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Abstract Two national horizontal geodetic datums, namely,
the Accra and Leigon datum, have been the only available
datum used in Ghana. These two datums are non-geocentric
and were established based on astro-geodetic observations.
Relating these different geodetic datums mostly involves the
use of conformal transformation techniques which could pro-
duce results that are not very often satisfactory for certain geo-
detic, surveying and mapping purposes. This has been ascribed
to the incapability of the conformal models to absorb more of
the heterogeneous and local character of deformations existing
within the local geodetic networks. Presently, application of
new approaches such as artificial neural network (ANN) is
highly recommended. Whereas the ANN has been gaining
much popularity to solving coordinate transformation-related
problems in recent times, the existing researches carried out
in Ghana have shown that only three-dimensional conformal
transformation methods have been utilized. To the best of our
knowledge, plane coordinate transformation between the two
local geodetic datums in Ghana has not been investigated. In
this paper, an attempt has been made to explore the plane

coordinate transformation performance of two different ANN
approaches (backpropagation neural network (BPNN) and ra-
dial basis function neural network (RBFNN)) compared with
two different traditional techniques (six- and four-parameter
models) in the Ghana national geodetic reference network.
The results revealed that transforming plane coordinates from
Leigon to Accra datum, the RBFNNwas better than the BPNN
and traditional techniques. Transforming from Accra to Leigon
datum, both the BPNN and RBFNN produced closely related
results and were better than the traditional methods. Therefore,
this studywill create the opportunity for Ghana to recognize the
significance and strength of the ANN technology in solving
coordinate transformation problems.

Keywords Backpropagation neural network . Radial basis
function neural network . Six-parameter model .
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Introduction

Within the last decade, artificial neural network (ANN) has
been widely adopted and applied to different areas of geodesy.
Its suitability as an alternative technique to the classical
methods of solving most geodetic problems has been duly
investigated. Some of these problems are in GPS height con-
version (Fu and Liu 2014; Liu et al. 2011; Lei and Qi 2010;
Tieding et al. 2010; Wu et al. 2012), geodetic deformation
modelling (Bao et al. 2011; Du et al. 2014a, b; Gao et al.
2014; Pantazis and Eleni-Georgia 2013; Yilmaz and Gullu
2012; Yilmaz 2013), earth orientation parameter determina-
tion (Liao et al. 2012; Schuh et al. 2002; Yu et al. 2015),
precise orbital prediction (He-Sheng 2006; Li et al. 2014),
gravity anomaly estimation (Hajian et al. 2011; Hamid and
Mohammad 2013; Tierra and De Frietas 2005), geoid
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determination (Kavzoglu and Saka 2005; Pikridas et al. 2011 ;
Stopar et al. 2006; Sorkhabi 2015; Veronez et al. 2006, 2011)
and geodetic coordinate transformation (Gullu 2010; Gullu
et al. 2011; Lin and Wang 2006; Mihalache 2012; Tierra
et al. 2008, 2009; Tierra and Romero 2014; Turgut 2010;
Yilmaz and Gullu 2012; Zaletnyik 2004) and to solve many
other problems in geodetic applications.

It is well known that integrating geodetic data from different
reference systems is a problem of coordinate transformation. In
order to solve this problem, different techniques have been
applied in literature. Notable among them are the classical
methods such as conformal models, affine models andmultiple
regression to mention but a few. These aforementioned tech-
niques have been applied to solve coordinate transformation
problems (Newsome and Harvey 2003; Kinneen and
Featherstone 2004; El-Mowafy et al. 2009; Baiocchi et al.
2011; Gledan and Azzeidani 2014). In addition to the tradition-
al coordinate transformation techniques, ANN has been suc-
cessfully applied in coordinate transformation (Gullu 2010;
Gullu et al. 2011; Lin and Wang 2006; Mihalache 2012;
Tierra et al. 2008, 2009; Tierra and Romero 2014; Turgut
2010; Yilmaz and Gullu 2012; Zaletnyik 2004).

The general insights gathered from these studies indicate
that ANN could produce more accurate transformed coordi-
nate values compared with the classical transformation
methods. This is because most traditional coordinate transfor-
mation techniques often times do not absorb more of the dis-
tortions in the data related to the different geodetic datums
(Grgic et al. 2015). Hence, ANN has been recommended as
a plausible alternative method for coordinate transformation
(Zaletnyik 2004; Tierra et al. 2008, 2009; Turgut 2010;
Yilmaz and Gullu 2012; Tierra and Romero 2014).

Although the ANN technique has been applied to solve
majorities of geodetic problems, most developing countries,
especially in Africa, are yet to adopt, apply and test its effi-
ciency. Ghana is one such post-colonial country where the
continual use of two non-geocentric systems, namely, Accra
datum and Leigon datum, for national mapping still persists
(Mugnier 2000; Ayer 2008).

Moving along with the disheartened political, economic
and socio-cultural trend, there are numerous challenges to
incorporating data based on the two geodetic datums (Accra
and Leigon) in Ghana. The reason is that, currently, only
three-dimensional (3D) coordinate transformation using con-
formal models of Bursa-Wolf, Molodensky-Badekas and Veis
as well as 12-parameter linear affine and 3D projective model
(Ayer and Tienhah 2008; Dzidefo 2011; Ziggah et al. 2013;
Kumi-Boateng and Ziggah 2016) has been applied to trans-
form from global (World Geodetic System 1984) datum to the
local datums (Accra and Leigon). Thus, little has been done in
integrating the two local reference systems in Ghana. In addi-
tion, Ayer and Fosu (2008) showed only the discrepancies be-
tween Ghana’s local datums with no transformation technique

applied to unify the two geodetic datums. This implies that
integrating the data between Accra and Leigon has not
been fully investigated. Moreover, to the best of our
knowledge, ANN has not been applied in Ghana before
for coordinate transformation. It will therefore be interest-
ing to assess the ANN performance for horizontal coordi-
nate transformation between the two local geodetic da-
tums in Ghana’s geodetic reference network.

The main objective of this study is to test the predictive
capability of ANN in plane coordinate transformation for the
first time in Ghana’s geodetic reference network against the
traditional coordinate transformation methods like four-
parameter and six-parameter models. Hence, in this study, to
relate the different geodetic datums (Accra and Leigon) in
Ghana, two different types of ANN, backpropagation neural
network (BPNN) and radial basis function neural network
(RBFNN), were applied to the common point coordinates.
The ANN results were then compared with the traditional
four-parameter and six-parameter transformation models.
The findings revealed that the RBFNN was the most efficient
technique to be utilized in transforming coordinates from the
Leigon to the Accra datum. However, from Accra to Leigon
datum, it was observed that both RBFNN and BPNN pro-
duced comparable results. Moreover, the overall analysis
showed that the ANN was superior to the six- and four-
parameter models. This study will create the opportunity for
developing countries like Ghana to know the efficiency of
applying ANN as a practical alternative technology to the
traditional methods for its coordinate transformation. It would
also improve the general accuracy involved in cadastral and
engineering surveys.

Study area and data source

The study area is focused on Ghana’s geodetic reference net-
work. Ghana is a country situated in theWestern part of Africa
sharing borders with Togo to the East, Burkina Faso to the
North, Ivory Coast to the West and the Gulf of Guinea to the
South. Ghana covers an area of about 239,460 km2 with the
land mass consisting of low plains with a dissected plateau in
the South Central area and scattered areas of high relief
(Baabereyir 2009). It lies between latitude 4° 30′ and 11° N
and longitude 1° E and 3°W (Mugnier 2000). The country has
two local geodetic systems, namely, Accra datum and Leigon
datum. The reference surface for the Accra datum is the War
Office 1926 ellipsoid suggested by the British War Office, with
semi-major axis a = 6,378,299.99899832 m; semi-minor axis
b = 6,356,751.68824042 m; flattening f = 1/296; and Gold
Coast feet to meter conversion factor of 0.304799706846218
(Ayer 2008; Ayer and Fosu 2008). The Leigon datum has the
Clark 1880 (modified) ellipsoid as its reference surface, with
semi-major axis a = 6,378,249.145 m; semi-minor axis
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b = 6,356,514.870 m; flattening f = 1/293.465006079115; and
British Foot (Sear’s) to meter conversion factor of 0.304799470.
For planimetric coordinate estimation, the Transverse Mercator
projection system is used (Mugnier 2000; Poku-Gyamfi and
Hein 2006). Hence, the coordinate system used to indicate posi-
tions of features of all survey maps in Ghana is the projected grid
coordinates of easting and northing derived from the Transverse
Mercator projection.

In this study, secondary data of 27 common control points
(Fig. 1) in eastings and northings in both Accra datum and
Leigon datum were obtained from the Ghana Survey and

Mapping Division of Lands Commission. These datasets pro-
vided constitute the national local coordinates of the newly
established geodetic reference network referred to as the gold-
en triangle. This golden triangle was established by the Ghana
Survey and Mapping Division through the Land Administration
Project (LAP) sponsored by theWorld Bank (Kotzev 2013). The
objective for the golden triangle establishment was to enhance
the use of Global Navigation Satellite System (GNSS) for land-
related positioning undertakings such as geotechnical investiga-
tions, traffic and transportation, meteorology, survey and map-
ping, timing, engineering and many others in Ghana (Wonnacot

Fig. 1 Study area
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2007; Poku-Gyamfi and Schueler 2008). Also, the unification of
all national reference frames for all African countries under the
African Reference Frame into a single continental reference sys-
tem based on the international terrestrial reference system (ITRS)
also necessitated the need to renew Ghana’s geodetic network.

Artificial neural network methods

Over the past years, artificial neural network (ANN) is a technol-
ogy that has gained widespread applications for many fields. It is
inspired by the structure and behaviour of biological neurons and
the nervous system (Kecman 2001). ANN comprises of several
neurons connected together with links between variable synaptic
weights that process information fed into the network when stim-
ulus is received from the environment. Thus, each neuron unit
receives input information weighted by a factor which signifies
the strength of the synaptic connection to produce an output. This
output is then sent as a new input to another neuron by adapting
new weights if the total sum of the weighted inputs is above a
certain threshold.

Generally, various ANN types have been proposed based on
their architecture, which is structured into different layers. It is
worth stating that the application of ANN in geodesy depends
on the type of problem to be solved and the training algorithm to
be applied. In the present study, the supervised learning algo-
rithm was adopted for the ANNmodel development and subse-
quent prediction. This is because in the supervised learning, for
each example, the goal is to use the inputs to predict the values
of the outputs. The main objective here is to build a forecasting
model that can produce accurate transformed coordinate results
when independent data are presented to the network. Moreover,
the supervised training offers the opportunity to interpret the
output results based on the training values. In this study, opti-
mized BPNN and RBFNNmodels for transforming planimetric
coordinates from Accra datum to Leigon datum and vice versa
were developed. The choice of these networks was based on
their frequent use as universal function approximators
(Hartman et al. 1990; Hornik et al. 1989; Park and Sandberg
1991) within the geoscientific disciplines.

In order to develop the BPNN and RBFNN models to
achieve the results presented in this paper, the procedural
stages adopted are described in the subsequent sections.

Data and selection of input variables

In the present study, 27 common control points in Accra datum
and Leigon datum for the Ghana national geodetic reference
network were used in the BPNN and RBFNN model formula-
tions. The next issue was to identify the input parameters from
the dataset for the ANN training. It is well acknowledged that
the input neurons act as control variables with an influence on
the desired outputs of the neural network. Hence, the input data

should represent the condition for which training of the neural
network is done (Konaté et al. 2015). Consequently,
transforming plane coordinates from Leigon to Accra datum,
the easting (E) and northing (N) in the Leigon datum denoted as
(Eclark, Nclark) were used as the input layer data, while (Ewar,
Nwar) in the Accra datum was used as the output layer data. In
the transformation from Accra to Leigon datum, (Ewar, Nwar)
was applied as the input data, while (Eclark, Nclark) was used as
the output layer data, respectively.

Normalization

Usually, the original data to be used for the ANN training and
its model formulation are expressed in different units with
different physical meanings. Therefore, to ensure constant
variation in the ANN model, datasets are frequently normal-
ized to a certain interval such as [−1, 1], [0, 1] or other scaled
criteria. This data normalization improves convergence speed
and doing so reduces the chances of getting stuck in local
minima. In this study, the selected input and output variables
were normalized into the interval [−1, 1] using Eq. (1)
(Mueller and Hemond 2013)

yi ¼ ymin þ
ymax−yminð Þ � xi−xminð Þ

xmax−xminð Þ ; ð1Þ

where yi represents the normalized data, xi is the measured
coordinate value, while xmin and xmax represent the minimum
and maximum values of the measured coordinates with ymax

and ymin values set at 1 and −1, respectively.

ANN architecture

In this study, two supervised ANNs, namely, BPNN and
RBFNN were utilized due to its frequent application. Both
networks have a feedforward topology consisting of input,
hidden and output layers that are fully interconnected. A more
detailed description of the BPNN and RBFNN structures is
given in BBackpropagation neural network^ and BRadial basis
function neural network^ sections, respectively.

Network training

It is a well-known fact that datasets are trained in ANN in
order to generate the required desired output for a particu-
lar input. Hence, the 27-common point coordinate in Accra
datum and Leigon datum for the Ghana national geodetic
reference network was divided into reference dataset and
testing dataset. Twenty points were selected as the refer-
ence points (P1, P2, …, P20), while the testing dataset
comprised of 7 points (T1, T2, …, T7). In this study, the
chosen reference points were used in the BPNN and
RBFNN training process. The testing data, on the other
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hand, served as an independent check on the performance
of the ANN techniques aforementioned.

It is important to note that the training set served as param-
eterization; thus, it is used in calculating the gradient and for
weight adaptation and biases (Yilmaz 2013). The testing data
which had no effect on training were applied to the trained
models to independently ascertain their performance. For the
network training, the Levenberg-Marquardt backpropagation
algorithm (Nocedal and Wright 2006) was used to train the
BPNN and the gradient descent rule was used to train the
RBFNN (Fernandez-Redondo et al. 2006). These networks
(BPNN and RBFNN) were allowed to train until no additional
effective improvement occurred. Consequently, if there was a
significant change in terms of error between the training and
testing results, then there was a possibility of overfitting oc-
curring. In such situations, the error on the testing set typically
begins to rise although, at the initial phase of training, both the
training and testing errors were at a minimum. This implies
that the ANN has learned the specific details of the training set
instead of the general pattern found in all present and future
data (Ziggah et al. 2016).

In determining the optimum BPNN and RBFNN models,
the mean squared error (MSE) of all the models was moni-
tored at each stage of training and testing. After several trials,
the model with the lowest MSE value was selected as the
optimum. Other statistic indicators used for evaluating the
BPNN and RBFNN models obtained results are given in
BModel performance assessment^ section. It is noteworthy
that only the results given by the optimum performing
BPNN and RBFNN models are presented in this study.

Backpropagation neural network

The backpropagation neural network (BPNN) has gained
much popularity over the last decade and has many applica-
tion areas in geodesy (Lin and Wang 2006; Mihalache 2012;
Tierra and Romero 2014; Turgut 2010; Yilmaz and Gullu
2012; Zaletnyik 2004). The BPNN encompasses an input lay-
er, one ormore hidden layers and an output layer of processing
neurons with each layer feeding input to the next layer in a
feedforward fashion through a set of connection weights
(Yegnanarayana 2005). Figure 2 shows a typical BPNN archi-
tecture of inputs (X1, X2, …, XN) and outputs (Y1, …, YM).

The input layer is an opening that is responsible for receiv-
ing the input data, whereas the output layer gives the final
results of the computation. In between these two layers is
the hidden layer chamber where the input data are fed to the
neurons in the hidden layer for processing. It is important to
state that the connections between all the layers of the network
are realized through synaptic weights, which are in turn used
by the network to solve a specific problem.

It is also well acknowledged that the number of hidden
neurons, hidden layers and type of activation functions used

in the BPNN determines its competency. Typically, the num-
ber of hidden neurons is obtained through the sequential trial-
and-error approach. This is partly due to (i) the type of prob-
lem at hand, (ii) the choice of neural network architecture and
(iii) the proposed theoretical concepts that are yet to be uni-
versally accepted to clarify the number of hidden neurons
needed to approximate a given function. In this study, the
optimum number of hidden neurons was obtained based on
the lowest mean squared error (MSE). The MSE is represent-
ed by Eq. (2) as

MSE ¼ 1

n

Xn

i¼1

Oi−Pð Þi2; ð2Þ

where O and P are the measured and predicted plane coordi-
nates from the BPNN model.

The present study applied one hidden layer in the BPNN.
This decision was in line with the conclusion made in Hornik
et al. (1989) that the BPNN with one hidden layer could be
used as a universal approximator for any discrete and contin-
uous functions. Furthermore, to introduce non-linearity into
the network, the hyperbolic tangent activation function was
selected for the hidden units, while a linear function was ap-
plied for the output units. The hyperbolic tangent function
(Yonaba et al. 2010) is defined in Eq. (3) as

f xð Þ ¼ tanh xð Þ ¼ 2

1þ e−2x
−1; ð3Þ

where x is the sum of the weighted inputs.
It worth stating that the BPNN training can be considered

as a non-linear optimization problem, w* (Konaté et al. 2015),
given by Eq. (4)

w* ¼ argminE wð Þ; ð4Þ

where w is the weight matrix and E(w) is the error function.
The purpose of training the network is to find the optimal
weight connection (w*) that minimizes E(w) such that the
estimated outputs from the BPNN will be in good agreement

X1

2                                                                                                                              Y1

N                                                                                         YM

X

X

Input layer       Hidden layer                 Output layer 

Fig. 2 Schematic BPNN representation
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with the target data. This E(w) is evaluated at any point of w
shown in Eq. (5) as

E wð Þ ¼
X
n

En wð Þ; ð5Þ

where n is the number of training samples and En(w) is the
output error for each sample n. En(w) (Gope et al. 2015) is
mathematically defined by Eq. (6)

En wð Þ ¼ 1

2

X
j

Dnj−Ynj wð Þ� �2
; ð6Þ

where Dnj and Ynj(w) are anticipated network outputs and
estimated values of the jth output neuron for the nth sample,
respectively. Therefore, substituting Eq. (6) into Eq. (5) gives
the objective function to be minimized expressed in Eq. (7) as

E wð Þ ¼ 1

2

X
n

X
j

Dnj−Ynj wð Þ� �2
: ð7Þ

Radial basis function neural network

The radial basis function neural network (RBFNN) is based
on a feedforward network architecture consisting of a single
hidden layer. It has a three-layered topology, thus input, hid-
den and output layers that are interconnected in a feedforward
manner. The input layer accepts information from the external
environment, while the output layer provides the final calcu-
lated outcomes. The layer that does not have direct access to
the external world is known as the hidden layer. Figure 3
shows a typical RBFNN structure of inputs (X1, X2, …, Xd),
radial basis functions (φ1, …, φN), weights (W1, …, WN) and
output (y), respectively.

It must be noted that, in RBFNN, the input data are trans-
ferred to the hidden layer chamber through unweighted con-
nections. A non-linear activation function is then applied to
the hidden layer to transform the received input layer infor-
mation with each neuron estimating a Euclidean distance be-
tween the input to the network and the position of the neuron
called the centre. This is then inserted into a radial basis acti-
vation function, which calculates and outputs the activation of
the neuron (Deyfrus 2005). The present study applied the
Gaussian activation function (Gurney 2005) expressed in
Eq. (8) as

a j ¼ ϕ j Xð Þ ¼ exp −
X−μik k2
2σ2

j

" #
; ð8Þ

where X is the input vector, μi is the centre of the Gaussian
function, σj is the spread parameter of the Gaussian function,
and ‖X − μi‖ is the Euclidean norm. The output layer contains
the linear activation function and uses the weighted sum of the

hidden layer as propagation function expressed in Eq. (9)
(Tierra et al. 2008) as

Yk ¼
Xp

j¼1

Wjk a j þW0: ð9Þ

Here, each Wjk is the output weight that matches to the
association between a hidden node and an output node,
while W0 is the bias and p denotes the number of hidden
neurons. It should be noted that through training of the
RBFNN, Eq. (9) could be achieved. Therefore, in this
study, the supervised learning approach was adopted to
establish the input-output mapping relationship. It is well
known that the RBFNN training could be regarded as a
non-linear optimization problem (Barsi 2001) such that
the estimated outputs from the RBFNN will be in good
agreement with the existing data. The error ek in the out-
put of a neuron k is defined as the deviation of the desired
value dk from the computed value Yk in the first step
(Haykin 1999). This is expressed by Eq. (10) as

ek ¼ dk−Yk : ð10Þ

The RBFNN training process continues until the network
error (MSE) reaches an acceptable value.

Traditional coordinate transformation techniques

The traditional coordinate transformation methods applied in
this study were the four-parameter and six-parameter models.
These transformation models were used to transform

Fig. 3 RBFNN architecture

Table 1 Six-parameter
model transformation
from Leigon datum to
Accra datum

Parameters Values (m) SD (m)

a 0.99999 3.20E−06
b −1.13E−05 4.23E−06
c 2.22345 1.417531

d 1.75E−05 3.20E−06
e 1.00001 4.23E−06
f 0.50298 1.417531
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coordinates from Accra to Leigon datum and vice versa. A
description of the methods is given in BFour-parameter similar-
ity model^ and BSix-parameter transformationmodel^ sections,
respectively.

Four-parameter similarity model

The four-parameter similarity model also known as the
two-dimensional conformal model has the characteristics
that true shape and angles are retained after transforma-
tion, but the length of lines and position of points may
change. This model consists of two translations, one
scale factor and one rotation parameter. The translations
create common origin for the two coordinate systems,
while the scale generates equal dimensions in the two
coordinate systems. The rotation parameter, on the other
hand, makes the reference axes of the two systems par-
allel (Ghilani 2010).

Table 2 Four-parameter
model transformation
from Leigon datum to
Accra datum

Parameters Values (m) SD (m)

a 1.000001 2.06E−06
b 1.27E−05 2.06E−06
c 2.080065 0.692668

d 2.98E+00 0.693

Fig. 4 Training and testing data
distribution
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The four-parameter model was applied to determine trans-
formation parameters suitable to transform coordinates from
War Office 1926 ellipsoid (Accra datum) to Clark 1880
(modified) ellipsoid (Leigon datum) and vice versa. It must
be known that, to the best of our knowledge, the efficiency of
this model in transforming plane coordinates between the two
geodetic data in Ghana is yet to be investigated. Hence, there
is the need to evaluate the capability of the four-parameter
model.

The four-parameter similarity model connecting two da-
tums could be represented by Eq. (11) as (Ghilani (2010))

ax−byþ c ¼ X
bxþ ayþ d ¼ Y

; ð11Þ

where a, b, c and d are the transformation parameters to be
determined between the two coordinate systems. Applying the
least squares method, Eq. (11) could be represented in matrix
form (Eq. (12)) as

V þ BP ¼ L ð12Þ

where V is the residual, B is the designed matrix, L is the
observation vector matrix and P is the vector of the unknown
parameters to be determined. It is worth noting that P was
calculated using the relation (Eq. (13))

P ¼ BTB
� �−1

BTB: ð13Þ

Six-parameter transformation model

The six-parameter transformation model is also known as the
two-dimensional affine coordinate transformationmodel. This
model involves two translations of the origin, a rotation about
the origin and two scale factors: one in the x-direction and the
other in the y-direction, plus a small non-orthogonality correc-
tion between the x- and y-axes resulting in six unknowns
(Ghilani 2010). This model was also applied to transform
plane coordinates between the two local geodetic data in
Ghana. That is, the objective is to estimate parameters suitable
to transform coordinates from War Office 1926 ellipsoid

Table 3 Statistics of the test data coordinate residuals based on the transformation from Leigon datum to Accra datum

Test point 6 Parameters 4 Parameters RBFNN BPNN

ΔE (m) ΔN (m) HE (m) ΔE (m) ΔN (m) HE (m) ΔE (m) ΔN (m) HE (m) ΔE (m) ΔN (m) HE (m)

T1 −0.148 1.393 1.401 −0.295 0.860 0.909 −0.329 0.012 0.329 −0.359 0.091 0.370

T2 0.638 0.628 0.896 0.675 1.003 1.209 −0.067 0.323 0.330 −0.182 0.347 0.392

T3 0.464 −1.334 1.413 0.320 −1.021 1.070 0.131 −0.137 0.189 −0.233 −0.200 0.307

T4 0.321 0.076 0.330 0.365 −0.132 0.388 0.387 −0.266 0.470 0.424 −0.154 0.451

T5 0.601 0.490 0.775 0.546 0.485 0.731 −0.081 0.349 0.358 −0.122 0.437 0.454

T6 −1.515 0.337 1.552 −1.311 0.140 1.319 −0.407 0.713 0.821 −0.061 0.935 0.937

T7 −0.225 0.813 0.843 −0.010 1.277 1.277 0.599 −0.485 0.771 0.515 −1.576 1.658

ME 0.020 0.343 1.030 0.041 0.373 0.986 0.033 0.073 0.467 −0.003 −0.017 0.653

SD 0.759 0.848 0.441 0.681 0.787 0.337 0.366 0.413 0.240 0.337 0.789 0.490

Fig. 5 Horizontal displacement of test coordinates (transformation from
Leigon to Accra datum)

Fig. 6 Test data correlation coefficient for the four methods in both
coordinate systems (transformation from Leigon to Accra datum)
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(Accra datum) to Clark 1880 (modified) ellipsoid (Leigon
datum) and vice versa.

The observation equations for the six-parameter transfor-
mation model are given in Eq. (14) (Ghilani 2010) as

axþ byþ c ¼ X
dxþ eyþ f ¼ Y

; ð14Þ

where a, b, c, d, e and f are the unknown transformation
parameters to be determined between the two coordinate sys-
tems. It must be known that Eq. (14) was expressed in Eq. (12)
and P was also estimated using Eq. (13).

Model performance assessment

In order to compare the ANN method (BPNN and RBFNN)
results with the four-parameter and six-parameter models, the
residuals calculated between the desired outputs and the out-
puts produced by the various techniques were utilized. Hence,
to make an objective assessment of the models, performance
criteria indices (PCI) of mean error (ME), horizontal position
error (HE), mean horizontal position error (MHE), standard
deviation (SD) and correlation coefficient (R) were used.
Their mathematical expressions are given by Eqs. (15), (16),
(17), (18) and (19), respectively.

ME ¼ 1

n

Xn

i¼1

Oi−Pið Þ; ð15Þ

HE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−E1ð Þ2 þ N 2−N 1ð Þ2

q
; ð16Þ

MHE ¼ 1

n

Xn

i¼1

HEi; ð17Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

Xn

i¼1

e−e
� �2

;

vuut ð18Þ

R ¼

XN
i¼1

Oi−O
� �

Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Oi−O
� �2

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Pi−P
� �2

vuut

0
BBBBBB@

1
CCCCCCA
: ð19Þ

Here, n is the total number of test examples presented to the
learning algorithm, O and P are the measured and predicted

plane coordinates from the various procedures, while P is the
mean of the predicted plane coordinates. e denotes the residual
between the measured and predicted plane coordinates, and e
is the average of the residual.

Results and discussion

Coordinate transformation from Leigon datum to Accra
datum

Tables 1 and 2 present the transformation parameters for the
six- and four-parameter models, with their associated SDs,
derived from the least square estimation of 20 common con-
trol points from the Leigon to Accra datum. Seven

Fig. 7 Horizontal displacement of the whole data (transformation from
Leigon to Accra datum)

Table 4 Total horizontal
residuals between plane
coordinates transformed from
Leigon to Accra datum for the test
data

PCI 6
Parameters
(m)

4
Parameters
(m)

RBFNN
(m)

BPNN
(m)

Max
error

1.552 1.319 0.821 1.658

Min error 0.330 0.388 0.189 0.307

MHE 1.030 0.986 0.467 0.653

SD 0.441 0.337 0.240 0.490
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independent common control points which were not involved
in the parameter estimation as well as in the ANN trained
models were used as the testing data. The computed SD values
in Tables 1 and 2 give an indication on the precision of the
estimated transformation parameters by showing the extent at
which the determined transformation parameters are distant
from their most probable value. Figure 4 shows a spatial
map of the geographical distribution of training and testing
datasets used in this study.

In the ANN (BPNN and RBFNN) training, the plane coor-
dinates of the points in the Leigon datum denoted as (Eclark,
Nclark) were used as the input layer neurons, while (Ewar, Nwar)
in Accra datum was used as the target data. TheMSE (Eq. (2))
was then used as the optimality criterion to aid in determining
the optimum ANN structure during the training process.
Hence, after several trials, the optimum structures of the
BPNN for transforming plane coordinates from Leigon to
Accra datum were [2-4-1] and [2-8-1], respectively. Thus,
for Ewar output vector, there are two inputs with four hidden
neurons, and for the Nwar output vector, there are eight hidden
neurons with two inputs. The optimum RBFNN architec-
ture selected was two inputs (Eclark, Nclark) with one
hidden layer of 20 neurons for each output vector
(Ewar, Nwar), that is, [2-20-2].

Table 3 presents the residuals generated when the six-pa-
rameter, four-parameter, RBFNN and BPNN test results were
subtracted from the measured test plane coordinates. The HE,
ME and SD values for each test coordinate are also presented.

These deviations (ΔE, ΔN) (Table 3) indicate the amount
the predicted outcomes produced by the four methods applied
depart from the corresponding measured test data. These re-
siduals signify the prediction limitation of the methods uti-
lized in this study.

Analysis of Table 3 shows that the ANN approaches pro-
duced results that are better than the traditional techniques.
This implies that the RBFNN and BPNN were able to gener-
alize well across the test data than the six-parameter and four-
parameter models, respectively. However, comparing the two
ANN techniques, the RBFNN showed much improved trans-
formation results compared with the BPNN. This shows that
the RBFNN has exhibited greater learning ability and has
shown more stability in training and testing than the BPNN.
In the light of these, it could be stated that the predicted out-
comes rendered by the RBFNN are in better agreement to the
measured data than the other methods. These assertions are
further confirmed by Fig. 5.

Observation of Table 3 and Fig. 5 demonstrate that the six-
parameter, four-parameter, RBFNN and BPNN methods pre-
dict the horizontal positional errors with a minimum uncer-
tainty in the order of approximately 0.33, 0.39, 0.19 and
0.31 m, respectively. On the contrary, maximum horizontal
positional errors of about 1.55, 1.32, 0.8 and 1.66 m were
identified for the six-parameter, four-parameter, RBFNN and
BPNN methods, respectively. On the basis of the HEs
(Table 3), it could be stated that the RBFNN was capable of
absorbing more of the local character deformations existing in
both Accra and Leigon data than the six-parameter, four-
parameter and BPNNmodels. Hence, the inference made here
is that the effect of the local geodetic network distortions on
the final transformed plane coordinates was at a minimum in
the case of the RBFNN model, thereby improving the

Table 5 Total horizontal
residuals between plane
coordinates transformed from
Leigon to Accra datum for the
whole data

PCI 6 Parameters (m) 4 Parameter (m) RBFNN (m) BPNN (m)

Max error 4.22 4.791 0.822 1.658

Min error 0.137 0.158 0.028 0.004

MHE 1.129 1.108 0.260 0.356

SD 0.821 0.896 0.204 0.341

Fig. 8 Correlation coefficient of the whole data for the four methods in
both coordinate systems (transformation from Leigon to Accra datum)

Table 6 Six-parameter
model transformation
from Accra datum to
Leigon datum

Parameters Values (m) SD (m)

a 1.00000042 3.20E−06
b 1.13E−05 4.23E−06
c −2.22343 1.41753

d −1.75E−05 3.20E−06
e 0.99999 4.23E−06
f −0.50284 1.41753
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transformation accuracy. On the account of the results from
Table 3, it was noticed that the influence of the local geodetic
network distortions on the final transformed coordinates for
the traditional techniques and the BPNN was very high. This
suggests that the traditional techniques and BPNN could not
model out more of the distortions within the two local geodet-
ic networks as compared to the RBFNN.

On the basis of the computed correlation coefficient (R)
values using Eq. (19), it was noticed that the changes in the
R values obtained for all the methods applied were only
exhibited as the number of decimal places increased.
Consequently, a graphical illustration of the R values for
the four-parameter, six-parameter, BPNN and RBFNN
models in easting and northing coordinates was the pre-
ferred way of presenting the efficiency of the four methods.
Figure 6 is an R distribution of eastings and northings for
the transformation techniques. This distribution shows the
efficiency of the various transformation methods based on
the testing data. In addition, it determines the strength of the
relationship existing between the estimated test coordinate
results and the measured data. In the case of this study, a
stronger correlation was exhibited by all the methods
(Fig. 6). This indicates that the transformation methods
could produce satisfactory results. However, comparatively,
it is obvious from Fig. 6 that the RBFNN had the highest R
value and thus is superior to four-parameter, six-parameter
and BPNN models.

A summary of the total error attained when the four
methods were used for transforming coordinates from
Leigon to Accra datum is presented in Table 4. Analysis of
Table 4 shows that the RBFNN-obtained results were signif-
icantly better than the other methods. The interpretation made
in line with the maximum and minimum error values (Table 4)
is that the RBFNN model-forecasted values varied by not
more than 0.821 m, whereas 1.552, 1.319 and 1.658 m were
gotten by the six-parameter, four-parameter and BPNN
models, respectively. The SD values (Tables 3 and 4) calcu-
lated show a practical expression for the accuracy of the trans-
formed test coordinates. A check from Tables 3 and 4 indicate
that the RBFNN had the least SD values, which further show
the limit of the error bound by which every value within the
RBFNN transformed test dataset varies from its most probable
value.

In order to further access the generalization capability of the
optimum ANNs formulated and the determined transformation

Table 8 Statistics of the test data coordinate residuals based on the transformation from Accra datum to Leigon datum

Test point 6 Parameters 4 Parameters RBFNN BPNN

ΔE (m) ΔN (m) HS (m) ΔE (m) ΔN (m) HS (m) ΔE (m) ΔN (m) HS (m) ΔE (m) ΔN (m) HS (m)

T1 0.148 −1.393 1.401 0.295 −0.860 0.909 0.334 0.125 0.356 0.405 0.363 0.543

T2 −0.638 −0.628 0.896 −0.675 −1.003 1.209 0.072 −0.339 0.346 0.112 −0.287 0.308

T3 −0.464 1.334 1.413 −0.320 1.021 1.070 −0.150 −0.098 0.180 −0.130 −0.158 0.204

T4 −0.321 −0.076 0.330 −0.365 0.132 0.388 −0.376 0.680 0.777 −0.629 0.060 0.632

T5 −0.601 −0.490 0.775 −0.546 −0.485 0.731 0.081 −0.416 0.424 −0.006 −0.333 0.333

T6 1.515 −0.337 1.552 1.311 −0.140 1.319 0.417 −0.645 0.768 0.303 −0.972 1.018

T7 0.225 −0.813 0.843 0.010 −1.277 1.277 −0.604 0.230 0.647 −0.482 0.280 0.558

ME −0.020 −0.343 1.030 −0.041 −0.373 0.986 −0.033 −0.066 0.500 −0.061 −0.150 0.514

SD 0.759 0.848 0.441 0.681 0.787 0.337 0.369 0.450 0.232 0.384 0.451 0.271

Fig. 9 Horizontal displacement of test coordinates (transformation from
Accra to Leigon datum)

Table 7 Four-parameter
model transformation
from Accra datum to
Leigon datum

Parameters Values (m) SD (m)

a 0.99999 2.06E−06
b −1.27E−05 2.06E−06
c −2.08003 0.69267

d −2.98E+00 0.69267
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parameters of the traditional techniques when the dataset is in-
creased, the whole data (27 common points) were used as the
testing data. Figure 7 displays the horizontal errors when the
whole data were used to test the already determined six-param-
eter, four-parameter, optimum RBFNN and BPNN models.

The results from Fig. 7 clearly show that within the Ghana
national geodetic reference network, both the artificial intelli-
gence techniques of RBFNN and BPNN could serve as a
credible alternate technology to be applied for plane coordi-
nate transformation from Leigon datum to Accra datum. This
assertion is further confirmed by the total error attained by
each method as shown in Table 5. However, on the basis of
the performance criteria indicators (PCI) used, the RBFNN
had a little edge over the BPNN. Given the values of R
(Fig. 8), an intuitive interpretation depicts the strength of the
ANN methods over the classical transformation techniques.
Moreover, analysis of Fig. 8 duly demonstrates that the
RBFNN is the most appropriate procedure for transforming
coordinates from Leigon datum to Accra datum.

Coordinate transformation from Accra datum to Leigon
datum

The resulting parameters obtained from least square esti-
mation of coordinate transformation from the Accra da-
tum to Leigon datum with their related SD values based
on the six-parameter and four-parameter models are pre-
sented in Tables 6 and 7, respectively.

In the case of the RBFNN and BPNN training, plane coor-
dinates of the points in Accra datum represented as (Ewar,
Nwar) were used as the input layer neurons, while (Eclark,
Nclark) in Leigon datum was used as the output layer neurons.
In order to establish the ANN architecture, the MSE (Eq. (2))
of all trained models was examined at each phase of training
and testing. The model that gave the smallest MSE in the
testing dataset was selected as the best ANN structure. In this
study, the optimum BPNN for carrying out the transformation
was [2-3-1] and [2-10-1], respectively. Thus, for Eclark output
vector, there are two inputs with three hidden neurons, while
for the Nclark output vector, there are ten hidden neurons with
two inputs.

Table 8 shows the coordinate differences (ΔE, ΔN) obtain-
ed compared with the coordinates known from Leigon datum
(Eclark, Nclark).

Judging from the results in Table 8, it was realized that the
ANN methods were superior to the traditional techniques. This
could be ascribed to the ANN methods’ ability to better learn
and generalize well when unseen data are introduced to the
network. In addition, the superiority of the ANN approaches
could be that the distortions in data related to the Accra and
Leigon geodetic datums which could not be more absorbed by
the traditional techniques were captured better by the ANN
models. Therefore, in conformance with the results (Table 8),
it can fairly be stated that in our case of transforming plane

Fig. 11 Horizontal displacement of the whole data (transformation from
Accra to Leigon datum)

Table 9 Total horizontal
residuals between plane
coordinates transformed from
Accra to Leigon datum for the test
points

PCI 6 Parameters (m) 4 Parameters (m) RBFNN (m) BPNN (m)

Max error 1.552 1.319 0.777 1.018

Min error 0.330 0.388 0.180 0.204

MHE 1.030 0.986 0.500 0.514

SD 0.441 0.337 0.232 0.271

Fig. 10 Test data correlation coefficient for the four methods in both
coordinate systems (transformation from Accra to Leigon datum)
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coordinates from Accra to Leigon datum, the ANN approaches
produced the most practicable transformation results.

However, comparing the two ANN methods, it was detect-
ed that the BPNN had the least HE values for about 57.14% of
the test points, while 42.86 % was achieved by the RBFNN.
This is intuitively confirmed by Fig. 9 where the HEs for the
test points are displayed. Here, the BPNN attained slightly
better horizontal positional accuracies of the transformed test
coordinates compared to the RBFNN. This means that the
BPNN was able to demonstrate better generalization capabil-
ity than the RBFNN. A critical look at Tables 3 and 8 show the
same obtained results but different arithmetic signs for the
four-parameter and six-parameter models. This phenomenon
as stated by Bašić (2006) cited in the study by Grgic et al.
(2015) is due to the least square estimation process, in which
the system of equation contains the actual values of the source
and target coordinates, depending on the direction of the trans-
formation. Hence, the computed transformation parameters’
absolute values differ in both directions of the transformation.
The BPNN and RBFNN, on the other hand, did not show such
occurrences and might possibly be attributed to their non-
parametric nature whereby results are dependent on the input
and output data supplied to the network and the number of
hidden neurons that could learn and generalize well on the
training and testing data, respectively.

By virtue of the R estimated results (Fig. 10), it was realized
that closely identical values were produced by the BPNN and
RBFNN. In comparison, it was noticed that the BPNN and
RBFNN attained higher R values than the four-parameter and
six-parameter models. This means that the outputs ren-
dered by the BPNN and RBFNN are more satisfactory
and are in better agreement with the measured test coor-
dinates than those produced by the four-parameter and
six-parameter models, respectively.

The statistics of total horizontal residuals attained using the
traditional techniques and ANN methods of transforming
plane coordinates from Accra to Leigon datum is summarized
in Table 9.

From Table 9, it could be seen that the magnitude of
distortions was significantly reduced in the case of the
ANN methods compared with the six- and four-parameter
models. This suggests that the ANN methods could absorb
most of the uncertainties in both the training and testing
datasets, thereby achieving good generalization. On the ac-
count of the maximum and minimum horizontal positional

errors (Table 9), it was observed that a positional accuracy
of approximately 0.2 m was gotten by the ANN methods,
while approximately 0.4 m was attained by the six- and
four-parameter models, respectively. These positional er-
rors further point out that the transformed test points gen-
erated by the ANN methods are in closer agreement to the
measured test coordinates than the traditional methods.
Moreover, considering Table 9, employing the ANN
methods identified an improvement of about 90 % in
MHE when compared with the six- and four-parameter
model results. The SD was then used as a criterion to further
evaluate the accuracy of the techniques applied. The results
(Table 9) indicate differences in SD values, starting with a
maximum SD of 0.441 m for the six-parameter model and
ending up with 0.232 m for the RBFNN. The determined
SD values (Table 9) for the RBFNN and BPNN show that
they are the most suitable for carrying out coordinate trans-
formation from Accra to Leigon datum.

Furthermore, the whole dataset was applied as the testing
data onto the already developed six-parameter models, four-
parameter models and the optimum ANN models. The objec-
tive here is to ascertain how well the developed models could
generalize when more dataset is introduced. With reference to
Fig. 11, the horizontal residuals denote the range that the
transformed coordinates produced by the RBFNN, BPNN,
six-parameter and four-parameter models differ from the mea-
sured plane coordinates. It also shows the positional accuracy
of the transformed data in horizontal terms to the measured
data. In comparison, the RBFNN and the BPNN yielded

Table 10 Total horizontal
residuals between plane
coordinates transformed from
Accra datum to Leigon datum for
the whole data

PCI 6 Parameters (m) 4 Parameters (m) RBFNN (m) BPNN (m)

Max error 4.216 4.791 0.798 1.018

Min error 0.137 0.158 0.051 0.018

MHE 1.129 1.108 0.339 0.299

SD 0.821 0.896 0.236 0.233

Fig. 12 Correlation coefficient of the whole data for the four methods in
both coordinate systems (transformation from Accra to Leigon datum)
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closely related horizontal positional accuracy than the six-
parameter and four-parameter models as illustrated in Fig. 11.

Table 10 shows that transforming plane coordinates from
Accra to Leigon datum, the RBFNN and BPNN are both
practicable and could produce better transformation results.
Besides, it can be stated based on graphical evidence
(Fig. 12) of the R values that among the four methods,
BPNN and RBFNN methods have demonstrated better capa-
bilities of producing satisfactory results from the coordinate
transformation processes. It can obviously be concluded from
Table 10 and Fig. 12 that the ANNmethods are better than six-
parameter and four-parameter transformation models.

Conclusion

Coordinate transformation is essential in developing countries
like Ghana where the local geodetic networks applied for sur-
veying and mapping purposes are non-geocentric and highly
heterogeneous in nature. Many methods for coordinate transfor-
mation have been developed and applied over the years. One of
such method is the artificial intelligence technique of artificial
neural network (ANN). Although ANN has been tested for its
efficacy in coordinate transformation research, its suitability for
plane coordinate transformation has not been accessed in
Ghana’s geodetic reference networks. Hence, the main contri-
butions of this study are to evaluate, compare and discuss the
capability of ANNs as a realistic alternative technology to trans-
form coordinates between the two classical geodetic reference
networks, namely, Accra datum and Leigon datum.

To this end, backpropagation neural network (BPNN) and
radial basis function neural network (RBFNN) based on the
supervised learning technique as well as the six-parameter and
four-parameter models have been presented. The findings re-
vealed that the BPNN andRBFNNgavemore satisfactory trans-
formation results compared with the six-parameter and four-
parameter models. It is important to know that the outcomes
rendered by the six-parameter and four-parameter models fur-
ther confirm the presence of heterogeneity in the classical geo-
detic networks of Ghana. As a result, the transformation param-
eters determined could not model and absorb more of the dis-
tortions in the coordinates relating the Accra and Leigon data.

On the other hand, the RBFNN and BPNN were able to
model out and compensate the local character deformation
existing in the local geodetic networks in a more effective way
than the traditional techniques. However, transforming coordi-
nates from Leigon datum to Accra datum, the RBFNN com-
pared to BPNN showed superior stability and more accurate
transformation results. In the case of transforming coordinates
from Accra datum to Leigon datum, both the BPNN and
RBFNN achieved closely related results.

To conclude, it can reasonably be stated that the ANNmodels
based on the results achieved could be used for practical survey

works such as cadastral, topographic mapping surveys and en-
gineering surveys. In the future, other artificial intelligence tech-
niques such as generalized regression neural network should be
tested when the newly established GNSS geodetic reference
network is expanded to cover the rest of Ghana.

References

Ayer J (2008) Transformation models and procedures for frame-
work integration of Ghana geodetic network. The Ghana
Surveyor 1(2):52–58

Ayer J, Fosu C (2008) Map coordinates referencing and the use of GPS
datasets in Ghana. J Sci Tech 28(1):116–127

Ayer J, Tiennah T (2008) Datum transformation by the iterative solution
of the abridging inverse Molodensky formulae. The Ghana
Surveyor 1(2):59–66

Baabereyir A (2009) Urban environmental problems inGhana: case study
of social and environmental injustice in solid waste management in
Accra and Sekondi-Takoradi. Thesis submitted to the Department of
Geography, University of Nottingham for the Degree of Doctor of
Philosophy, UK

Baiocchi V, Keti L, Gabor T (2011) Estimation of abridging Molodensky
parameters to transform from old Italian reference systems to mod-
ern ones. Geophys Res Abstracts 13:10461

BaoH, Zhao D, Fu Z, Zhu J, Gao Z (2011) Application of genetic-algorithm
improved BP neural network in automated deformation monitoring.
Seventh International Conference on Natural Computation, Shanghai-
China. IEEE. doi:10.1109/ICNC.2011.6022149

Barsi A (2001) Performing coordinate transformation by artificial neural
network. AVN 4:134–137

Bašić T (2006) Jedinstveni transformacijski model i novi model geoida
Republike Hrvatske. Izvješće o znanstveno-stručnim projektima.
State Geodetic Administration, Zagreb (in Croatian)

Deyfrus G (2005) Neural networks: methodology and applications.
Springer-Verlag, Berlin

Du S, Zhang J, Deng Z, Li J (2014a) A new approach of geological
disasters forecasting using meteorological factors based on genetic
algorithm optimized BP neural network. Elektronika IR
Elektrotechnika 20(4):57–62

Du S, Zhang J, Deng Z, Li J (2014b) A neural network based intelligent
method for mine slope surface deformation prediction considering
the meteorological factors. TELKOMNIKA Indonesian J Elect Eng
12(4):2882–2889

Dzidefo A (2011) Determination of transformation parameters between
the World Geodetic System 1984 and the Ghana geodetic network.
Master’s Thesis, Department of Civil and Geomatic Engineering,
KNUST, Kumasi, Ghana

El-Mowafy A, Fashir H, Al-Marzooqi Y (2009) Improved coordinate
transformation in Dubai using a new interpolation approach of co-
ordinate differences. Surv Rev 41(311):71–85

Fernandez-Redondo M, Torres-Sospedra J, Hernández-Espinosa C
(2006) Gradient descent and radial basis functions. Intelligent
Computing 4113:391–396

Fu B, Liu X (2014) Application of artificial neural network in GPS height
transformation. Appl Mech Mater 501-504:2162–2165

Gao CY, Cui XM, Hong XQ (2014) Study on the applications of neural
networks for processing deformation monitoring data. Appl Mech
and Mater 501-504:2149–2153

Ghilani C (2010) Adjustment computations: spatial data analysis. Wiley,
New York, pp. 464–470

698 Page 14 of 16 Arab J Geosci (2016) 9: 698

http://dx.doi.org/10.1109/ICNC.2011.6022149


Gledan AJ, Azzeidani AO (2014) ELD79-LGD2006 transformation tech-
niques implementation and accuracy comparison in Tripoli Area,
Libya. Int J Civil, Archit, Struct Constr Eng 8(3):251–254

Gope D, Gope PC, Thakur A, Yadav A (2015) Application of artificial
neural network for predicting crack growth direction in multiple
cracks geometry. App Soft Comput 30:514–528

Grgic M, Varga M, Basic T (2015) Empirical research of interpolation
methods in distortion modelling for the coordinate transformation
between local and global geodetic datums. J Surv Eng 142(2):
05015004-1–05015004-9

GulluM (2010) Coordinate transformation by radial basis function neural
network. Sci Res Essays 5(20):3141–3146

Gullu M, Yilmaz M, Yilmaz I, Turgut B (2011) Datum transformation by
artificial neural networks for geographic information systems appli-
cations. International Symposium on Environmental Protection and
Planning: Geographic Information Systems (GIS) and Remote
Sensing (RS) Applications (ISEPP), Izmir-Turkey, 13–19

Gurney K (2005) An introduction to neural networks. Taylor and Francis,
London

Hajian A, Ardestani EV, Lucas C (2011) Depth estimation of
gravity anomalies using Hopfield neural networks. J Earth
Sp Phys 37(2):1–9

Hamid RS, Mohammad RS (2013) Neural network and least
squares method (ANN-LS) for depth estimation of subsurface
cavities case studies: Gardaneh Rokh Tunnel, Iran. J Appl
Sci Agric 8(3):164–171

Hartman EJ, Keeler JD, Kowalski JM (1990) Layered neural networks
with Gaussian hidden units as universal approximations. Neural
Comput 2(2):210–215

Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn.
Prentice Hall, New Jersey, USA

He-Sheng W (2006) Precise GPS orbit determination and prediction
using H∞ neural network. J Chinese Inst Eng 29(2):211–219

Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward
networks are universal approximators. Neural Netw 2:359–366

Kavzoglu T, Saka MH (2005) Modelling local GPS/levelling geoid un-
dulations using artificial neural networks. J Geodesy 78:520–527.
doi:10.1007/s00190-004-0420-3

Kecman V (2001) Learning and Soft Computing. A Bradford book, The
MIT Press Massachusetts

Kinneen R, Featherstone WE (2004) An empirical comparison of coor-
dinate transformations from the Australian geodetic datum (AGD66
and AGD84) to the geocentric datum of Australia (GDA94). J
Spatial Sci 49(2):1–29

Konaté AA, Pan H, Khan N, Ziggah YY (2015) Prediction of porosity in
crystalline rocks using artificial neural networks: an example from
the Chinese continental scientific drilling main hole. Stud Geophys
Geod 59(1):113–136

Kotzev V (2013) Consultancy service for the selection of a new projec-
tion system for Ghana. Draft Final Reports, World Bank Second
Land Administration Project (LAP-2), Ghana

Kumi-Boateng B, Ziggah YY (2016) Accuracy assessment of Cartesian
(X, Y, Z) to geodetic coordinates (φ, λ, h) transformation procedures
in precise 3D coordinate transformation—a case study of Ghana
Geodetic Reference Network. J Geosci and Geomat 4(1):1–7

Lei W, Qi X (2010) The application of BP neural network in GPS
elevation fitting. International Conference on Intelligent
Computation Technology and Automation, Changsha-China.
IEEE. doi:10.1109/ICICTA.2010.162

Li X, Zhou J, Guo R (2014) High-precision orbit prediction and error
control techniques for COMPASS navigation satellite. Chinese Sci
Bull 59(23):2841–2849

Liao DC, Wang QJ, Zhou YH, Liao XH, Huang CL (2012) Long-term
prediction of the earth orientation parameters by the artificial neural
network technique. J Geodyn 62:87–92

Lin LS, Wang YJ (2006) A study on cadastral coordinate transformation
using artificial neural network. Proceedings of the 27th Asian
Conference on Remote Sensing, Ulaanbaatar, Mongolia

Liu S, Li J, Wang S (2011) A hybrid GPS height conversion approach
considering of neural network and topographic correction.
International Conference on Computer Science and Network
Technology, China. IEEE. doi:10.1109/ICCSNT.2011.6182386

Mihalache RM (2012) Coordinate transformation for integrating map
information in the new geocentric European system using artificial
neural networks. GeoCAD:1–9

Mugnier JC (2000) OGP-coordinate conversions and transformations in-
cluding formulae, COLUMN, Grids and Datums. The Republic of
Ghana Photogram. Eng Remote Sensing:695–697

Muller VA, Hemond FH (2013) Extended artificial neural networks: in-
corporation of a priori chemical knowledge enables use of ion se-
lective electrodes for in-situ measurement of ions at environmentally
relevant levels. Talanta 117:112–118

Newsome GG, Harvey BR (2003) GPS coordinate transformation param-
eters for Jamaica. Surv Rev 37(289):218–234

Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer
Science and Business media, LLC, New York

Pantazis G, Eleni-Georgia A (2013) The use of artificial neural networks
in predicting vertical displacements of structures. Int J Appl Sci
Technol 3(5):1–7

Park J, Sandberg IW (1991) Universal approximation using radial basis
function networks. Neural Comput 3(2):246–257

Pikridas C, Fotiou A, Katsougiannopoulos S, Rossikopoulos D
(2011) Estimation and evaluation of GPS geoid heights using
an artificial neural network model. Appl Geomat 3:183–187.
doi:10.1007/s12518-011-0052-2

Poku-Gyamfi Y, Hein WG (2006) Framework for the establishment of a
nationwide network of Global Navigation Satellite System
(GNSS)—a cost effective tool for land development in Ghana. 5th
FIG Conference on Promoting Land Administration and Good
Governance, Workshop–AFREF I, Accra, Ghana, 1–13

Poku-Gyamfi Y, Schueler, T (2008) Renewal of Ghana’s Geodetic
Reference Network. 13th FIG Symposium on Deformation
Measurement and Analysis, 4th IAG Symposium on Geodesy for
Geotechnical and Structural Engineering, LNEC, LISBON, 2008,
pp 1–9

Schuh H, Ulrich M, Egger D, Muller J, Schwegmann W (2002)
Prediction of earth orientation parameters by artificial neural net-
works. J Geod 76:247–258

Sorkhabi OM (2015) Geoid determination based on log sigmoid function
of artificial neural networks: (a case study: Iran). J Artif Intell Electr
Eng 3(12):18–24

Stopar B, Ambrožič T, KuharM, Turk G (2006) GPS-derived geoid using
artificial neural network and least squares collocation. Surv Rev
38(300):513–524

Tieding L, Shijian Z, XijiangC (2010) A number of issues about converting
GPS height by BP neural network. International Conference on
Biomedical Engineering and Computer Science (ICBECS), Wuhan-
China. IEEE. doi:10.1109/ICBECS.2010.5462426

Tierra AR, De Freitas SRC (2005) Artificial neural network: a
powerful tool for predicting gravity anomaly from sparse da-
ta. Gravity, geoid and space missions, International
Association of Geodesy Symposia. Springer, Berlin
Heidelberg DA. doi:10.1007/3-540-26932-0_36

Tierra A, Romero R (2014) Planes coordinates transformation between
PSAD56 to SIRGAS using a multilayer artificial neural network.
Geod Cartogr 63(2):199–209

Tierra A, Dalazoana R, De Freitas S (2008) Using an artificial neural
network to improve the transformation of coordinates between clas-
sical geodetic reference frames. Comput Geosci 34:181–189.
doi:10.1016/j.cageo.2007.03.011

Arab J Geosci (2016) 9: 698 Page 15 of 16 698

http://dx.doi.org/10.1007/s00190-004-0420-3
http://dx.doi.org/10.1109/ICICTA.2010.162
http://dx.doi.org/10.1109/ICCSNT.2011.6182386
http://dx.doi.org/10.1007/s12518-011-0052-2
http://dx.doi.org/10.1109/ICBECS.2010.5462426
http://dx.doi.org/10.1007/3-540-26932-0_36
http://dx.doi.org/10.1016/j.cageo.2007.03.011


Tierra AR, De Freitas SRC, Guevara PM (2009) Using an artificial neural
network to transformation of coordinates from PSAD56 to
SIRGAS95. Geodetic Reference Frames, International Association
of Geodesy Symposia. Springer 134:173–178

Turgut B (2010) A back-propagation artificial neural network approach
for three-dimensional coordinate transformation. Sci Res Essays
5(21):3330–3335

Veronez MR, Thum BA, De Souza GC (2006) A new method for
obtaining geoidal undulations through artificial neural networks.
7th International Symposium on Spatial Accuracy Assessment in
Natural Resources and Environmental Sciences 306–316

Veronez MR, De Souza GC, Matsuoka TM, Reinhardt A, Da Silva RM
(2011) Regional mapping of the geoid using GNSS (GPS) measure-
ments and an artificial neural network. Remote Sens 3:668–683.
doi:10.3390/rs3040668

Wonnacott R (2007) A progress report on the AFREF project and its
potential to support development in Africa. Space Geodesy
Workshop, Matjiesfontein, 13–14 November

Wu LC, Tang X, Zhang S (2012) The application of genetic neural net-
work in the GPS height transformation. IEEE Fourth International
Conference on Computational and Information Sciences,
Chongqing-China. doi:10.1109/ICCIS.2012.317

Yegnanarayana B (2005) Artificial neural networks. Prentice-Hall of
India Private Limited

Yilmaz M (2013) Artificial neural networks pruning approach for
geodetic velocity field determination. Bol Ciênc Geod 19(4):
558–573

Yilmaz I, Gullu M (2012) Georeferencing of historical maps using
back propagation artificial neural network. Exp Tech 36:15–19

Yonaba H, Anctil F, Fortin V (2010) Comparing sigmoid transfer
functions for neural network multistep ahead stream flow
forecasting. J Hydrol Eng 15(4):275–283

Yu L, Danning Z, Cai H (2015) Prediction of length-of-day- using ex-
treme learning machine. Geod Geodyn 6(2):151–159

Zaletnyik P (2004) Coordinate transformation with neural net-
works and with polynomials in Hungary. International
Symposium on Modern Technologies, Education and
Professional Practice in Geodesy and Related Fields, Sofia,
Bulgaria, 471–479

Ziggah YY, Youj ian H, Oduto la CA, Fan DL (2013)
Determination of GPS coordinate transformation parameters
of geodetic data between reference datums—a case study of
Ghana Geodetic Reference Network. Int J Eng Sci and Res
Tech 2(4):2277–9655

Ziggah YY, Youjian H, Yu X, Laari BP (2016) Capability of
artificial neural network for forward conversion of geodetic
coordinates (φ, λ, h) to Cartesian coordinates (X, Y, Z).
Math Geosci 48:687–721

698 Page 16 of 16 Arab J Geosci (2016) 9: 698

http://dx.doi.org/10.3390/rs3040668
http://dx.doi.org/10.1109/ICCIS.2012.317

	Performance evaluation of artificial neural networks for planimetric coordinate transformation—a case study, Ghana
	Abstract
	Introduction
	Study area and data source
	Artificial neural network methods
	Data and selection of input variables
	Normalization
	ANN architecture
	Network training
	Backpropagation neural network
	Radial basis function neural network

	Traditional coordinate transformation techniques
	Four-parameter similarity model
	Six-parameter transformation model

	Model performance assessment
	Results and discussion
	Coordinate transformation from Leigon datum to Accra datum
	Coordinate transformation from Accra datum to Leigon datum

	Conclusion
	References


