
ORIGINAL PAPER

A comparative study of kriging and simulation-based methods
in classifying ore and waste blocks

Amin Mousavi1 & Ahmad Reza Sayadi1 & Nader Fathianpour2

Received: 13 April 2016 /Accepted: 18 October 2016 /Published online: 29 October 2016
# Saudi Society for Geosciences 2016

Abstract Ore grade is the most important source of uncertain-
ty in a mining operation which plays an important role to clas-
sify run-of-mine (ROM)material into ore andwaste parcels. As
a widely used method, kriging estimator is used to estimate the
grade of ore blocks. In conventional mining practices, if the
estimated grade of a parcel is above the cut-off grade, this
parcel is classified as ore, otherwise, is labelled as a waste
parcel. An alternative approach is to simultaneously consider
the grade of parcels and the economic consequences of sending
parcels to destinations by applying simulation-based methods.
In this study, kriging and simulation-based methods including
loss and profit functions are applied on a real-world case study
to classify ore/waste material based on the initial exploration
data. Then, the actual known data, collected from blast holes
samples, are compared with the estimated results in order to
validate the performance of the presented methods. Outcomes
show that simulation-based methods can perform better and
show more adjustability with real data.

Keywords Geostatistical simulation . Ore andwaste
classification . Profit function . Loss function . Kriging

Introduction

Ore/waste discrimination is a vital stage that should be fulfilled
prior to evaluation, investment, design and planning of a min-
ing project. The ore/waste discrimination is performed based
on the limited drill holes information obtained at the detailed
exploration phase. Due to the high cost of exploration drilling,
only a few number of drill holes with large spacing between
them are available. In addition, because of the highly complex
and variable nature of the mineral deposits, uncertainty is al-
ways associated with estimated grade. This uncertainty needs
to be addressed in order to prevent underestimation or overes-
timation. If an ore parcel is sent to a waste dump by mistake, a
large amount of money is wasted. Additionally, if a waste par-
cel is processed at processing, the recovery of process decreases
and a huge amount of energy is consumed. Especially, those
processing plants, which are very sensitive to the input feed,
can face serious problems as a result of the misclassification of
ore and waste. Therefore, applying the best ore/waste discrim-
ination technique can lead better planning and decrease the risk
associated with the mining operations.

The simplest method to identify ore against waste is to
draw ore-waste boundaries manually based on the borehole
information (Verly 2005). If a parcel of material is within the
ore boundaries, then this parcel is identified as ore and is
dispatched to a process circuit. As the structure of orebody is
not straightforward, manual classification cannot reach rea-
sonable accuracy and always comes with a high percentage
of error. Another ore/waste separation method is to use geo-
logical modelling approaches. The conventional geological
modelling methods such as triangular prism and polygon use
the information of drill holes and generate the shape of the ore
body in sections (side-view) and plans (top-view). Then a
three dimensional (3D) shape of the orebody is created by
combining sections and plans (Sides 1997).

* Amin Mousavi
a.mousavi1985@gmail.com

Ahmad Reza Sayadi
sayadi@modares.ac.ir

Nader Fathianpour
fathian@cc.iut.ac.ir

1 Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Mining Engineering, Isfahan University of

Technology, Isfahan, Iran

Arab J Geosci (2016) 9: 691
DOI 10.1007/s12517-016-2728-8

http://orcid.org/0000-0002-5436-696X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12517-016-2728-8&domain=pdf


With the emergence of the application of computer in min-
ing industry in the 1960s, the area of interest for mining is
represented by a block model. In mining terms, a block is a
three-dimensional (3D) prismatic shape spatially represented
by the coordinates of its centre. A block model consists of
several individual blocks in which different attributes such
as density, rock type, and specification of grade are estimated
for each individual block. Since the pioneering work by
Lerchs and Grossmann (1965), the constructed block model
is used for the purpose of mine planning and design. As the
whole, planning and design of a mine rely on the block model;
it is crucial to heighten the accuracy of the estimated grades.

Statistical and geo-statistical methods are usually applied to
estimate the attributes of blocks based on the exploration in-
formation (e.g. drill-hole information). Geostatistical methods
take priority over the statistical approaches, as they can incor-
porate data correlation and spatial position and also are able to
provide the error of estimation. As a widely used method,
kriging estimator is used to estimate block attributes.
Kriging is a type of geostatistical method and is known as
the best linear unbiased estimator (Cressie 1990). The main
disadvantage of kriging is referred to as smoothing which
leads to some reduction in variability (Pan 1995).
Smoothing causes overestimating of low values and
underestimating of the high values. To overcome such
smoothing effect, geostatistical simulations have been devel-
oped. The proposed simulation techniques such as sequential
gaussian simulation, P-field simulation and stimulated anneal-
ing can produce realizations of block model and address un-
certainty in estimation (Vann et al. 2002; Verly 2005). It
should be noted that geostatistical simulation only produces
realizations of the block model, and each individual realiza-
tion of the block model is not a good estimation of the block
model (Leuangthong et al. 2004). Geostatistical simulation
may be conditioned to the original known data such that
known data should be retained in each realization. In this case
the simulation is named conditional geostatistical simulation
(Journel 1974). This study does not discuss the details and
applications of kriging and geo-statistical simulation, and
readers are referred to relevant references such as
(Lantuéjoul 2013; Pyrcz and Deutsch 2014).

Next after grade estimation, the decision should be made
about the destinations of mining blocks. This end can be per-
formed based on the grade content of the block.
Conventionally, a cut-off grade is defined and the estimated
value by kriging (or the average of simulated values) for each
block is compared to this cut-off grade. Generally, cut-off
grade is defined as a minimum amount of valuable mineral
that must be existed in one unit (e.g. one tonne) of material
before this material is sent to the processing plant (Rendu
2008). This method is straightforward, but suffers from ignor-
ing the variability of the orebody as mentioned before. An
alternative way is to consider the economic consequence of

dispatching a given block to a given destination. In this ap-
proach, the loss and profit achieved as a result of sending
blocks to destinations are calculated and used to make deci-
sions. This idea ofminimizing the loss due tomisclassification
was first proposed by Isaaks (1991). Glacken (1997) intro-
duced loss and profit functions as two simulation-based
methods to determine the destination of run-of-mine material.
Cheuiche Godoy et al. (2001) compared kriging and
simulation-based methods in performing destination assign-
ment in a case study and compare the results with known
data. Verly (2005) discussed the efficiency of simulation,
kriging and simulation-based methods in classifying ore and
waste by presenting several case studies.

It should be noted that the mentioned simulation-based
methods can be applied to construct a long-term resource
model with an ore/waste tag for each block. Indeed, the appli-
cation of simulation-based methods is to use the simulated
realizations to classify blocks into ore and waste categories
considering a given cut-off grade. As a result, these ap-
proaches may not provide much information (e.g. grades of
blocks) for mine planning and production scheduling.
However, the amount of ore reserve, which is a crucial factor
in mine planning and design, can be estimated by simulation-
based methods. This paper aims to compare the efficiency of
kriging and simulation-based methods (loss and profit func-
tions) in classifying ore and waste blocks. A case study is
presented and the proposed methods are validated by compar-
ing the estimated data with actual data. In next section,
simulation-based methods are briefly introduced. In
Section 3, a case study is presented and the results of grade
estimation and comparison are discussed. Finally, Section 4
gives a brief conclusion and a few research directions for
future studies.

Simulation-based methods

So far, several geostatistical simulations have been proposed
and applied in the literature. A popular and efficient
geostatistical simulation method for continuous variables is
sequential gaussian simulation (SGS). The SGS algorithm de-
termines random paths and uses a local distribution, created
by kriging, at each node to assign a new value to each node.
The detail of this algorithm can be found in Isaaks (1991).
Conditional version of SGS is termed CSGS and generates a
number of realizations of block model such that the statistical
and geostatistical parameters of all generated realizations are
the same as raw data, and also the real known data stay un-
changed in all realizations. After generating realizations, loss
function and profit function as two main simulation-based
methods are applied to classify material into ore and waste
categories.
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Loss function

Loss is defined as amount of money lost as a result of mis-
classification. In other words, amount of loss for a given block
is defined as the potential value of the block minus the recov-
ered value. Let define p as the price of product, r as recovery

(mining, processing and melting), cm as the cost of mining, cp
as the cost of mineral processing and z as the grade of block.
For an actual ore block estimated as waste:

Potential value prz − cm − cp

Recovered value −cm

Fig. 1 Location map of Esfordi Mine

Fig. 2 Histogram and cumulative probability plot of the data
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For an actual waste block estimated as ore:

Potential value −cm
Recovered value prz − cm − cp

Thus, loss function for a block estimated as waste (Lw) is as
follows:

Lw ¼ 0 z≤zc
1−Poð Þ � pr zþ−cp

� �� �
z > zc

�
ð1Þ

Here Po is the probability of having a grade greater
than cut-off grade and zc is the cut-off grade. z+ repre-
sents the average of the simulated values above the cut-
off grade.

Loss function for a block estimated as ore (Lo) is computed
as follows:

Lo ¼ Poð Þ � − prz−−cp
� �� �

z≤zc
0 z > zc

�
ð2Þ

Here z− denotes the average of the simulated values
below the cut-off grade. The values of Lo and Lw are cal-
culated for each individual block. If Lo < Lw for a given
block, then this block is classified as ore, otherwise, is
assigned to waste category. For a given block and a cate-
gory (ore or waste), the predicted grade (z) is the average of
simulated realizations.

Fig. 3 a Scatter plot of estimated values versus actual values. b Estimation error versus the actual data. c Error distribution

Table 1 Properties of variogram models for the main anisotropy
directions

Direction Maximum Minimum

Model type Spherical Spherical

Dip 5 88

Strike 85 108

Range (m) 145 43

691 Page 4 of 9 Arab J Geosci (2016) 9: 691



Profit function

Glacken (1997) explained a so called profit function which
aims to maximize the potential profit obtained through ore/
waste classification. In profit function approach, the expected
profit associated with each class (ore or waste) is computed,
and the classification that yields the maximum expected profit
is selected.

Profit function for a block estimated as ore (Pro) is
(Glacken 1997; Godoy et al. 2001):

Pro ¼
0 z > zc

Poð Þ � przþ−cp
� �þ 1−Poð Þ � prz−−cp

� �
z≤zc

(

ð3Þ

Profit function for a block estimated as waste (Prw) is
(Glacken 1997; Godoy et al. 2001):

Prw ¼ 0 z≤zc
− Poð Þ � przþ−cp

� �
z > zc

(

ð4Þ

If Pro> Prwthen block is classified as ore, otherwise, is
assigned towaste category. For example, if the average of simu-
lated value for a given block is above the cut-off grade, profit
function classifies this block as ore, if −(Po) × (prz+ − cp) < 0.

Similarly, if the average of simulated value for a given block is
below the cut-off grade then this block is sent to awaste dump, if
(Po) × (prz

+ − cp) + (1 − Po) × (prz− − cp) ≤ 0. Note that in both
loss and profit approaches, it is assumed that all blocks must be
mined and ore and waste mining costs are equal. Thus, mining
costs are not considered into the expressions.

Case study: Esfordi Phosphate Mine

To illustrate the efficiency of kriging and simulation-based
methods in a real case study, these techniques have been im-
plemented on Esfordi Phosphate Mine. This mine is located in
Bafgh district in Yazd province, Iran (Fig. 1). The main prod-
uct of mine is phosphate while there are iron and chlorine as
by products and ore impurity, respectively.

Jami et al. (2007) studied the geology of the Esfordi deposit
and explained that Esfordi deposit is an apatite-magnetite de-
posit. As Jami et al. (2007) explained BEsfordi deposit which
is recognized as the most P rich deposits in Bafgh district is
hosted by a sequence of intercalated shallow-water sediments
and early Cambrian rhyolitic volcanic rocks^. Three different
geological formations in the Esfordi region have been recog-
nized: (a) igneous and volcaniclastic including alkaline rhyo-
lite, lamprophyre, diabase, gabbro, tuffs and breccia volcanic,
(b) metamorphic rocks, including amphibolites, quartzite,
schist and metarhyolite and (c) sedimentary rocks including
shale, conglomerate, dolomite and limestone. Stratigraphy in
the esfordi deposit shows that there are three main ore zones
including apatite-iron ore in the lower section covered by
green strongly altered volcanic rocks and apatite dykes
(Rajabzadeh et al. 2015).

Esfordi mine is the only phosphate mine in Iran and its
mineral processing plant is very sensitive to ore grade variation
(Sayadi et al. 2011). Therefore, it is necessary to control the
grade of ore material dispatched to the process plant. In this
study, ordinary kriging (OK) and simulation-based methods
including loss function (LF) and profit function (PF) have been
used to classify dispatched run-of-mine materials (ore or
waste). The 3D block model of the orebody has been created

Fig. 4 Variograms in maximum and minimum direction of continuity (computed on the normalized data)

Fig. 5 Omnidirectional computed variograms for five realizations and
raw data
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based on the drill holes information. The OK has been used to
estimate the phosphate grade for each individual block and
conditional sequential gaussian simulation (CSGS) has been
applied to create 50 realizations of the block model. For the
estimation purpose, the provided exploration drill holes data by
the end of 2008 has been used. In addition, the real grades of

179 blocks have been collected. Note that the real grade of each
block is calculated based on the sampling results performed at
the time of blasting and extraction. The sampling had been
performed on the blast hole particles. As blast holes are dug
very close (about 2-m distance), the average value of samples
can be a good approximation of the real grade.

Fig. 6 Histograms of five realizations and raw data
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Grade estimation

In the detailed exploration phase of Esfordi mine, a number of
59 boreholes have been drilled. A total number of 903
composited sample dataset, constructed from these boreholes,
have been used to estimate the grade of blocks. Rock core
drilling method was used to dig drill holes in an irregular
pattern. The average distance between two adjacent drill holes
is about 40 m. The average length of original assay intervals is
0.85 m. For the sake of estimation, assay intervals have been
converted to five-meter composites. The compositing method
was down-the-hole method in which the compositing starts
from the bottom of each drill hole and the original sample
grades are weighted by their length.

Histogram and the cumulative probability plot of the raw
data are shown in Fig. 2. As can be seen from this figure, the
distribution of data is not normal and should be transferred to a
normal distribution before applying CSGS method. In addi-
tion, from the histogram of %P2O5, the grade distribution is
bimodal with a gap around the 6% of P2O5. However, we
have performed this study considering all data as a single
population.

In geostatistical approach, the so-called variogram is used
to show the spatial variability of ore grade. A variogram plot
shows the average squared differences of pairs of samples for

each class of distance. From a variogram, the distance at
which data are uncorrelated can be estimated. This distance
is called range. If the values of ranges are not same in different
directions, then a geometric anisotropy exists in the orebody.
Directional variography is used to plot variograms in several
different directions. Direction variography for Esfordi phos-
phate mine shows that there is geometric anisotropy. We have
used principal component method (Wold et al. 1987) and di-
rectional variography to obtain the main directions of anisot-
ropy. To apply PCA, a covariance matrix for the three dimen-
sional components of each lag (x, y and z for each h) is cal-
culated. Given the covariance matrix, by finding the eigen-
values and eigenvectors of the covariance matrix, the main
directions of anisotropy can be obtained. The largest eigenval-
ue represents the direction of the strongest correlation in the
dataset. In addition, the orientations of maximum, minimum
and medium correlation can be measured by using eigenvec-
tors. To fit variograms in main directions, a cross validation
approach is used. In cross validation method, each actual da-
tum is dropped once and re-estimated again. Note that to esti-
mate a composite (sample) in a drill hole, other composites in
the same hole are dropped in order to avoid having an artificial
high-density of samples in the neighbour of the dropped com-
posite. The main criteria suggested to analyse the re-estimated
samples are error distribution, estimation error versus estimat-
ed values plot and the scatter plot of actual value and the
estimated value (Davis 1987; Deutsch and Journel 1992).

These criteria have been analysed for Esfordi mine as
shown in Fig. 3. Figure 3a shows the scatter plot of actual
and estimated values with a 0.84 correlation coefficient.
Figure 3b represents error versus estimated values and as ex-
pected most of the points are close to zero. Finally, the error
distribution shows a distribution with mean of 0.01 and vari-
ance of 0.6 (Fig. 3c).

The main parameters of the fitted variograms in maximum
and minimum directions (computed on the normalized data)
are listed in Table 1, and the corresponding variograms are
graphically shown in Fig. 4.

It should be noted that composite data are declustered prior
to estimation. Variograms have been computed for raw data
and normalized data to be used in kriging and CSGS, respec-
tively. Declustering, normalization/back transformation,
variograms computation as well as upcoming kriging and sim-
ulation are performed by component of theWinGslib software
(Deutsch and Journel 1992).

Fig. 7 Ore tonnage obtained by each method

Fig. 8 Normalized ore tonnage obtained by each method and actual
amount

Table 2 Misclassification percentage of each method

Ore estimated as waste (%) Waste estimated as ore (%)

OK 5.0 8.4

LF 6.1 5.6

PF 5.6 7.8
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Ordinary Kriging (OK) has been applied to estimate the
grades of blocks on the basis of sample raw data, the
variogram models for raw data and the estimation parameters.
Block size is 15 × 15 × 5 m. Additionally, 50 realizations of
the block model have been created by CSGS. A multiple grid
simulation has been performed. The number of multiple grid
refinements is three. Descriptive statistics and computed
variograms have been analysed to validate the produced sim-
ulation results. Computed variograms and histograms for raw
data and five realizations are shown in Fig. 5 and Fig. 6.

Regarding the estimated grade and the simulation results
and also considering a given 6% phosphate cut-off grade, the
ore tonnages (for whole block model) have been calculated by
ordinary kriging (OK), loss function (LF) and profit function
(PF) and shown in Fig. 7. Outcomes show that LF and PF
provide minimum and maximum ore tonnage, respectively.

Comparing OK, LF and PF with real data

For the Esfordi mine, the actual grade of 179 blocks have been
calculated using blast hole samples. The calculated actual
grade for each block is an average of about 16 samples.
These blocks have been extracted in 2009 and most of them
were ore blocks processed at mineral processing plants.

Given a 6% cut-off grade, each technique has been applied
to determine the destination of these 179 blocks, and the

amount of ore material has been calculated. The results are
given in Fig. 8.

Results show that LF has the best performance while OK
and PF overestimate the ore amount. The amounts of devia-
tions are 3.26, −0.75 and 2.9% for OK, LF and PF, respective-
ly, which are not significant. The ore tonnage may not be a
good indicator, because some waste blocks may be considered
as ore or some ore blocks may be estimated as ore. Hence, the
misclassification percentage have been calculated and given
in Table 2.

Table 2 shows that LF has the least error in assigning waste
blocks to process. This happen because LF is a conservative
method which tries to minimize potential loss as much as
possible. The smoothing effect of OK leads to the classifica-
tion of some low grade blocks as ore, consequently the per-
centage of wrong waste classification increases. PF works on
the basis of maximizing potential profit, therefore blocks has
more chance to be assigned as ore to process.

More investigations have been performed on the estimated
values by OK and simulated results by CSGS. The ratios of
OK/Actual, average of CSGS/Actual and OK/average of
CSGS have been calculated and graphically shown in Fig. 9.
The horizontal axis of these plots is actual values of P2O5%
for 179 blocks. The desirable ratios for Ok/Actual and CSGS/
Actual at each data point are one (or close to one). For
P2O5% > 8 good correlations for these ratios are observed

Fig. 9 The ratios of OK, Average CSGS and actual data
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in Fig. 9a, b. However, for P2O5% around 5%, the ratios are
not promising. This happens because the average of raw data
(used for the purpose of estimation and simulation is about
6%). This is the point that smoothing effect appears. Another
interesting clue is that the ratio of OK/CSGS is poor for the
range 0–7%, as can be seen in Fig. 9c. The reason of such
miscorrelation may arise from the fact that the distribution of
data is not normal and transformation has been performed for
CSGS. Therefore, two main findings can be concluded. First,
the estimated grades which are close to the average value of
raw data may come with higher risk. Second, where the ratios
of OK/Simulation are not promising, the chance of misclassi-
fication increases.

Conclusions

Ore grade estimation is a vital step in designing mine and
mineral processing plant. The ore/waste classification is per-
formed based on the estimated grade, and all planning and
designs are conducted according to the results of ore/waste
discrimination. In this study, ordinary kriging and
simulation-based methods including loss and profit functions
as the two main approaches used to determine the destination
of run-of-mine material have been presented and compared for
a case study. The efficiency of proposed techniques has been
evaluated by comparing estimated results with actual data for
179 blocks. The outcomes show that loss function can mar-
ginally perform better than kriging and profit function. Loss
function provides conservative tool for destination determina-
tion and can be considered suitable to have reliable estimation,
if the exploration data is not enough. Additionally, comparing
kriging and simulation results demonstrates that if the estimat-
ed grade for a block by kriging is different from the average
value of simulation, then more attention must be taken into
account for this block. For the future work, comparison of a
larger number of blocks is suggested to verify this study. In
addition, it is suggested to apply these techniques for other
types of deposits to investigate the efficiency of the proposed
techniques.
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