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Abstract Recent developments in the field of remote
sensing have introduced new sensor technologies in us-
age of LiDAR, SAR, and high-resolution optical data.
Classification performance is expected to increase
through combining these various data sources. The pur-
pose of this study is to develop a new approach for
automatic extraction of buildings in urbanized and sub-
urbanized areas. For this purpose, multi-feature extrac-
tion process including the spatial, spectral, and textural
features were conducted on the very high spatial reso-
lution multispectral aerial images and the LiDAR data
set. SVM algorithm was trained by using this multi-
feature data, and the classification was performed.
After the classification of building and non-building,
objects were extracted with high accuracy for the test
areas. As a result, it has been proven that multi-features
derived from combination of optical and LiDAR data
can be successfully applied to solve the problem of
automatic detection of buildings by using the proposed
approach.

Keywords Automatic building detection . LiDAR . SVM .

Classification .Multi-feature extraction

Introduction

Extraction of geographic objects such as buildings and roads
from remotely sensed data is very important as it can be used
for city planning, cartographic mapping, land valuation, disas-
ter management, and many other spatial information-
dependent applications (Chen et al. 2009). Fast and reliable
extraction of spatial information on the buildings and roads is
a vital step in production phase process of 3D city models,
because this type of data is needed for building, updating, and
maintaining of a related geographic information system (GIS)
database. Remote sensing technologies have been intensively
used to produce this type of data in large urbanized regions
and metropolises. Nowadays, in order to increase the reliabil-
ity, decrease processing time, and minimize the human factor,
many studies have been focused on automatization of process-
ing remotely sensed data to obtain the required geographical
features with high accuracy. There are many reference studies
on how to extract the buildings and similar objects from re-
mote sensing dataset, available in literature (Mayer 1999;
Cheng et al. 2013; Gilani et al. 2016; Zarea and
Mohammadzadeh 2016; Zhao et al. 2016) (http://www.dgpf.
de/neu/WWW-Projekt-Seite/DKEP-Allg.html).

Building extraction is a demanding computer vision pro-
cess due to occlusion, poor contrast, shadow effect, and in-
convenient image perspective problems (Sohn and Dowman
2007; Chen et al. 2009; Awrangjeb et al. 2010).There are
mainly three different types of solutions including sensor type
and source suggested by remote sensing community to over-
come this problem (Lee et al. 2008).The first one is based on
algorithm which solely uses optical sensors’ data. Today’s
technical achievements in optical sensor technologies have
made very high spatial and spectral resolution data widely
available. Therefore, a great amount of information can be
collected on building extraction process from supplied digital
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image data. Data with dense information content from optical
sensors can sometimes create confusion due to similar
spectral characteristics of the objects which may de-
crease the separability of the buildings from other
manmade objects. The success of automatic detection
algorithms for buildings has been limited by spectral
mixing problem when only optical digital images are
used (Sohn and Dowman 2007). The second approach
that can be used for extraction of manmade objects is
based on Light Detection and Ranging (LiDAR) tech-
nology. Within this frame, point cloud produced by
LiDAR has been used in the specially designed algo-
rithms instead of optical sensor images to solve auto-
matic building extraction problems (Weidner 1996;
Wang and Schenk 2000; Vosselman 1999; Maas and
Vosselman 1999). The purpose of such algorithms is
to isolate the solution of building extraction problem
from optical sensors defects. Meanwhile, LiDAR data
can offer the elevation information for available objects
with high accuracy and reliability with some limitations
as LiDAR data has relatively low spatial accuracy in
horizontal plane which makes extremely difficult to ex-
tract building corners (Sampath and Shan 2007; Demir
et al. 2009). Furthermore, there are some reciprocal ad-
vantages and disadvantages for both mentioned solutions
above in classification of buildings. Therefore, in order
to overcome the classification problem, a final hybrid
solution that incorporates LiDAR and optical sensor da-
ta has been proposed by remote sensing community.
This third approach seeks for solution by fusing optical
sensor data with LiDAR data to exploit reliable and
accurate elevation information from LiDAR as well as
texture and buildings edges from optical digital images.
However, how to integrate LiDAR and optical data has
become a tough popular research topic in feature extrac-
tion and image fusion literature (Rottensteiner et al.
2005; Zhang 2010).

Multi-dimensional datasets are constructed by combining
multi-sensor data. Classification algorithm performance has a
great importance in classifying multi-dimensional datasets.
Non-parametric algorithms generally perform better than
parametric classification algorithms due to some inherent sta-
tistical assumptions tied to parametric methods in classifica-
tion of such datasets (Pal and Mather 2005). The well-known
problem in parametric methods is the assumption that spectral
signature of classes is in normal distribution, which may neg-
atively affect the overall performance of the method in case
the assumption is null (Kavzoglu and Reis 2008). However,
despite the fact that non-parametric methods require so many
initial parameters selection, they can yield very high classifi-
cation accuracies when appropriate parameters are selected.
SVM has positively affected the classification accuracy as it
has high statistical learning capacity based on structural risk

minimization (SRM) (Vapnik 1995) and high generalization
potential on multi-dimensional spaces (Pal and Mather 2005;
Kavzoglu and Colkesen 2009).

The proposed approach enables automatic building extrac-
tionwithout human interference. For this purpose, LiDAR and
multispectral digital aerial images were combined to extract
the textural, spatial, and spectral features. In order to eliminate
edge location error caused by discrete sampling distance of
LiDAR sensor, 26 dimensional feature set for the buildings
and other objects were created. Classification process was
completed by applying SVM on multi-feature data set pro-
duced with automatically selected training data using image
processing techniques. Thus, successful and reliable results
were obtained by applying the proposed technique.
Moreover, due to the automatization capability of the algo-
rithm, it can be safely used in different regions without losing
its performance.

Study area and data

In order to test the proposed approach, two different
regions characterized as urban and semi-urban with di-
mensions of 326 × 351 and 350 × 347 m were selected
as test area (Fig. 1). The elevation of study area is
changing between 207 and 333 m. The areas are inten-
tionally selected because of special topographic charac-
ter with moderate slope and varying morphology. In the
study area, it is almost impossible to automatically ex-
tract buildings when only optical sensor data is used
because of the fact that available buildings are in dif-
ferent geometrical structure, at various spectral charac-
teristics of their roof blocks, and under neighboring ef-
fects of some impervious surfaces such as asphalt and
concrete. Another important characteristic of the study
area is the adjacency position of high trees and build-
ings in semi-urban regions. There is no dominating sin-
gle geometric shape for the roof types; moreover, many
roof types such as flat, gabled and shed can be ob-
served in the area. Therefore, it is also impossible to
automatically detect the buildings based on only
LiDAR data. Consequently, due to mentioned problems
above, an alternative approach can be applied by com-
bining LiDAR and optical sensor data to solve automat-
ic building extraction problem.

The LiDAR data were collected and recorded as a
*.las file format. It was captured by ALS50 Leica
Geosystems mounted on an aircraft with a point density
of eight points per square meter and geo-referenced in
UTM system. This data were acquired using ALS50 at
an average flying height of 500 m. The average LiDAR
point spacing is roughly 30–35 cm depending on the
number of overlapping strips (Cramer 2010). A

635 Page 2 of 12 Arab J Geosci (2016) 9: 635



simultaneous acquisition of very high-resolution multi-
spectral image with LiDAR data was performed with
DMC digital camera produced by Intergraph Z/I
Imaging Company. An image data was acquired on
August 2012 at 7.54 a.m. local time. This data with
*.tiff file format has 8 cm GSD and 16-bit radiometric
resolution.

Methodology

As a new hybrid approach in this contribution, very high-
resolution multispectral digital aerial image was used in com-
bination with LiDAR point cloud data for automatic extrac-
tion of buildings. In this new approach, multisource data sets
were used to detect textural and spectral features of the target
objects. Then, a self-training semi-supervised classification
approach was performed on prepared multi-feature dataset.
Processing steps of the proposed algorithm is shown as a flow
chart in Fig. 2.

LiDAR data processing

LiDAR point cloud was used for generating DTM (dig-
ital terrain model) and DSM (digital surface model) to
obtain elevation values for buildings and some other
objects. Accordingly, raw LiDAR data was classified
and filtered to represent bare-earth surface as one class
and a surface with elevated objects as a second class. A
progressive TIN (triangulated irregular network) densifi-
cation algorithm by Axelsson (2000) was used for fil-
tering of the raw LiDAR data in order to get DTM

information. After separating ground point cloud, the
data was converted to a raster format by defining row,
column, and pixel dimensions. At this stage, pixel size
was determined as 10 cm by considering LiDAR data
point density for DTM (Fig. 3b, e) generation (Isenburg
et al. 2006a, b). Similarly, TIN model was created from
all point cloud by considering first returns and eliminat-
ing aliasing effect of the surface objects, then a 10 cm
pixel size raster DSM (Fig. 3a, d) was produced
(Isenburg et al. 2006a, b). In both processes, elevation
information was assigned as gray value. As a next step,
a normal ized DSM (nDSM) was produced by
subtracting DTM from DSM (Fig. 3c, f). Finally, abso-
lute elevations for buildings and non-ground objects
were determined in a certain elevation plane and used
in all forthcoming image processing and classification
stages. Meanwhile, a slope image (Fig. 4a, c) was cre-
ated from nDSM in order to be used in classification
process.

Pre-processing and geo-referencing optical image
to LiDAR data

Pre-processing and referencing stage is a necessity to
pool all the available data in a single reference system
and datum. In this study, data in raster format from
different sources was resampled to the same pixel size
to carry out necessary spatial analysis on aerial image,
DTM, DSM, and nDSM. This processing step is impor-
tant in order to perform pairwise comparison of all data
sets. However, due to irregular distribution of LiDAR
point cloud, it is highly difficult to select control points

Fig. 1 Study area. a Test area I. b Test area II
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on test area. Therefore, an intensity image was produced
by taking account all returns to select required control
points, and then multispectral image of the same area
was registered with intensity image, and projective
transformation was implemented by using a sufficient
number of control points. There was no need for
orthorectification process as the image data was already
delivered in orthorectified form. In order to combine
and match image and LiDAR data or raster based ele-
vation models, they must have the same geometric res-
olution. After referencing stage, bicubic re-sampling
method was applied to resample the image data from
8 to 10 cm pixel size.

LiDAR and image datasets each have specific advan-
tages and disadvantages in terms of horizontal and ver-
tical positioning accuracy. Optic or image data produced
by photogrammetric technique can provide broad 2D
information such as high-resolution texture and color

information as well as with accurate horizontal accuracy.
In contrast with photogrammetric technology, LiDAR
can quickly acquire dense and accurate height data of
the areas by emitting and receiving laser pulses. The
height changes are more appropriate for detecting build-
ing boundaries more than the spectral and texture
changes. However, the horizontal accuracy of LiDAR
data is poor because of laser pulse discontinuousness.
Compared with photogrammetric imagery, LiDAR pro-
vides more accurate height information but less accurate
boundary lines. Considering the complementary advan-
tages of LIDAR data and high-resolution optic image
data, the fusion of two data sources is regarded as a
promising procedure to detect the building boundaries
(Awrangjeb et al. 2010; Li et al. 2013). Therefore, hor-
izontal spatial information from high-resolution optic
image and vertical spatial information from LiDAR data
were included to 26 dimensional multi-feature dataset in

LiDAR Data Optical Image Data
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Fig. 2 Flowchart of proposed methodology
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this study. Due to stability of the horizontal accuracy of
the image data, all feature dataset were compounded
with 10 cm raster format resolution.

Feature extraction and automatically prepared training
data set

At this step, feature extraction processes were applied on dif-
ferent data sources. Training data set was automatically pro-
duced for self-training of the SVM algorithm to obtain differ-
ent classes (vegetation, buildings, and other objects) that
would be used in machine learning and classification stage.

Extraction of MNDVI features

Normalized difference vegetation index (NDVI) has been
proved very successful in separating green cover with chloro-
phyll content from other land use/land cover classes when
multispectral image data is used (Rouse et al. 1973). The dig-
ital camera used in this study has an ability to acquire data in
very wide intervals of visible part of the electromagnetic spec-
trum. The operation range of the instrument can reach up to

675 nm in visible range. Therefore, there is a need to alter
narrow satellite band based NDVI index, thus a modified type
of NDVI so called modified normalized difference vegetation
index (MNDVI) is proposed in this study. It is expected that
detection of vegetation class would be improved by extending
the spectral interval and using wide band intervals of the avail-
able sensor. The calculation for MNDVI is given in Eq. 1.

MNDVI ¼ Red 590 − 675nmð Þ− Green 500 − 650nmð Þ
Red 590 − 675nmð Þ þ Green 500 − 650nmð Þ

ð1Þ

In this study, training data set was automatically produced
using MNDVI algorithm. The reason for using MNDVI was
not direct extraction of the vegetation class by masking the
multi-dimensional data set but to decide on training pixel lo-
cations representing vegetation with high probability by
means of automatically defined threshold value. Moreover,
MNDVI features contributed to the classification process by
enhancing the separability of the vegetated areas.

MNDVI image produced by applying Eq. 1 was processed
by applying a threshold value to obtain the vegetation mask
(Fig. 4b, d). The threshold value was decided by taking into
account descriptive statistics of MNDVI image. It is basically

Fig. 3 a, d DSM produced from raw LiDAR dataset. b, e DTM created by Progressive TIN Densification algorithm. c, f nDSM image. a–c For Test
Area I. d–f For Test Area II
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derived by subtraction of standard deviation (std) from mean
(m) value of theMNDVI image pixel values. Pixel (600 pixels)
locations used for training were simultaneously determined
from the same vegetation mask image with stratified random
sampling method. Location information of these pixels was
stored to be used during the classification process as train data.
Furthermore, test data set with appropriate spatial distribution
was manually selected and recorded.

Producing training data set for buildings and other objects

In order to perform a successful extraction of building sur-
faces, in addition to vegetation class, two more classes (build-
ings and other objects) other than vegetation were decided.
Buildings and other objects’ training data set which is required
for self-training of the SVM algorithm were automatically
produced in this step. Similar to procedure applied for training
of the vegetation class, some pre-processing operations were
carried out for defining pixel locations of buildings and other
objects with high probability. Pixel locations were only used
during the process of creating training data set.

For this purpose, buildings and some ground regions
were extracted from nDSM image using with image pro-
cessing techniques. In order to decide whether those re-
gions are buildings or not, a multi-step decision making
strategy was followed by evaluating shape-related param-
eters. Previously prepared vegetation mask was used to
minimize possible errors in determination building pixels
on nDSM image to obtain masked nDSM (MnDSM) im-
age. The resultant MnDSM image contains elevation in-
formation of buildings and some other built-up objects.
Some morphologic operations were carried out on
MnDSM image to exclude very tall non-building objects
that may affect building pixel selection. A rectangular
shape morphologic structuring element (70 × 70 pixels)
which corresponds to smallest building dimension on
original image was defined. Morphologic enhancement
was achieved by applying the structuring element and
reconstruction algorithm-based image opening and clos-
ing operations, then regional maxima of enhanced
MnDSM image was computed (Vincent 1993). Those
regions represent the buildings on the image. Moreover,

Fig. 4 a, c Slope image and b, d
MNDVI image for Test Area I
and II, respectively
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shape properties of the objects were also incorporated to
ensure that available regions are most likely buildings.
For this purpose, a rectangularity index (Ri) that is wide-
ly used in the literature was applied to estimate rectan-
gularity of an object (Rosin 2003), where (Ai) is an area
of a building and (MBRi) is minimum bounding rectangle
(Eq. 2).

Ri ¼ Ai

MBRi
ð2Þ

The index value is changing between 0 and 1 where
B1^ represents an exact rectangularity. In order to in-
crease the reliability of finding building regions, an ad-
ditional threshold (0.5) was applied using rectangularity
parameter. The threshold value does not limit the overall
automatization performance and applicability of the algo-
rithm to some other regions due to rectangular geometry
of the building objects. After thresholding operation, re-
maining pixels are most likely buildings. These regions
were only used for training data set; final building ex-
traction process was carried out in following classifica-
tion step. From pixels inside of those regions, stratified
random sampling methodology was used to automatically
select 600 pixels and their locations for training of the
classifier. In order to be used for accuracy assessment
procedure, pixels belonging to building class with appro-
priate spatial distribution were manually selected and re-
corded as independent test data (400 pixels). As a next
step, un-vegetated and non-building regions were
remained to be decided. Therefore, previously processed
and morphologically enhanced MnDSM images of the
study area were used to find regional minima (Vincent
1993). Finally, the extracted regions were non-buildings
and un-vegetated areas. Training pixels were selected
from these regions similar to previous steps as explained
before to be used in classification stage.

Dataset preparation and textural feature extraction

Automatic detection of various objects using multi-
source data (optical or LiDAR) requires some additional
information on spatial, spectral, and textural properties
of the related objects (Aksoy et al. 2010). Different
studies have reported on how to use shape and size
features, spectral and textural features of multispectral
aerial images (Vogtle and Steinle 2000), and textural
features of elevation images produced from LiDAR data
(Maas and Vosselman 1999) in building extraction prob-
lem. These features may belong to a pixel or regions
created after a pre-processing stage. In this study, the
applied methodology accounts for spectral information
from optical image data, spatial properties of LiDAR

data as well as textural information of both datasets.
Textural features can definitely improve the separability
of spectrally similar objects such as buildings and adja-
cent regions. For rectangular objects like buildings, sec-
ond order statistics (i.e., co-occurrence features) comput-
ed by local rectangular image windows are very effec-
tive in characterization of textural features. Therefore,
four different textural metrics which are contrast, dis-
similarity, entropy, and homogeneity were computed
from GLCM (gray level co-occurrence matrix) and used
for characterization of textural features (Haralick 1979).
A kernel with 5 × 5 window size was designed for
producing GLCM to extract textural features. The kernel
was passed over the image to assign the calculated tex-
tural metric value to central pixel in this technique.
Textural features were produced for RGB bands,
nDSM, and MNDVI images; 20 different textural fea-
tures were totally obtained. Finally, a 26 dimensional
multi-feature dataset (3 RGB bands, 1 nDSM elevations,
1 MNDVI index, 1 slope ratio index, and 20 textural
features) was prepared to be used in classification stage.

Machine learning and SVM classification

For automatic building extraction problem, three classes
which are building, vegetation, and other objects were
decided. Prior to classification process as explained in
BExtraction of MNDVI features^ and BProducing train-
ing data set for buildings and other objects^ sections
labeled data was used for automatic self-training of
SVM classifier (600 pixels). Spectral signatures for each
available class were produced by using 26 features val-
ue from training dataset. Non-parametric SVM has
proved to be successful in classification of linearly in-
separable multi-dimensional datasets (Vapnik 1995).
However, selection of initial parameters in SVM has a
vital importance as it is for many similar non-parametric
classifiers. Therefore, radial based kernel (RBK) func-
tion was preferred in SVM process due to requirement
of less initial parameters for solution and better perfor-
mance for SVM algorithm (Mathur and Foody 2008;
Kavzoglu and Colkesen 2009). Radial based kernel pa-
rameters were computed from training data by applying
grid search method and assigned as C = 3000 and
γ = 0.07. The SVM algorithm was automatically applied
with these parameters and finalized by assigning every
pixel to three different classes. After classification, two
classes (building and non-building) were produced by
passing vegetation class into other objects (Fig. 5a, c).
In accordance with the aim of the study, building sur-
faces should preserve the unity and homogeneity struc-
ture. Hence, small areas appeared on image as holes due
to building appliances such as chimneys, solar panels,

Arab J Geosci (2016) 9: 635 Page 7 of 12 635



etc. were filled by using some morphologic operations.
After filling operations, 8-connected neighborhood was
used to eliminate erroneous parts on building edges and
a final building map was produced (Fig. 5b, d).

Results

A two-step accuracy assessment methodology was employed
to test obtained results of the proposed approach. As a first
step, traditional pixel-based site-specific accuracy assessment
technique was applied using prepared test data to get the con-
fusion matrix. Overall accuracy (Oa), user accuracy (Ua), pro-
ducer accuracy (Pa), and kappa index were computed from
confusion matrix as shown in Table 1.

Moreover pixel-based accuracy metrics such as correctness
(Corrpix), completeness (Comppix), and quality (Qpix) were
computed. These are widely used metrics for accuracy assess-
ment in two class (object and background) object recognition
problem (Rutzinger et al. 2009; Awrangjeb and Fraser 2014).

Fig. 5 a, c Classified image and
b, d Enhanced resultant image
after post processing for Test Area
I and II, respectively

Table 1 Confusion matrix and pixel-based accuracy statistics

SVM classification results (Test area I)

Classes (percent) B NB V Pa

B 97.51 1.15 0.80 97.51

NB 3.00 96.00 1.00 93.80

V 0.25 1.50 98.75 95.99

Ua 98.08 94.75 94.33 95.75

Oa: 95.75 Kappa: 0.94

SVM classification results (Test area II)

Classes (percent) B NB V Pa

B 89.53 0.33 2.00 89.53

NB 8.99 99.50 1.20 99.50

V 1.48 0.17 96.80 96.80

Ua 98.38 88.42 97.38 94.58

Oa: 94.58 Kappa: 0.92

B building, V vegetation, NB non-building

Table 2 Metrics results for each test area

Test Area I (%) Test Area II (%)

Comppix 87.1 92.0

Corrpix 93.8 82.0

Qpix 82.3 76.6
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The calculation of the correctness (matching rate), complete-
ness (detection rate), and quality metrics was carried out by
applying Eqs. 3, 4, and 5, and the results for each test area
were given in Table 2.

Corrpix ¼ TPk k
TPk k þ FPk k ð3Þ

Comppix ¼
TPk k

TPk k þ FNk k ð4Þ

Qualitypix ¼
TPk k

TPk k þ FNk k þ FPk k ð5Þ

In Eqs. 3, 4, and 5, an entity classified as an object that also
corresponds to an object in the reference is classified as a true
positive (TP). A false negative (FN) is an entity corresponding
to an object in the reference that is classified as background,
and a false positive (FP) is an entity classified as an object that
does not correspond to an object in the reference. A true neg-
ative (TN) is an entity belonging to the background both in the
classification and in the reference data (Rutzinger et al. 2009;
Shufelt 1999).

The results in Table 2 showed that building extraction pro-
cedure was satisfactory in the proposed methodology.

Considering the first part of the accuracy assessment pro-
cedure, it was proved that overall accuracy were around 95.75
and 94.58 % for test area I and II, respectively. It can be
considered very high in terms of building extraction process
for the two test areas. Despite the recently increasing contro-
versy on its usage due to reliability issues, kappa statistic
which is a commonly accepted accuracy metric by remote
sensing community was also around 0.92 and 0.94.
Classification performance can be qualitatively confirmed
from Fig. 5.

The second step of accuracy assessment involves a
pattern-based approach (Foody 2008; Dihkan et al.
2013). Therefore, pixel-based accuracy assessment re-
sults were confirmed by comparing those two tech-
niques; furthermore, the unity level of building surfaces
was accurately delineated. For applying pattern-based
accuracy assessment approach in the test areas, refer-
ence building map, which represents homogeneously
distributed 25 and 31 building objects with different
shapes, textures, and spectral characteristics, were creat-
ed by manual digitizing process (Fig. 6a, c).

Polygon-based fuzzy local matching technique by
Power et al. (2001) was used to show the geometric
similarity level between building objects of reference
and resultant building maps. Selected building polygons
were compared by considering areal intersection. In this
methodology, after pairwise object comparison, matching
level is calculated based on fuzzy inference system by

considering various characteristics of the polygons.
Preliminary characteristics were area of intersection, area
of disagreement, and size of polygon. Within frame of
fuzzy inference system, a fuzzification process is first
applied to polygon characteristic (Power et al. 2001).
Then, a fuzzy rule set was applied to obtain fuzzy local
matching membership. Finally, the area centroids of the
defuzzification algorithm were used to assign the local
matching numbers (L) for each unique polygon (Jager
1995). Two final outputs, comparison (agreement) map
and global matching index, can be produced from fuzzy
polygon-based approach. Spatial local matching value
distribution of the target polygons is available from com-
parison map which determines the superiority of the
pattern-based approach against traditional pixel-based
site-specific techniques. Very high similarity is visually
confirmed by comparison of reference and building maps
(Fig. 6b, d). Moreover, unity level of the target buildings
as well as missing or erroneous parts can be both quan-
titatively and qualitatively observed from comparison
map. Local matching value 0.7 and over is generally
considered successful in the literature (Power et al.
2001; White 2006). However, it becomes very difficult
to decide about a single definite threshold value in terms
of accuracy assessment. Meanwhile, global fuzzy
matching index (g) that it is between B0 and 1^ is also
available to show global similarity level of the two maps
(Eq. 6).

g ¼
X

i
LiAi

� �
=

X
i
Ai

� �
ð6Þ

Where Li is a local matching value for polygon i and Ai is
an area of polygon i. Global matching index (g) values were
computed as 0.795 and 0.743 for the test areas I and II in this
study. This value shows the success of proposed building ex-
traction process. Differences in g indices are relatively low
when compared to traditional accuracy metrics (Oa, Pa, Ua,
Kappa, etc.) as the traditional metrics do not include a fuzzy-
system-based evaluation capability (Foody 2002). Map
Comparison Kit by RIKS (2005) was used for pattern-based
accuracy assessment in this study.

Discussion

Different from threshold-based building extraction methods,
in this study, building extraction problem is evaluated by com-
bining classical thresholding and automatically trained SVM
classifier (Sohn and Dowman 2007; Cheng et al. 2008). The
proposed methodology can considerably improve the autom-
atization level of the process. In building extraction problem,
different techniques follow various accuracy evaluation
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processes which makes it difficult to compare obtained results
in the available literature.

There are many studies available in the literature on build-
ing extraction problem. For example, Sohn and Dowman
(2007) used LiDAR data for automatic extraction of buildings
by using standard building models and obtained an accuracy
up to 90.1 % (the correctness) and 80.5 % overall quality by
applying pixel-based accuracy assessment. Unfortunately, the
accuracy level was negatively affected by regions with lower
point density on LiDAR data and available buildings having
non-standard shape geometry. Similarly, Rottensteiner et al.
(2005), Rottensteiner et al. (2007), and Rutzinger et al.

(2009) used Dempster-Shafer methodology for automatic ex-
traction of buildings by fusing LiDAR and multispectral
image data. Vu et al. (2009) applied a multi-scale mathemat-
ical morphology for extracting the building features from
LiDAR and spectral data. It is argued that proposed method-
ology is capable of detection of diverse building shapes, and
better accuracy can be reached depending on availability of
higher density LiDAR data. Pixel-based completeness and
correctness accuracies were around 80 and 94%, respectively.
Analyzing Table 2, for the test area I, the completeness value
was around 87.1% and correctness value was 92%. Similarly,
for the test area II, completeness and correctness values were

Fig. 6 a, cA reference map for Pattern Based Accuracy Assessment and b, dComparisonmap between reference and building maps for Test Area I and
II, respectively
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93.8 and 82.0 %, respectively. Therefore, it can be inferred
that the algorithm performed better in test area I than test area
II based on reference data.

Furthermore, many researchers have tested various
methods for building detection of ALS and aerial image data
(Kabolizade et al. 2010; Awrangjeb et al. 2010; Chen et al.
2012; Cheng et al. 2013; Awrangjeb et al. 2013; Li et al. 2013;
Rottensteiner et al. 2014). The general accuracy level was
around 90 % which is comparable to our results in this study.
Thus, it is clear from current study that our proposed method-
ology revealed satisfactory results in terms of accuracy for
building extraction.

Conclusion

Building extraction problem has been an attractive research
area in remote sensing and photogrammetric applications.
Even though, there have beenmany achievements in this field,
there are still some challenges related to complex building or
object morphology. In this study, multisource remotely sensed
data were combined to derive textural, spatial, and spectral
features of objects of interest.

It is concluded that the usage of multisource data has re-
vealed satisfactory results. The horizontal accuracy of bound-
aries extracted from LIDAR data is relatively low due to laser
pulse characteristics. Low edge detection accuracy in horizontal
plane was improved by optical image data whilst spectral
mixing of image data was minimized by LiDAR data.
Moreover, promising results were obtained by applying SVM
classifier in decision space on multi-feature dataset. The robust-
ness of SVM algorithm in classification of multi-feature data set
is already well known and widely used in remote sensing ap-
plications. The proposed methodology has some artifacts relat-
ed to vegetation morphology and color characteristics such as
very dark or brownish canopies and very tall trees adjacent to
building objects. Even though that problem was minimized
using MNDVI index, it can potentially be sorted out by adding
NDVI index for the proposed methodology as there was no
NIR band available in our data set.
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