinate amounts of calcite and quartz
in Sarki. The shale of the Baluti Formation shows high CaO
content (due to the high carbonate content), which have a dilu-
tion effect on the other major oxides and trace and rare earth
elements. The mineralogical and geochemical parameters like
illite crystallinity, CIA values, and A–CN–K diagram reveal
moderate to intense chemical weathering in the source area.
Major, trace, and rare earth elements imply that the shales of
Baluti Formation was derived from dominantly felsic-

intermediate source rocks with the effect of mafic rocks on
the Sararu shale. The probable source of the sediments is from
the plutonic-metamorphic complex of the Arabian Shield and
Rutba Uplift to the southwest of the basin, whereas the Sararu
shale is affected by the mafic rocks from the Bitlis-Avroman-
Bisitoun Ridge to the north and northeast of the basin. The
tectonic setting discrimination diagram reveals active continen-
tal margin tectonic environment for the source area, and the part
of sediments of Sararu are derived from more passive environ-
ment. The U/Th, V/Cr, V/Sc, and Cu/Zn ratios and negative Eu
anomaly (Eu/Eu*CN) suggest the deposition under an oxic en-
vironment and more oxic for Sarki shale.
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