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Abstract Miocene coral-bearing limestones, distributed in the
western Makran Basin, are attributed to Aquitanian and
Burdigalian. This investigation is focused on three Early
Miocene coral-bearing limestone sections in western Makran.
Remarkably, well-preserved scleractinian corals and other
components could be very definitive to reconstruct
paleoenvironmental conditions. Lithologically, there are some
differences between the studied sections. Furthermore,
zooxanthellate corals are diverse and abundant in all sections.
Based on different components and richness of zooxanthellate
corals, it seems that the studied carbonate corals are precipitated
in a subtropical condition, between 19 and 20 °C in all sections.
In light of the dominancy of corals, the presence of symbiont-
bearing larger benthic foraminifera (LBF), lithological features,
bioeroding features, and encrusting organisms, the oligotrophic
to slightly mesotrophic conditions are considered for Tejek sec-
tion and the mesotrophic condition had been prevailed in
Kermestan and Irer sections. According to light intensity in water
column and coral morphotypes, Tejek section is considered to
precipitate under euphotic to slightlymesophotic condition,while
Kermestan and Irer sections were deposited under mesophotic to
euphotic light conditions. In transparent water, photic zones con-
tinue to deeper depths, while in less transparent water, these
zones are limited to shallower parts. A defined depth in the photic
zone may represent euphotic, mesophotic, or oligophotic zone.
Based on the water transparency, a taxon in a defined photic zone
can occur in various depths. On the basis of trophic-light

intensity-depth chart, the estimated depth ranges are 12–85 m
for Tejek section and 5–62 m for Kermestan and Irer sections.
Water energy as another important factor in environmental con-
dition is acquired from coral morphotypes. Accordingly, Tejek
section is precipitated under moderate-high energy and
Kermestan and Irer sections are deposited in low to moderate-
high energy. The presence of encrusting coralline algae, corals,
and other constituents is indicative of different substrates in the
studied areas. Corals favorably develop in normal salinity waters.
The existence of colonial corals and occurrence of benthic fora-
minifera with hyaline wall indicate normal seawater conditions.
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Introduction

Because of high tectonic activity, the Makran Basin is very
tectonized (e.g. McCall and Kidd 1982; Dolati 2010; Burg
et al. 2011) so that different kinds of sediments were deposited
in each time interval. Among them,Miocene coral-bearing lime-
stones are in the center of our attention. Such Miocene coral-
bearing limestones are present in Nikshahr, Fannuj, Taherui, and
Minab quadranglemaps (Peterson andRudzinskas 1982). These
carbonate deposits may be a part of Dehirdan, Sabz, Roksha,
Ghasr Ghand, Band-e-Chaker and Darkhunish units which are
Aquitanian/Burdigalian in age (McCall et al. 1994).

Well-preserved scleractinian corals as main components as
well as other minor constituents in studied sections (Tejek, Irer
and Kermestan) could be very definitive to reconstruct
paleoenvironmental circumstances. Many of scleractinian
corals host light-dependant symbionts which are so sensitive
to different environmental conditions; for that reason, they are
directly affected by light penetration in the water and other
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factors such as nutrient availability, salinity, temperature, depth,
substrate, and water energy extremely influence the corals life.

Most of the investigations carried out in Makran Basin are
restricted to studies of tectonics and seismicity (e.g., Falcon
1947; Farhoudi and Karig 1977; Jacob and Quittmeyer 1979;
Niazi et al. 1980; Sondhi 1947;McCall 1997;McCall and Kidd

1982; Dolati 2010; Burg et al. 2011), while few paleontological
studies have been accomplished during the past decades (e.g.,
McCall et al. 1994; Crimes and McCall 1995; Abbasi 2000).

McCall et al. (1994) investigated on Early Miocene coral
limestones of IranianMakran; later, Crimes andMcCall (1995)
and Abbasi (2000) recorded diverse trace fossils of Eocene–

Fig. 1 The structural divisions of Iranian Makran Basin (after McCall et al. 1994) and road map of investigated sections (red circles are studied
locations)
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Miocene andMiocene rocks of theMakran Basin, respectively.
That is why investigation on coral-bearing limestone is very
valuable for us. This study aims to consider the paleoecological
and environmental factors of Early Miocene coral-bearing
limestones of the Band-e-Chaker Unit in the western Makran
(Tejek, Kermestan and Irer sections (Plate 1)).

Geological setting

The Makran Basin extends from Oman sea coasts in south to
Jazmurian depression in north. Its western limit is Minab fault
which separates the Makran and Zagros basins; the Makran
Basin continues to the Las Bela axis of Pakistani Balouchestan
in east and totally is 160,000 km2 (Aghanabati 2004). Based on
McCall and Kidd (1982) and McCall (1985), eight geotectonic
zones of the Makran Basin are as follow: (1) Jazmurian
Depression, (2) Spreading Zone, (3) Carbonate Fore-arc Zone,
(4) Trench Zone (colored mélange), (5) Eocene–Oligocene
Flysch Zone, (6) Oligocene–Miocene Flysch Zone, (7)
Miocene Neritic Sediment Zone, and (8) Miocene–Pliocene
Neritic-Continental Sediment Coastal Zone (Fig. 1). The studied
sections are situated in Miocene Neritic Sediment Zone.

There are no formal lithostratigraphic divisions in the
Makran Basin; thus, the Makran successions are informally
divided into different units. Lithological subdivisions of the
Makran Miocene successions and their main properties are
summarized in Table 1.

As an informal unit, the single name BVaziri Unit^ was
initially allocated to all Miocene coral-bearing limestone units
in Taherui, Minab, Fannuj, and Nikshahr quadrangles, but this
was perhaps premature because it was later found more satis-
factory to classify them as intervals within these larger units;
they also proved to be of two ages, namely Aquitanian and
Burdigalian (McCall et al. 1994). Therefore, the previously
named Vaziri Unit could be a limestone part in Dehirdan,
Sabz, Roksha, Ghasr Ghand, Band-e-Chaker, and
Darkhunish units (McCall et al. 1994).

In the Early Miocene, analysis of deposits shows that
shallow-water conditions and shelf deposition were common
and they were influenced by tides; on the other hand, the
Middle Miocene was characterized by high tectonic activity
and highly variable sedimentary facies (Burg et al. 2011).
Accordingly, it seems that the EarlyMiocene deposits of west-
ern Makran (which our study sections are among them) are
precipitated in a rather more stable tectonic condition.

This investigation is focused on three Early Miocene coral
limestone sections in western Makran. Based on McCall et al.
(1994), Miocene limestones in Makran Basin occur in
Dehirdan Unit, Sabz Unit, Roksha Unit, Ghasr Ghand Unit,
and Band-e-Chaker Unit. Besides, considering Peterson and
Rudzinskas (1982) and our field observation, coral limestone
units in the studied area are sandwiched between BDehirdan
Unit^ and Bshaly, siltstones, and sandstone layers of Band-e-
Chaker Unit^; therefore, it may be difficult to attribute coral
limestones to the mentioned unites, because the coral

Table 1 Lithological
subdivisions of the Makran
Miocene successions and their
main properties (adopted from
Peterson and Rudzinskas 1982)

Unit Lithology

Tiab sandstone Red to brawn sandstone, fissile mudstone, and rubbly beach limestone

Kheku sandstone Thinly bedded siltstone and sandstone with mudstone, limestone, and
minor pebble conglomerate

Gushi marl Gypsiferous and calcareous, with interbedded siltstone and sandstone

Tahtun Polymictic, matrix-supported conglomerate with minor sandstone

Sabz Gypsiferous shale and silty-shale, with minor sandstone and limestone-thinly
bedded, rhythmic sequence of shale/mudstone and sandstone, with minor
lenses of limestone

Darkhunish shale Gray shale with minor siltstone and sandstone

Dar pahn Sandstone and shale, with minor mudstone and conglomerate

Band-e-Chaker Thickly bedded sandstone, with interbedded siltstone and shale

Jagin Shale with sandstone, siltstone, conglomerate, and shell beds. Buff to red
sandstone and conglomerate, with shell beds. Sandstone and conglomerate,
with minor shale and shell beds

Shahr-e-Pum Rhythmically bedded sandstone, with minor shale. Thinly bedded sandstone
and shale. Rhythmically bedded sandstone, with minor shale

Ab-Shahr Rhythmically and thinly bedded sandstone and minor shale

Dehirdan Calcarous shale, with sandstone, minor siltstone, and limestone

Angohran Rhythmic, thinly bedded sandstone and shale, with minor siltstone and
conglomerate

Vaziri Shale and sandstone, with shell beds, limestone, and conglomerate. Reefal,
coral-algal limestone and reef talus
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limestones may be related to the end of Dehirdan Unit or
beginning of Band-e-Chaker Unit. It is worth noting that
McCall et al. (1994) differentiated ages of units and limestone
members of the Makran Basin (Table 2). Based on these au-
thors, the coral-bearing limestone in Dehirdan Unit is
Aquitanian in age, while in Band-e-Chaker Unit, it is
Burdigalian in age. To confirm the age of the studied sections,
the index corals in the Makran Basin (McCall et al. 1994) and
distribution of LBF in Indo-Pacific andMediterranean regions
(BouDagher-Fadel and Price 2013) are investigated and de-
scribed in the following parts. As the sections are Burdigalian
in age, the coral-bearing limestones must be related to Band-e-
Chaker Unit as it is confirmed by McCall et al. (1994).

Material and methods

Three sections at Tejek, Kermestan, and Irer areas (close to
Khomeinishahr City) in western Makran were measured. As it
is known, most of Miocene deposits in western Makran are
shale, marl, and sandstone (e.g., Peterson and Rudzinskas
1982; McCall et al. 1994). However, the studied sections are
Miocene carbonates that are well exposed and contain remark-
ably well-preserved zooxanthellate and azooxanthellate

corals. Lithological traits of the studied sections were dis-
tinguished in the field area and more complement studies
were accomplished in the university labs. Different coral
assemblage growth fabrics were classified according to
Insalaco (1998), and different coral morphotypes were re-
corded. More than 500 coral specimens were sampled, and
significant abundances of corals in the depositional se-
quences through field observations were recorded in pho-
tographs. Coral assemblages were systematically identified
to have more accurate paleoecological results. Lithological
XRF analysis of Tejek section was prepared in Central
Laboratory of University of Isfahan; it is worth noting that
to achieve better paleoecological interpretations, up to 50
thin sections and polished slabs were prepared and studied
precisely. Polished slabs and macrospecimens were
photographed by Canon digital camera (SX200) and thin
sections were photographed.

Studied sections

Totally three stratigraphic sections were investigated in
Bashagard area, around Band-e-Chaker Syncline in western
Makran (Figs. 1 and 2). Considering lithostratigraphic and

Table 2 Age distribution of
Lower Miocene coral limestones
in the Makran Basin (adopted
from McCall et al. 1994)

Dehirdan
Unit

Band-e-
Chaker Unit

Roksha
Unit

Ghasr
Ghand Unit

Darkhunish
Unit

Sabz
Unit

Lower
Miocene

Burdigalian – █ █ █ █ █
Aquitanian █ – – – – –

Filled squares show the age range of Miocene carbonate bearing deposits in the Makran basin; based on these,
they are related to the Aquitanian or Burdigalian in age. Therefore, it could help us to define the age range of
studied sequences, accompanied with other tools

Fig. 2 The map of studied area
around Band-e-chaker Syncline
inwesternMakran (modified after
Peterson and Rudzinskas 1982);
the studied sections are as
follows: I Irer, K Kermestan, T
Tejek. The blue lines are Miocene
coral limestones mapped in
Peterson and Rudzinskas (1982),
and red lines are faults positions
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tectonic characteristics of Makran area, the investigation was
focused on the Miocene coral-bearing sequences of the
Kermestan, Irer, and Tejek sections. The study sections are
discussed below.

Kermestan

The Kermestan section is located at 26° 40′ 26.62″ N and
57° 56′ 38.99″ E near Kermestan Village in northeast
flank of Band-e-Chaker Syncline (Figs. 1 and 2). The
studied interval in the Kermestan area is situated normally
between Dehirdan and shaly, siltstone, and sandstone
layers of Band-e-Chaker units (Plate 1; Fig. 3). The con-
tacts between the studied carbonate sequence and underly-
ing Dehirdan Unit are conformable. Here, the marly lime-
stone sequence is the lower part of Band-e-Chaker Unit
and comprises 10 m thickness, accompanied with high
frequency of platy, solitary, and head corals. According
to Insalaco (1998), the section could be divided into two

parts: the lower part begins with dominancy of platestone
fabric and continues to upper part with presence of
platestone–domestone fabric. In this stratigraphic section,
24 genera are recovered. Some corals such as
Acanthastraea (Acanthastraea) echinata, Cyphastraea
progoensis , Heliastraea (Athecastraea) boehmi ,
Larterophyllia cf. turriformis, Oulophyllia eocenica,
Pavona folium, Thegioastraea roasendai, Goniopora
globulosa, Caulastraea sp., Alveopora meridionalis,
Fungophyllia verbeeki, Leptophyllon nishihirai, Porites
sp., Stylophora reussiana, Astrocoenia bistellata are pres-
ent, apart from foraminifera, red algae, bryozoans, gastro-
pods, bivalves and serpulid worms. Among the mentioned
acquired corals, based on McCall et al. (1994), A.
(Acanthastraea) echinata is index of Burdigalian and
P. folium is index fossil of Early Miocene of the Makran
Basin.

Irer

The Irer section is located near Irer Village at 26° 40′
44.87″ N and 57° 56′ 14.70″ E in northeast flank of
Band-e-Chaker Syncline (Figs. 1 and 2). Stratigraphically,
the Irer section as well as Kermestan section is situated
between Dehirdan and shaly and siltstone layers of Band-
e-Chaker Units. Coral marly limestone which lies at the
base of Band-e-Chaker Unit is 12 m thick (Plate 1;
Fig. 3). The contacts between these units are conformable.
This stratigraphic section includes platy, solitary, and head
corals. Based on Insalaco (1998), this sequence could be
divided into lower and upper parts as the Kermestan sec-
tion; the lower part begins with dominancy of platestone
fabric and continues to upper part with presence of
platestone–domestone fabric. In this stratigraphic section
there exist 15 genera. Some corals like T. roasendai,
Acanthastraea (Isophyllastraea) madeirensis, Caulastraea
sp., C. progoensis, Heliastraea (Heliastraea) craterophora,
O. eocenica, Scapophyllia cylindrica, Lithophyllon
floriformis persica, Acanthastraea brevis, Acanthastraea
sp., H. (Heliastraea) craterophora, Gonipora sp., Porites
sp., Astrocoenia gerthi, Tarbellastraea reussiana, P. folium
are present, likewise minor constituents such as foraminif-
era, red algae, bryozoans, gastropods, bivalves and serpulid
worms. Among the acquired corals, A. gerthi and
L. floriformis persica are indices of Burdigalian and
P. folium is index fossil of Early Miocene of the Makran
Basin (McCall et al. 1994).

Tejek

The Tejek section is located at 26° 34′ 37.36″ N, 57°
and 56′ 5.70″ E near Tejek Village near south side of
Band-e-Chaker Syncline (Figs. 1 and 2). The studied

Plate 1 Profiles of the studied sections. 1 Tejek section, 2 Kermestan
section, 3 Irer section
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section in Tejek is influenced by tectonic activities, and
the pure limestone (with CaO concentration of 53.96 %
w/w) of Band-e-Chaker Unit is over-thrusted onto shale
and sandstone of the Dehirdan Unit. Consequently, the

contact between the limestone part and the Dehirdan
Unit is a tectonic angular contact. About 30 m of
coral-bearing carbonate sequence is exposed with good
fossil preservation (Plate 1; Fig. 3). Stratigraphically, the

Fig. 3 Stratigraphic columns of studied sections in Tejek, Kermestan,
and Irer; different coral assemblages are assigned for each part:
Assemblage 1 domestone part of the Tejek section, Assemblage 2
platestone part of the Kermestan section, Assemblage 3 platestone–

domestone part of the Kermestan section, Assemblage 4 platestone part
of the Irer section, Assemblage 5 platestone–domestone part of the Irer
section
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Tejek section is not of interest for this study because
the lower contact is a tectonized angular boundary, and
the upper contact is not limited by any other younger
units. However, we do consider the lithology, faunal
content, and age and compare the results with other
coral-bearing limestone sections in the area. On the ba-
sis of Insalaco (1998), this sequence is classified as
domestone. Some examples of the obtained corals from
this stratigraphic section are A. gerthi, Caulastraea sp.,
Cyathoseris infundibul i formis , Favi tes cerium ,
Hel ias traea (Hel ias traeopsis ) curta , Acropora
pachymorpha, L. nishihirai, Alveopora sp., Porites sp.,
Goniopora sp., Hydnophora solidior, Monticulastraea
astraeoides , Cyphastraea sp. , Monticulas traea
provincialis, T. roasendai, Thegioastraea multisepta,
A. brevis, and Heterogyra meandrinoides; they are total-
ly 22 genera. Minor components in the section are fo-
raminifera, red algae, bryozoans, gastropods, bivalves,
and serpulid worms. From the obtained corals,
A. gerthi and H. solidior are indices of Burdigalian in
the Makran Basin (McCall et al. 1994).

It is worth pointing out that based on distribution of fora-
minifera in Indo-Pacific and Mediterranean regions
(BouDagher-Fadel and Price 2013), the presence of
Miogypsina globulina in Tejek, Kermestan, and Irer repre-
sents Burdigalian deposits.

Environmental traits

Some paleoecological and environmental characteristics
such as surface temperature, nutrient conditions, photic
conditions, water depth, water energy, substrate conditions,
and salinity are investigated and discussed. Based on
Insalaco (1998) classification, different assemblages of
corals are identified at the sections: platestone, platestone–
domestone, and domestone (Plate 2). The platestone assem-
blages are present in the basal parts of Kermestan and Irer
sections and mostly include agariciidae corals such as
Pavona, Cyathoseris, and many other platy corals. The
platestone–domestone assemblages including corals such as
Caulastraea, Heliastraea, and Acanthastraea are laid on
platestone fabric of Kermestan and Irer sections, and
domestone fabric is present in the whole interval of Tejek
section; most of them are dome-shaped poritidae–faviidae
group like Goniopora, Porites, Tarbellastraea, Favites,
Heliastraea, Thegioastraea, and Plesiastraea.

Temperature

Temperature is one of the most significant factors for the
life process and distribution of organisms (Flügel 2010). It
controls CO2 solubility and CaCO3 saturation and thereby

influences the amount of energy required to calcify and
maintain skeletal carbonate (Mutti and Hallock 2003).
Definitely, the distribution of zooxanthellate corals is con-
trolled by conditions like sea surface temperature.
Bosellini and Perrin (2008) suggest that although coral
diversity patterns are related to a complex interplay be-
tween environmental factors and paleobiogeography, they
are considerably controlled by climate variability and sea
surface temperature. According to McCall et al. (1994), if
the Makran coral fauna is compared with modem temper-
ature patterns of generic richness of zooxanthellate corals
in the Indo-Pacific described by Rosen (1984), it would
indicate a mean minimum sea surface paleotemperature of
at least 18 °C. Likewise, based on the method applied by
Bosellini and Perrin (2008), considering the richness of
zooxanthellate corals in the Makran Basin (McCall et al.
1994), sea surface temperature is inferred as 18–20 °C in
Aquitanian–Burdigalian of Makran Basin. In this method,
mean annual sea surface temperature is calculated using
square root of zooxanthellate corals and an experimental
presented curve (Bosellini and Perrin 2008) (Fig. 4). We
also utilized this method to estimate the sea surface tem-
perature in the three studied sections. It is obvious that the
paleontological record is not as complete as the diversity
at their lifetime (Bosellini and Perrin 2008) but at least
indicates the least surface temperature. The diversities of
symbiont-bearing corals genera in Tejek, Kermestan, and

Plate 2 Coral fabrics in the studied sections. Domestone fabric in Tejek
(1 and 2) and Kermestan (4); platestone–domestone fabric in Irer (5); and
platestone fabric in Kermestan (3) and Irer (6)
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Irer (Table 3) are 22, 23, and 15, respectively. Therefore,
based on the mentioned method, the least temperature
range is from 19 to 20 °C in all sections (Fig. 4).

This interpretation is confirmed by the presence of coral-
line red algae and larger hyaline foraminifera such as
Amphistegina, Operculina, and Miogypsina co-occurring in
the Tejek, Kermestan, and Irer sections (Plate 3) and indicates
that carbonate successions are deposited in a tropical–subtrop-
ical environments (Brandano and Corda 2002). In sum, it
seems that the studied carbonate corals are precipitated in a
subtropical condition (Mutti and Hallock 2003; Flügel 2010;
Wilson and Vecsei 2005).

Nutrient conditions

Trophic conditions in marine environments are categorized as
oligotrophic, mesotrophic, eutrophic, and hypertrophic in an
increasing nutrient content (Mutti and Hallock 2003).
Different components that could be used to infer nutrient con-
ditions, such as zooxanthellate corals, foraminifera,
corallinacea, bryozoans, and mollusk are present in western
Makran sections (Tejek, Kermestan, Irer).

Zooxanthellate corals together with many larger foraminif-
era host symbiotic microalgae (Rasser et al. 2005). Generally,
corals are supposed as light-dependant organisms that thrive
in clear nutrient poor oligotrophic waters (e.g., Payros et al.
2010; Racey 2001), but different trophic conditions could be
considered for zooxanthellate corals (Tomascik and Sander
1985; Hallock and Schlager 1986).

Lee (2006) concludes that the population density of the
zooxanthellae is controlled by systematic nitrogen limitation
within the host. When the level of external nitrogen increases
(for example when conditions become fully eutrophic)
(Hallock and Schlager 1986; Hallock 2001), the zooxanthellae
outgrow their hosts and the host loses control over its symbi-
otic algae (Lee 2006) and symbiotic animals cannot compete
with faster growing macroalgae (Birkeland 1987).

Table 3 The diversity of symbiont-bearing corals in Tejek, Kermestan,
and Irer sections

Symbiont-bearing genera Studied sections

Tejek Kermestan Irer

1 Acanthastraea █ █ █
2 Acropora █ – –

3 Alveopora █ █ –

4 Araeacis – – █
5 Astrocoenia █ █ █
6 Astroria █ █ █
7 Boninastraea – █ █
8 Caulastraea █ █ █
9 Cyathoseris █ – –

10 Cyphastraea █ █ █
11 Echinophyllia █ – –

12 Favites █ – –

13 Fasciatiphyllia – █ –

14 Goniopora – █ –

15 Heliastraea █ █ █
16 Hoplangia █ – –

17 Hydnophora █ – –

18 Hydnophyllia – █ –

19 Leptophyllon █ █ –

20 Lithophyllon – – █
21 Monticulastraea █ – –

22 Phyllocoeniella – █ –

23 Oulophyllia █ █ █
24 Pavona – █ █
25 Plesiastraea █ – –

26 Porites █ █ █
27 Scapophyllia – – █
28 Stylophora – █ –

29 Tarbellastraea – – █
30 Thegioastraea █ █ –

31 Fungophyllia █ █ –

32 Leptomussa – █ –

33 Lithophyllia █ █ █
34 Acanthophyllia █ █ –

35 Kühnophyllia – █ –

Total genera 22 23 15

Fig. 4 Main annual sea surfaces temperature curve (presented in
Bosellini and Perrin 2008); the red circle shows the temperature range
of the studied sections
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In the oligotrophic and slightly mesotrophic shallow waters
of tropical to subtropical environments, the main carbonate
producers are LBF, zooxanthellate corals, and coralline red
algae (Langer et al. 1997; Hallock 2001; Halfar et al. 2004;
Pomar et al. 2004; Brandano et al. 2009a, 2009b). In mesotro-
phic conditions, nutrient level is intermediate and light pene-
tration is sufficient to support prolific calcareous algal produc-
tion (Mutti and Hallock 2003); in this condition, bioeroding
fauna is abundant and bioerosion rates are also promoted
(Perrin 2002; Mutti and Hallock 2003; Hallock and Schlager
1986; Hallock 1988; James 1997; James et al. 1999).

To infer nutrient conditions some points are considered;
filter-feeders are organisms which are controlled by nutrient
input and consequently water transparency and availability to
nutrients (Brandano 2001; Mateu-vicens 2007). Bivalves,
sponges, bryozoans, some polychaetes (serpulid worms),
and many other bioeroders are among filter-feeders
(Sammarco and Michael 1990; Cosovic et al. 2004; Key
et al. 2010). Therefore, boring hard substrate by bioeroders
can provide an optimized condition for them in an environ-
ment with enhanced nutrient availability. As well, bioerosion
and encrustation, abundance of bryozoans and decreasing
LBF could be in virtue of higher nutrient availability
(Morsilli et al. 2012). Additionally, common occurrence of
encrusting biota suggests enhanced trophic levels that reach
mesotrophic conditions, with competition for the substrate as
the main limiting factor (Mutti and Hallock 2003). Also, water
transparency and light penetration are affected by terrigenous

discharge, nutrient input, dissolved organic matter, etc.
(Morsilli et al. 2012). An increase of siliciclastic sediments
can change water chemistry and enhance nutrients, as well
as increased suspended matter in the water column results in
reduction of light penetration (Flügel 2010).

The numbers of heterotrophic groups such as mollusks,
bryozoans, serpulids, and relatively high abundance of
encrusting bryozoans, red algae, and encrusting foraminifera
(Acervulina sp.,Miniacina sp.) in coral assemblage accompa-
nied by enhanced bioerosion suggest the tendency of assem-
blage from oligotrophic conditions to mesotrophic conditions
(Plate 3).

Tejek section is a coral-bearing sequence made up of pure
limestone. Filter-feeders’ bio-eroding traces such as bivalves
(Gastrochaenolites isp.) and serpulids (Trypanites isp.) are
noticeably observed. As well, encrusting organisms including
foraminifera (Acervulinids) and red algae are present in the
section. Since Tejek section is made up of pure limestone, no
evidence of siliciclastic input is seen. Considering the high
dominancy of massive corals and domestone fabrics (higher
calcification rate) in Tejek section, the presence of symbiont-
bearing LBF and lithological features of the section (pure
limestone deposits) that represent low turbidity and lack of
siliciclastic input, oligotrophic condition is dominant, but ac-
companiment with bioeroding features such as boring traces
created by serpulid worms and bivalves and also the presence
of encrusting organisms like encrusting foraminifera and red
algae, the oligotrophic to slightly mesotrophic conditions are

Plate 3 Different minor
constituents in the studied
sections: 1 the presence of hyaline
benthic foraminifera (Tejek
section); 2 bioerosion traces (B.E)
and red algae remains (R.A) (Irer
section); 3, 6, 8 encrusting
foraminifera (Acervulina sp.):
Kermestan section (3) and Tejek
section (8); 4 presence of red
algae in Irer section; 5 large
benthic foraminifera and an
encrusting red algae on it
(Kermestan section); 7 encrusting
foraminifera and algae and red
algae on an individual coral
(Tejek section); 9 serpulid
bioerosion trace in an Alveopora
sp. (Tejek)
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considered for Tejek section. In very oligotrophic waters,
physiologic function of corals may not be in the highest levels
in different aspects; for example, corals growth may not be in
its maximum condition (Dunn et al. 2012). Therefore, consid-
ering mixotrophy of corals (Hallock 1997), oligotrophic to
slightly mesotrophic condition can provide an optimized con-
dition for calcification and coral growth.

Kermestan and Irer sections are composed of marly
limestone and the ratio of domestone/platestone and are
different from Tejek section. In these sections, noticeable
bioerosions traces created by filter-feeders’ activities such
as bivalves (Gastrochaenolites isp.) and serpulid worms
(Trypanites isp.) are observed. Encrusting organisms in-
cluding foraminifera (Acervulinids) and red algae are also
abundant (Plate 3), while LBF are less abundant. As al-
ready mentioned, lithologically, Kermestan and Irer
sections are composed of marly limestone; accordingly,
the presence of silts and detrital sediments is clearly
seen; such condition could be observed through the
sequences. So, it seems that water transparency in
Kermestan and Irer sections is reduced. Therefore, based
on Morsilli et al. (2012) and Flügel (2010), water trans-
parency is concordant with enhanced nutrients availability.
Totally, considering the presence of filter-feeders and
bioeroders, normal presence of encrusters as an indicator
of mesotrophic condition (Mutti and Hallock 2003), and
tendency of red algae to be present in mesotrophic condi-
tion (Bassi 2005), it seems that the dominant nutrient con-
dition in Kermestan and Irer had been mesotrophic.
Considering the low ratio of domestone/platestone in
Kermestan and Irer sections, one of the reasons that can
lower calcification is enhanced nutrient availability (e.g.,
mesotrophic condition); such condition could result in
lower regeneration, lower skeletal density, and eventually
lower calcification (Hallock and Schlager 1986; Stambler
et al. 1991; Loya et al. 2004; Fabricius 2005; Dunn et al.
2012).

Photic conditions and water depth

Photosynthesis-bearing symbionts are directly related to
light condition; this condition causes dependency of some
organisms to light. The zooxanthellate corals, LBF, and
red algae are among the light-dependent organisms in
Tejek, Kermestan, and Irer sections. The zooxanthellate
corals as the main constituents of the studied sections
are very sensitive to light conditions (Trench 1981;
Cairns 1999). The light intensity and penetration at the
sea floor is controlled by water transparency and water
depth (Reiss and Hottinger 1984; Hallock 1987; Renema
and Troelstra 2001; Beavington-Penney and Racey 2004;

Novak et al. 2013). The light penetration is influenced by
some factors (such as clastic sediments input, nutrients
input, dissolved organic matters) which control water
transparency (Morsilli et al. 2012).

On the basis of lithological analysis in the Kermestan, Irer,
and Tejek sections, it seems that the water transparency has
been different in the studied sections. In the Tejek section that
is composed of pure limestone, high transparency condition
has been prevailed. But, in Irer and Kermestan section which
are composed of marly limestone to limestone and the pres-
ence of siltstone and some clastic deposits are obvious, the
water transparency has not been high; such conditions have
been prevailed through Irer and Kermestan sequences and
affected the biotic characteristics.

Many authors (e.g., Hallock and Schlager 1986; Lee
1999; Pomar 2001; Flügel 2010) investigated on light
classification of water column and used different terms
such as euphotic, mesophotic, oligophotic, and disphotic/
aphotic. in a decreasing way. Corals appear in variety of
shapes; based on the situation of corals and light penetra-
tion in different depths, light level influences the shape of
corals (Plate 4) that host zooxanthellae (Baker and Weber
1975; Graus and Macintyre 1976; Huston 1985; Barnes
and Hughes 1988). The morphology of corals is influ-
enced by light transparency. In reduced light, the shape
of corals may change to maximize light catchment
(Titlyanov et al. 1996). To optimize light catchment, corals
become platy foliaceous (Plate 4) in higher depths and
would be developed at and below 4 % of surface irradi-
ation (Graus and Macintyre 1976; Barnes and Hughes
1988). In such conditions, according to Hallock and
Schlager (1986), platy corals are under 4–20 % of surface
light intensities and as a mesophotic zone may be distin-
guished between the euphotic and the oligophotic zones
(Pomar 2001) (Fig. 5). Based on Hallock and Schlager
(1986) in high light levels, head corals live in more than
20 % of surface light intensities and branching corals are
present in more than 60 % of surface light intensities.

In Kermestan and Irer sections, platy foliaceous corals
are abundant (Plate 4) in the lower parts, while this kind
of corals could not be observed directly in the depositional
sequence of Tejek, although some reworked platy corals
may be seen in this area. In Kermestan, Irer, and Tejek
sections, head corals are present in dome-shaped, massive,
and hemispherical forms. It should be noted that branching
corals are also present in very low amounts in Tejek sec-
tion. Based on the distribution of platy corals, head corals,
and branching corals, euphotic to slightly mesophotic con-
dition has been prevailed in Tejek section, and mesophotic
to euphotic condition has been dominant in Irer and
Kermestan sections. Some carbonate constituents in
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carbonate successions are photo-independent biota that are
not controlled by photo (Pomar 2001; Flügel 2010) such
as bryozoans, bivalves, gastropods, crinoids, and majority
of individual corals. Many authors have reported different

deposition depths for different components (Table 4) that
are also present in the studied sections.

Poritidae and faviidae corals are among the constituents of
all the studied sections especially in domestone intervals.
Accompanied with these hemispherical and dome-shaped
corals are some LBF such as Amphistegina, Miogipsina, and
Operculina. in all sections. Agraciidae corals and some other
platy and foliaceous corals such as Acanthastraea are abun-
dant in Kermestan and Irer sections. Furthermore,
corallinacean red algae are another constituent of the studied
sections.

Based on the Table 4, at the first glance, we observe that
different depths are proposed for different groups. Therefore,
transparency, light penetration and other factors should be
considered. Transparency and light penetration are the most
important factors in water depth definition. Transparency in-
creases the light penetration, therefore, photic zones (euphotic,
mesophotic, oligophotic) continue to deeper depths, while in
less transparent water, the photic zones are limited to
shallower parts (Fig. 6). In this extensive range from transpar-
ent water to turbid water, a defined depth may represent eu-
photic, mesophotic or oligophotic zone. Moreover, based on
water transparency, a taxon (e.g., corallinacean red algae,
Leptoseris) which is present in a defined photic zone can oc-
cur in various depths (Fig. 6).

Based on Hallock (1987, 1988), and considering tro-
phic resources and reduction of illumination with water
depth, Sanders and Baron-Szabo (2005) have presented

Plate 4 Some corals with
different features: 1, 2, 3 platy
corals with projections on them:
Tejek section (1) and Kermestan
section (2, 3); 4, 9 irregular
growth form of individual corals:
Irer section (4), (Kermestan) (9); 5
transverse view of a foliaceous
coral (Irer section); 6 serpulid
worm behind a platy coral (Irer
section); 7 growth of a coral larva
on upper surface of an individual
coral (Tejek section); 8 growth of
an individual coral on a head coral
(Irer section); and 10 extensive
bioerosion on an individual coral
(Kermestan section); scale bars
are 1 cm

Fig. 5 Light classification, based on light intensity and penetration in
seawater column (presented in Morsilli et al. 2012)
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a chart that could be used for defining the depth range
in different conditions (Fig. 7). Accordingly, the depth
ranges are plotted on the mentioned chart. Tejek section could
be deposited in a depth range between 12 and 85 m, and
Kermestan and Irer sections could be deposited in 5 to 62 m
depth range.

Water energy

Variable components of study sections and their morphologi-
cal and textural traits are essential factors to define water en-
ergy level. Hydrodynamic energy also plays a role in the de-
velopment of coral communities, and it could be estimated
from the coral morphotypes (Tomás et al. 2008). Platy corals
are characteristic of environments with low light penetration
and/or reduced water energy (Schuster and Wielandt 1999;
Esteban 1996; Riegl and Piller 2000; Bosellini et al. 2001,
2002). The domestone facies of Capo Testa (Italy) based on
growthmorphologies and sediment textures indicate relatively

high hydrodynamic energy (Brandano et al. 2010). On the
other hand, in the western Taurides of Turkey, the diversified
colonies of massive, domal, hemispherical, and globuler
forms with a lesser extent by branching colonies, dominated
by Faviid and Heliastreid corals (Tarbellastraea, Heliastraea,
Favites, Favia, Caulastraea, Aquitanastarea, Cladocora),
Porites and Stylophora represent a marine environment with
moderate to high water energy (Karabiyikoglu et al. 2005).
Likewise, Yazdi et al. (2012) attributed the dome-shaped and
massive corals like Tarbellastraea, Favites, Porites,
Goniopora, and Siderastrarea. to high-moderate water
energy.

Agraciidae such as Leptoseris and Cyathoseris and other
kinds of platy corals are commonly distributed in the basal
parts (indicating more depth) of coral-bearing sequences in
Kermestan and Irer sections; therefore, platy corals accompa-
nied with or without corallinacean red algae represent low
energy water in the mentioned sections. Some of the platy
corals implying low energy water are as follows: A.

Table 4 Different reported deposition depths for some components present in the studied sections

Some different taxa present in the studied sections

Poritiidae–Faviidae Leptoseris and other platy corals Red algae

5–20 m or more in modern assemblages
(McCall et al. 1994)

Down to 130 m (Fricke and Schumacher
1983; McCall et al. 1994)

20–80 m and 80–160 m in tropical settings (Flügel 2010)

Moderate water depth in Indo-Pacific
(Perrin et al. 1995)

Maximum depth of 130 m in clear tropical
water (Wielandt-Schuster et al. 2004)

Nowadays in shallow to deepest parts of oligophotic zones
in tropical waters (Bosellini and Ginsburg 1971; Bosence
1983; Steneck 1986; Bourrouilh-Le Jan and Hottinger 1988;
Hallock 1988; Iryu et al. 1995; Testa and Bosence 1999)

Moderate water depth in Red Sea
(Riegl and Piller 1997)

At least 100–160 m in Red Sea, Hawaii
and elsewhere (Veron 2011)

250 m, today (Dodd and Stanton 1990)

19–35 m in Oligo-Miocene of central
Iran (Yazdi et al. 2012)

Fig. 6 Changes of different
photic divisions in transparent
and turbid water. The black
pentagons show that all of the
photic zones could be present in
the same depth in shallower parts;
the red stars (e.g., Leptoseris in
mesophotic zone) and the pink
drops (e.g., corallinacean red
algae near the limit of light
penetration) indicate that
depending on water
transparency, the same
taxons could be present
in different depths
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(Acanthastraea) echinata , L. floriformis persica ,
Larterophyllia cf. turriformis, Leptoseris sp., A. brevis,
S. cylindrica, Boninastraea boninensis, C. infundibuliformis,
A. (Isophyllastraea) madeirensis, Fasciatiphyllia ,
Hydnophyllia, O. eocenica, Acanthastraea (Isophyllastraea),
and Hydnophyllia cerebriformis. These platy corals are situ-
ated in the platestone fabric.

Diversified massive corals such as Favites sp., T. reussiana,
Porites sp., Astroria sp., T. roasendai, H. (Athecastraea)
boehmi, Oulophyllia irradians, P. folium, Alveopora sp.,
C. progoensis, H. (Heliastraeopsis) curta, Phyllocoeniella
archiaci, and Caulastraea are present in Tejek, Kermestan,
and Irer sections. These dome-shaped massive corals are from
domestone fabric of Tejek section and platestone–domestone
fabric of Irer and Kermestan sections. Therefore, coral commu-
nities with hemispherical, massive, and domal colonies usually
represent high to moderate energy (Brandano et al. 2010;
Karabiyikoglu et al. 2005; Yazdi et al. 2012).

Substrate conditions

Substrate type plays an important role in controlling the dis-
tribution of biotic communities (Hallock and Schlager 1986;
Pomar and Ward 1995, 1999, Pomar et al. 2004; Wilson and
Vecsei 2005). The composition and type of carbonate sub-
strates depend on depositional, biological, and diagenetic fac-
tors, and on the other hand, the substrate type affects feeding

modes as well as the penetration and attachment (Flügel
2010). To investigate different characteristics of the study sec-
tions in this regard, some carbonate constituents, influenced
by environmental conditions, were analyzed.

Scleractinian corals are the main constituents of the studied
sections, and corallinacea, bivalves, bryozoan, foraminifera,
serpulid worms are subordinate ones. Bioerosion is vastly
distributed in the studied sections (Plates 3 and 4). The
encrusting coralline algae are indicative of different substrate
types in the studied areas; some of them are encrusted on
sediment surfaces which show that they are developed over
soft substrates (Bassi 2005) while they require low substrate
mobility and hydrodynamic energy (Rasser and Piller 2004).
Some coralline algae present in the studied sections are very
well preserved and some of them (especially in Kermestan and
Irer sections) are slightly broken, so according to Nebelsick
and Bassi (2000), the well-preserved red algae should be in-
dicative of quiet water environment with stable substrate and
low sedimentation rate. It sounds that presence of some frac-
tures in some red algae of the Kermestan and Irer sections are
due to more instability of substrate and deposition of clastic
sediments. Some other kinds of coralline algae prefer to en-
crust coral hard substrate (e.g., Nebelsick and Bassi 2000;
Plates 3 and 4).

The presence of some common morphologies, related to
soft substrates environment showing sedimentation and/or un-
stable substrate (Sanders and Baron-Szabo 2005), is as

Fig. 7 Depth range of corals in different trophic conditions (adopted
from Sanders and Baron-Szabo 2005). The curves are based on light
intensities proposed by Hallock and Schlager (1986); <1 % minimal
photosynthesis, 1–4 % little or no coral, 4–20 % platy corals, >20 %

head corals, >60 % branching corals. The honeycomb filled area shows
Kermestan and Irer sections depth range, and the break layered filled area
shows Tejek section depth range
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follows: The laminar and encrusting corals with projecting
knobs (Kermestan and Irer sections; Plate 4) and some irreg-
ular individual corals (Kermestan and Irer sections; Plate 4)
are some instances of soft substrate indicatives present in
study areas. In some cases, free-living individual corals were
situated on soft deposits developed on a flat Porites.

Corals are another and main hard substrate in study areas.
They are influenced by boring (Flügel 2010), bioerosion, encrus-
tation (Flügel 2010), and larva settling (Plate 4). Corallinacea,
bryozoans, serpulid worms, bivalves, encrusting foraminifera
(Acervulina,Miniacina), and gastropods affect and use the corals
as hard substrate (Tejek, Kermestan, Irer; Plate 3).

Furthermore, Marl and siltstone sediments as clastic de-
posits were precipitated in Kermestan and Irer sections, while
there were no clastic sediments in Tejek section; they could
directly affect the substrate and corlas life. Considering the
lithology characteristics, some evidence is observed in the
studied fauna of Irer and Kermestan sections (mostly in upper
parts) for precipitation. During the clastic sedimentation, some
corals adopt themselves with the substrate level and somemay
be buried under sediments. As a result, stress bands created by
pulsed sedimentation could be seen in some coral specimens
of Kermestan and Irer sections, while such specimens could
not be observed in Tejek section (Plate 5).

Salinity

According to presence of some cations such as Na,Mg, Ca, K,
and Sr, salinity is categorized as freshwater, brackish, normal
marine, and hypersaline conditions by Flügel (2010), while
Mossadegh et al. (2009) divided it into 30–40 (normal salin-
ity), 40–50, and 50 psu ranges. As it was previously men-
tioned, main constituents of three studied areas in western
Makran are scleractinian corals, bryozoans, mollusks, and fo-
raminifera (e.g., Miogypsinids, Operculina, Amphistegina,
Acervulina, Miniacina). Logan and Cebulski (1970) and
Kleypas et al. (1999) as well as Mossadegh et al. (2009) state
that corals favorably develop in normal salinity waters in a
narrow salinity ranges between 30 and 34 and 40 ‰. The
presence of massive, domal, and hemispherical scleractinian

corals such as Favites, Favia, and Caulastraea represents nor-
mal salinity (Karabiyikoglu et al. 2005). Moreover, occur-
rence of small and larger benthic foraminifera with hyaline
wall indicates normal seawater conditions (Reiss and
Hottinger 1984; Hallock and Glenn 1986; Geel 2000;
Mossadegh et al. 2009; Mohammadi et al. 2011). Totally con-
sidering the distribution of corals, foraminifera, mollusks, etc.,
the coral-bearing deposits of Tejek, Kermestan, and Irer sec-
tions are precipitated in normal salinity conditions.

Discussion and Conclusion

Makran Basin is formed in an active tectonic margin, influ-
enced by Oman subduction (Dolati 2010; Burg et al. 2011).
This Basin has experienced different tectonic histories through
time. In the studied region, coral-bearing carbonate sequences
are distributed around Band-e-Chaker Syncline, especially in
its northeastern and southwestern flanks. Based on analysis of
faunal content of the studied sections and the fauna presented
in McCall et al. (1994)—as well as presence of M. globulina
which is index of Burdigalian in Indo-Pacific and
Mediterranean realms—the Tejek, Kermestan, and Irer sec-
tions are attributed to Burdigalian in age. As it is mentioned
in previous parts, numerous environmental factors have af-
fected formation and deposition of the coral-bearing se-
quences (Table 5). In the following, we will discuss and scru-
tinize the important environmental traits.

To define the sea surface temperature, some older refer-
ences were cited; McCall et al. (1994) used the method of
Rosen (1984) and calculated the temperature of 18 °C; based
on zooxanthellate coral diversity in Makran Basin (McCall
et al. 1994), Bosellini and Perrin (2008) calculated the
Aquitanian–Burdigalian sea surface temperature of 18–
20 °C. As well, the presence of coralline red algae and larger
hyaline foraminifera (Brandano and Corda 2002) and
paleolatitude of Makran Basin (McCall et al. 1994) are indic-
ative of subtropical condition in the studied sections. To con-
firm the sea surface temperature, we used the diversity-based
temperature curve, presented in Bosellini and Perrin (2008),

Plate 5 Stress bands (white
arrows) created by pulsed
sedimentation: 1 Goniopora sp.
from Kermestan section, 2
individual coral from Kermestan
section, and 3 Porites sp. from
Irer section. scale bars are 1 cm
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and 19–20 °C were obtained for all three sections. The tem-
perature ranges of Tejek, Irer, and Kermestan sections are
almost the same.

Among the light-dependent organisms in the studied sec-
tions, zooxanthellate corals could be very good light intensity
indicatives. The factors controlling the water transparency in-
fluence the light penetration (Morsilli et al. 2012).
Lithological characteristics of Kermestan, Irer, and Tejek
show that there are some differences between the water trans-
parencies of the sections. Tejek section is composed of pure
limestone, and Kermestan and Irer sections are composed of
marly limestone. Based on various morphotypes of
scleractinian corals (Hallock and Schlager 1986; Pomar
2001), euphotic to slightly mesophotic zone is prevailed in
Tejek section and mesophotic to euphotic zones are present
in Irer and Kermestan sections (Fig. 8). In the euphotic zone,
head corals are present in all study sections, but in addition,
slightly branching corals are as well present in Tejek section.
In the mesophotic zone, the platy corals are dominant in
Kermestan and Irer sections.

There is a general consent about the nutrient level required
for coral growth (Dubinsky and Jokiel 1994), but there are still
some debates (D’Angelo and Wiedenmann 2014), because
nowadays corals with different trophic conditions exist in
the world (Tomascik and Sander 1985; Hallock and
Schlager 1986). Considering high abundance of massive
corals in Tejek section, the presence of LBF and the lithology
of the section (pure limestone, showing clear water), oligotro-
phic condition is prevailed, but accompaniment with
bioeroding features implies the oligotrophic to slightly meso-
trophic condition (Fig. 8). Kermestan and Irer sections are
composed of marly limestone and their bioerosion ratio is
more than Tejek section. Likewise, encrusting organism’s ac-
tivities including foraminifera (Acervulina sp.,Miniacina sp.)
and red algae represents higher ratio than Tejek section. In this
condition, LBF are reduced and the marly limestone deposits

confirm the turbidity of the environment. The mesotrophic
conditions are considered for Kermestan and Irer sections
(Fig. 8). Different trophic levels could differently affect the
carbonate deposition. In very oligotrophic nutrient condition,
corals’ physiological performance may not be at their highest
levels in all aspect; for instance, coral growth rates may not be
at their maximum (Dunn et al. 2012; D’Angelo and
Wiedenmann 2014). Dunn et al. (2012) believe that slightly
increased nutrient levels may result in a better physiological
performance of corals such as increased growth. Therefore, it
seems that low nutrient levels (oligotrophic) to slightly in-
creased nutrient levels (toward mesotrophic) could maximize
the corals growth rate, such as what occurred in Tejek section;
it may be an optimized condition for scleractinian
zooxanthellate corals as mixotroph organisms.

Hydrodynamic energy plays a role in the development of
coral communities and could be estimated from the coral
morphologies (Tomás et al. 2008). As mentioned above, platy
corals are characteristics of environments with low water en-
ergy (Schuster and Wielandt 1999; Esteban 1996; Riegl and
Piller 2000; Bosellini et al. 2001, 2002). These kinds of
corals including Agraciidae such as Leptoseris, Cyathoseris,
and other kinds of platy corals are present in Kermestan and
Irer sections. As another groups of corals, head corals repre-
sent moderate to higher water energy (Karabiyikoglu et al.
2005; Yazdi et al. 2012). Massive, hemispherical, and dome-
shaped corals are present in all sections (Fig. 8). The water
energy can control the CO2 content of water. The higher the
water motion is, the higher the CO2 content released.
Increasing the amount of CO2 dissolved in the water de-
creases the availability of carbonate (CO3

2−) ions and lowers
the saturation of the major shell-forming carbonate minerals
(Kleypas et al. 2006). The decreased carbonate ion concen-
tration significantly reduces the ability of reef-building corals
to produce their CaCO3 skeletons (Kleypas et al. 2006). So,
higher water energy can release more CO2 from the water

Table 5 Different paleoenvironmental conditions in different sections

Sections Irer Kermestan Tejek

Lithology Marly limestone Marly limestone Pure limestone

Fabrics Platestone Platestone–domestone Platestone Platestone–domestone Domestone

Calcification Lower Moderate Lower Moderate Higher

Temperature 19–20 °C 19–20 °C 19–20 °C

Nutrients Mesotrophic Mesotrophic Oligotrophic–slightly mesotrophic

Light Mesophotic Mesophotic–euphotic Mesophotic Mesophotic–euphotic Euphotic–slightly mesophotic

Depth Between 5 and 62 m depth Between 5 and 62 m depth Between 12 and 85 m depth

Substrate Hard and soft Hard and soft Hard and soft

Energy Low Low-moderate/high Low Low-moderate/high Moderate-high

Salinity Normal Normal Normal

Clastic sediments input Yes Yes No
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and enhance pH of water. In this condition, the calcification
could be enhanced; this state is present in domestone parts of
Tejek, Kermestan and Irer sections. Lower and platestone

parts of Kermestan and Irer sections with platy corals indi-
cating low water energy had to have more CO2 content and
less pH and subsequently less rate of calcification.

Fig. 8 Trophic, photic, and energy conditions in studied sections
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As we know, the lithological features are different in the
studied sections. Irer and Kermestan sections consist of marly
limestone and Tejek section comprises of pure limestone.
Marl and siltstone sediments as clastic deposits were precipi-
tated in Kermestan and Irer sections, while there were no
clastic sediments in Tejek section. Besides the lithology char-
acteristics, some evidence could be observed in the biotic
content of Irer and Kermestan sections. During clastic sedi-
mentation, some corals adopt themselves with the substrate
level. So, stress bands created by pulsed sedimentation could
be seen in some coral specimens of Kermestan and Irer sec-
tions, while such specimens could not be observed in Tejek
section.

Siliciclastic inputs can increase the acidity of water and
subsequently may cause dissolution or may decrease car-
bonate precipitation. On the other hand, the presence of
clastic sediments enhances water turbidity and decreases
the light penetration. It causes less photosynthesis of sym-
bionts and after that, the calcification rate would be de-
creased. Totally turbidity of water can (1) increase soft-
substrate areas unfavorable to juvenile growth of corals,
(2) increase the amount of metabolic energy needed for
sediment rejection, (3) physically disturb and abrade coral
polyps, (4) partially to completely kill corals by sediment
veneering or burial, and (5) make corals more sensible to
disease (Dodge et al. 1974; Loya 1976; Dodge and
Vaisnys 1977; Dryer and Logan 1978; Lasker 1980;
Rogers 1983; Hodgson 1990; Babcock and Davies 1991;
Wittenberg and Hunte 1992; Stafford-Smith 1993; Riegl
and Branch 1995; Wesseling et al. 1999; Yentsch et al.
2002, Sanders and Baron-Szabo 2005).

Salinity as another environmental factor could be es-
timated by presence of corals, foraminifera, etc., be-
cause they tolerate a defined limitation of salinity.
According to the presence of massive, domal and hemi-
spherical scleractinian corals (Karabiyikoglu et al. 2005)
and occurrence of small and larger benthic foraminifera
with hyaline wall (Reiss and Hottinger 1984; Hallock
and Glenn 1986; Geel 2000; Mossadegh et al. 2009;
Mohammadi et al. 2011), normal seawater conditions
are estimated. In summary, considering the distribution
of corals, foraminifera, mollusks, etc., the coral carbon-
ates of Tejek, Kermestan, and Irer sections are precipi-
tated in normal salinity conditions.
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