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Abstract Roof separation is one of the main precursors of
coal mine accidents at the workface. At present, indicator data
are usually read in an attempt to understand the real-time
changes of the roof separation, but the change trend cannot
be predicted. Predicting the change trend of roof separation on
time can play a very important role in roof control. In this
study, we apply the gray theoretical analysis method to predict
the change trend of roof separation. We use Universal Distinct
Element Code (UDEC) numerical simulation software to sim-
ulate the generation processes of roof separation. For this pur-
pose, we consider four scenarios with different immediate roof
heights. Using experimental separation data as original data,
we predict roof separation using the gray algebraic curve mod-
el (GAM). The GAM-predicted data show little error when
compared with the experimental data and are also better com-
pared with prediction data obtained with the traditional gray
model GM(1,1). Finally, in a case study using field-
monitoring roof separation data from a mine, the GAM meth-
od led to good prediction results, and the predicted develop-
ment trend reflected the real conditions. Thus, we prove that
GAM is a very effective prediction method, which will be
very useful in predicting roof separation trends for the warning
of roof fall accidents.

Keywords Gray algebraic curve model . Roof fall accident
warning . Roof separation . Change trend prediction

Introduction

Roof fall accidents currently account for about 40% of all coal
mine accidents (shown in Table 1), ranking first among those
in China. In recent years, roof fall accidents at the coal mine
workface have significantly declined, due to improvements in
the fully mechanized coal-mining equipment, the develop-
ment of supporting technology, and especially the promotion
of a comprehensive workface support quality-monitoring sys-
tem. Consequently, the number of deaths caused by roof fall
accidents has been effectively controlled and reduced lately.
However, roof fall accidents continue to significantly contrib-
ute to a growing annual number of coal mine accidents.
According to incomplete statistics, the number of deaths from
roof fall accidents accounts for 50 % of the deaths from all
accidents in small coal mines in a number of counties and
townships in China. Therefore, a further study of technologies
aiming at prevention of roof fall accidents must be undertaken
to assure coal mine safety in the future.

Many scholars had done a lot of researches in the analysis
of roof separation for roof control. Ling et al. (2003) compre-
hensively investigated the condition of the rock medium, en-
vironmental occurrence conditions, and engineering factors.
In addition, they established a dynamic model for predicting
the roof stability of mining fields using artificial neural
network tool. Tan et al. (2006) proposed that the occurrence
of peaks in the roof separation velocity was applicable for
forecasting the falling of inferior roofs. In addition, they de-
veloped a roof separation telemetering system for measuring
and forecasting roof falls. Zhang et al. (2010) gave the neces-
sity conditions of load, span, and deflection, which were
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proposed for roof separation in the immediate roof. Tang et al.
(2010) analyzed the relationship between the roof separation
and the roof deformation under the support method of
combined support with anchor. Bertoncini and Hinders
(2010) made fuzzy classification of roof fall predictors in mi-
croseismic monitoring. Saeedi et al. (2013) presented the ef-
fect of exposed area geometry on potential roof falls using the
2D numerical modeling program. A novel fuzzy inference
system has been made for predicting roof fall rate in under-
ground coal mines (Razani et al. 2013; Farid et al. 2013;
Ghasemi and Ataei 2013). Yan et al. (2014) studied the
influencing factors of the roof separation of the roadway with
extra-thick coal seam. The underground roadway roof separa-
tion was monitored in time by fiber Bragg grating sensors
(Zhao et al. 2015). Salient findings of field instrumentation
data analysis such as mining-induced vertical stress develop-
ment over the pillars, load over the support, roof separation at
different horizons, and convergence of roof in rooms with face
advance were presented (Satyanarayana et al. 2015). Khan
et al. (2015) use wireless sensor networks to determine cluster
breakage by sudden disruptions caused by roof falls. Xie and
Xu (2015) took ground-penetrating radar (GPR) as a means
for roof separation detection and analyzed its feasibility for
use in detecting roof separation both theoretically and
experimentally.

In the performance evaluation of roadway support, roof
separation has always been a major index. When roof separa-
tion exceeds a certain critical value, the roof is regarded as
unstable. Under these conditions, unless timely support mea-
sures are taken, a roof fall accident is likely to occur. At pres-
ent, understanding the real-time changes of the roof separation
is mainly achieved by reading the indicator data, but the

change trend cannot be predicted. Finding a way to predict
the change trend of roof separation will play a very important
role in roof control.

Roof separation is induced by multiple geological factors
and complex mechanical behaviors that are not yet fully un-
derstood. To effectively predict and control roof fall accidents,
a clear understanding of the characteristic variations of roof
separation is necessary. However, it is not yet clear how to use
mathematical models to predict roof separation. Moreover,
predicting this complex process is very difficult, due to the
many parameters involved. According to the gray system the-
ory proposed by Deng (1987), an irregular information se-
quence in an arbitrary stochastic process may be transformed
into a regular information sequence by generating the trans-
formation. When using this theory, there is no need to know
the distribution characteristics of the original data in the math-
ematical model. Moreover, for a small number of discrete data
sequences, the modeling requirements can be met simply by
generating the transformation several times. Furthermore, the
prediction results from the application of this model are more
accurate and more consistent with the real conditions, com-
pared with other prediction models.

The gray model has not been used before to predict the
change trend of roof separation, so that this article is the first
to attempt such a prediction. When using a gray theoretical
analysis, only a small amount of existing roof separation data
is required to predict the development trend of roof separation.
The results obtained can then provide auxiliary decision-
making information for predicting roof fall accidents.

Gray algebraic curve model-based prediction
method

The gray system primarily includes system modeling, model
testing, correlation analysis, clustering evaluation, decision
making, and planning. The gray system theory is used to re-
duce the uncertainty resulting from random factors, thus in-
creasing the objective regularity of a system through the math-
ematical processing of the original system information se-
quences. The system is then modeled using corresponding
mathematical differential equations (Liu 1999). The discrete
time series generated by the original sequence accumulation is
transformed into a differential equation that is continuous in

Table 1 The statistical analysis of coal mine accidents in China

Different causes of accidents Roof fall Gas Transportation Water inrush Fire Blasting Mechanical and electrical Other causes

The proportion of accident number 47 % 9.2 % 18.6 % 3.1 % 0.6 % 3.1 % 7.2 % 11.2 %

The proportion of death number 33.2 % 25.3 % 14.5 % 8.8 % 1.9 % 1.8 % 4.2 % 10.3 %

The data in the table cited from statistical analysis of China coal mine accidents in 2012 by Xu et al. (2015)

Table 2 Precision inspection grading table

Precision grade Criticality of index

Relative error
Δ (%)

Ratio of mean
square
ratio C

Possibility
of small
error P

Grade 1 (good) 1 0.35 0.95

Grade 2 (qualified) 5 0.50 0.80

Grade 3 (reluctantly
qualified)

10 0.65 0.70

Grade 4 (disqualified) 20 0.80 0.60
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time. The resulting functionmodel is known as the graymodel
(GM).

The exponential solutions of the GMmodel differential equa-
tion have been used to determine that the GM predictionmethod
is only applicable to conditions, in which the original sequence
shows exponential variations. The gray prediction refers to the
generation of cumulative sequence by using an exponential
function to simulate the original random sequence. However,
the cumulative generation sequence may not vary exponentially.
Therefore, the GM model is limited in its capability to analyze
complex and nonlinear problems and thus cannot be used to
effectively simulate and predict a nonlinear system. For an arbi-
trary deterministic system, prediction can be approached by
using a polynomial function. Thus, the cumulative generation
sequence reduces the degree of randomness and enhances the
regularity of the original sequence. Meanwhile, by combining
this sequence with the polynomial function, it functions inten-
sively in the approach of discrete data and in turn develops into a
gray algebraic curve model (GAM) that can more effectively
simulate and predict the solutions of nonlinear problems (Qi
et al. 2004; Ou et al. 2005; Wang 2012).

We assume here that the original data sequence observed is
X(0) = (X(0)(1), X(0)(2),…, X(0)(n)), which develops into
X(1) = (X(1)(1), X(1)(2),…, X(1)(n)) after one accumulation.

X 1ð Þ ið Þ ¼
Xi

j¼1

X 0ð Þ jð Þ; i ¼ 1; 2⋯n ð1Þ

We then hypothesize that X(1) is the algebraic curve on
sequence k. The GAM of X(1) is then

Xb 1ð Þ
kð Þ ¼ a0 þ a1k þ a2k

2 þ⋯þ amk
m ¼

Xm
i¼0

aik
i ð2Þ

In Eq. (2), the coefficients a0 , a1 , ⋯ , am are undetermined
parameters, and k = 1, 2,…, n.

Let

A ¼ a0; a1;⋯; am½ �T ð3Þ

Y ¼
X 1ð Þ 1ð Þ
X 1ð Þ 2ð Þ
⋮

X 1ð Þ nð Þ

2
664

3
775 ð4Þ

B ¼

1 1 ⋯ 1m

1 2 ⋯ 2m

1 3 ⋯ 3m

⋮
1 n ⋯ nm

2
66664

3
77775 ð5Þ

Immediate roof
Coal 

Main roof

Floor

Fig. 1 Simulation model

Table 3 Parameters of each rock stratum in the model

Stratum
no.

Lithology Thickness
(m)

Bulk
modulus
(GPa)

Shear
modulus
(GPa)

Unit
weight
(kN/m3)

Internal
friction
angle (deg)

Tensile
strength
(MPa)

Cohesion
(MPa)

1 Sandstone 10 15 8.5 25.0 32 3.5 5.0

2 Mudstone 10 8 5.0 23.0 25 1.0 2.5

3 Sandstone 6 15 8.5 25.0 32 3.5 5.0

4 Mudstone 5 8 5.0 23.0 25 1.0 2.5

5 Sandstone (main roof) 3 15 8.5 25.0 32 3.5 5.0

6 Mudstone (immediate roof) 1 8 5.0 23.0 25 1.0 2.5

7 Coal 3 6 4.5 13.0 20 0.6 2.0

8 Granite (floor) 17 20 12.0 27.0 35 5.0 9.0
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The residual vector E = (Y − BA). If E2 = (Y − BA)2→min,
which yields Eq. (6) by the least squares method,

A ¼ BTB
� �−1

BTY ð6Þ

Substituting the coefficients in Eq. (6) in the GAM equa-
tion, we obtain the cumulative generating sequence. After a
one-time regressive reduction, the prediction data are obtained
as

Xb 0ð Þ
kð Þ ¼ Xb 1ð Þ

kð Þ−Xb 1ð Þ
k−1ð Þ ð7Þ

To summarize, the GAM proceeds as follows:

(1) Calculate the one-time cumulative generating sequence
X(1) according to the original data sequence X(0);

(2) Determine the maximum times m of the optimal curve;
(3) Establish the B and Y matrices;
(4) Calculate the uncertainty coefficients ai according

toA = (BTB)−1BTY;

(5) Establish the prediction model;
(6) Obtain the prediction sequence Xb 0ð Þ

; and
(7) Determine the accuracy of the model.

The accuracy of the simulated data obtained from above
should be determined to investigate the goodness of fit of the
prediction model. The original sequence is assumed to be
X(0) = (X(0)(1), X(0)(2),…, X(0)(n)), and the corresponding sim-

ulated sequence is Xb 0ð Þ ¼ Xb 0ð Þ
1ð Þ;Xb 0ð Þ

2ð Þ;⋯;Xb 0ð Þ
nð ÞÞ

�
.

The mean of the original sequence X(0) is

X ¼ 1

n

Xn

k¼1

X 0ð Þ kð Þ ð8Þ

The variance of the original sequence X(0) is

s21 ¼
1

n

Xn

k¼1

�
X 0ð Þ kð Þ−X

�
2 ð9Þ

Roof separation

Roof separation

a

b

Fig. 2 State of roof separation in the four simulationmodels. a State of roof separation in the simulation model of case 1. b State of roof separation in the
simulation model of case 2. c State of roof separation in the simulation model of case 3. d State of roof separation in the simulation model of case 4
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The residual sequence from the original and simulated se-
quences is

ε 0ð Þ ¼ ε 1ð Þ; ε 2ð Þ;⋯ε nð Þf g
¼ X 0ð Þ 1ð Þ−Xb 0ð Þ

1ð Þ;X 0ð Þ 2ð Þ−bX 0ð Þ
2ð Þ;⋯;X 0ð Þ nð Þ−bX 0ð Þ

nð Þ
� �

ð10Þ

The mean of the residual is

ε ¼ 1

n

Xn

k¼1

ε kð Þ ð11Þ

The variance of the residual is

s22 ¼
1

n

Xn

k¼1

ε kð Þ−εÞ2
�

ð12Þ

The relative error sequence from the original and simula-
tion sequences is

Δ ¼ ε 1ð Þ
X 0ð Þ 1ð Þ

				
				; ε 2ð Þ

X 0ð Þ 2ð Þ

				
				;⋯;

ε nð Þ
X 0ð Þ nð Þ

				
				

( )
¼ Δk jn1


 � ð13Þ

The ratio of the mean square error is

C ¼ s2
s1

ð14Þ

The probability of a small error is

P ¼ P ε kð Þ−εj < 0:6745s1j Þð ð15Þ

Table 2 shows the precision inspection grade of the predic-
tion model.

Roof separation

Roof separation

c

d

Fig. 2 (continue)

Table 4 Roof separation data of the four simulation cases

Original no. 1 2 3 4 5 6

The data of case 1 (mm) 5.2 14.05 57.2 130.5 181.8 300.6

The data of case 2 (mm) 2.18 18.01 56.69 87.08 174.22 232.48

The data of case 3 (mm) 2.04 8.95 20.25 67.79 160.96 229.29

The data of case 4 (mm) 1.00 4.75 8.09 18.62 35.53 46.83

Arab J Geosci (2016) 9: 514 Page 5 of 10 514



Numerical simulations

To simulate the separation development in a composite
roof, we use a discrete element numerical simulation soft-
ware, Universal Distinct Element Code (UDEC). Figure 1
shows the two-dimensional numerical calculation model of
case 1. This model is 150 m long and 55 m high. The
horizontal coal seam therein is 3 m thick. The immediate
roof is 1 m thick, and the blocks of the immediate roof are
further divided into blocks of 0.5 × 0.5-m2 size. The main
roof is 3 m thick, and the main roof is divided into blocks
of 10 × 3 m2. The boundary of the model is fixed by
displacement, and the model obeys the Mohr–Coulomb
constitutive relationship. Table 3 shows the lithology,
thickness, and mechanical parameters of the main rock
strata in the model.

To explore the influence of different values of the
immediate roof thicknesses on roof separation, three ad-
ditional model cases are added to the model above. The
immediate roof thickness in cases 2 to 4 are set at 3, 5,
and 7 m, respectively, while the other parameters are the
same as those in case 1.

The model coal mine was excavated in the following two
steps in the simulation:

Step 1: Initial balancing of the model; and

Step 2: Excavation of the coal mine at a pace of 1.0 m at
each step of the simulation, from left to right, while the roof is
supported by pillars.

The three additional model cases were simulated following
the two steps listed above. Figure 2 shows the roof separation
produced by the simulations for each case.

Table 4 lists the roof separation data obtained by roof
separation observations at the workface of the four mod-
el cases in the numerical simulations and by recording
the variations in the roof separation from generation to
gradual expansion.

GAM prediction results and discussion

Table 5 presents Lagrange interpolation results of the experi-
mental data from Table 4.

The cumulative sequence of the first seven data in Table 4
was calculated using Eq. (1). According to Eq. (4), we deter-
mined that

Y 1 ¼ 5:20 19:25 51:27 108:47 198:96 329:46 511:26½ �T
Y 2 ¼ 2:18 9:96 27:97 61:95 118:64 205:72 331:71½ �T
Y 3 ¼ 2:04 5:54 14:49 34:74 73:98 141:77 249:51½ �T
Y 4 ¼ 1:00 3:45 8:20 16:29 28:94 47:56 73:74½ �T

Table 5 Lagrange interpolation results from the experimental data of roof separation and the results from the four simulation cases

No. after interpolation 1 2 3 4 5 6 7 8 9

The data of case 1 after interpolation (mm) 5.2 14.05 32.02a 57.2 90.49a 130.5 181.8 236.75a 300.6

The data of case 2 after interpolation (mm) 2.18 7.78a 18.01 33.98a 56.69 87.08 125.99a 174.22 232.48

The data of case 3 after interpolation (mm) 2.04 3.50a 8.95 20.25 39.24a 67.79 107.74a 160.96 229.29

The data of case 4 after interpolation (mm) 1.00 2.45a 4.75 8.09 12.65a 18.62 26.18a 35.53 46.83

a The data are obtained after interpolation

Table 6 GAM-predicted data, residuals, and relative errors of the roof
separation in case 1

No. after
interpolation

Original
sequence
(mm)

Predicted
sequence
(mm)

Residual
(mm)

Relative
error
(%)

1 5.2 5.0506 0.1494 2.87

2 14.05 14.5087 −0.4587 −3.26
3 32.02 31.7351 0.2849 0.89

4 57.2 56.9883 0.2117 0.37

5 90.49 90.2682 0.2218 0.25

6 130.5 131.575 −1.075 −0.82
7 181.8 180.9085 0.8915 0.49

Table 7 GAM-predicted data, residuals, and relative errors of the roof
separation in case 2

No. after
interpolation

Original
sequence
(mm)

Predicted
sequence
(mm)

Residual
(mm)

Relative
error
(%)

1 2.18 1.979 0.201 9.22

2 7.78 8.452 −0.672 −8.64
3 18.01 17.463 0.647 3.59

4 33.98 33.656 0.324 0.95

5 56.69 57.031 −0.341 −0.60
6 87.08 87.592 −0.512 −0.59
7 125.99 125.333 0.657 0.52
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By comparison, we determined that the fitting is optimal
for a maximum time ofm = 3. Using Eqs. (3)–(6), we find that

B ¼

1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64
1 5 25 125
1 6 36 216
1 7 49 343

2
666666664

3
777777775

A1 ¼
−0:2586
3:3850
0:5863
1:3378

2
664

3
775

A2 ¼
−4:6471
8:1073
−2:6783
1:1972

2
664

3
775

A3 ¼
−8:7371
16:6332
−7:0907
1:4374

2
664

3
775

A4 ¼
−0:8728
1:8974
−0:2833
0:2191

2
664

3
775

Using Eq. (2), we obtain the following corresponding gray
curve model equations:

bX 1

1ð Þ
kð Þ ¼ −0:2586þ 3:385k þ 0:5863k2 þ 1:3378k3

bX 2

1ð Þ
kð Þ ¼ −4:6471þ 8:1073k−2:6783k2 þ 1:1972k3

bX 3

1ð Þ
kð Þ ¼ −8:7371þ 16:6332k−7:0907k2 þ 1:4374k3

bX 4

1ð Þ
kð Þ ¼ −0:8728þ 1:8974k−0:2833k2 þ 0:2191k3

Table 8 GAM-predicted data, residuals, and relative errors of the roof
separation in case 3

No. after
interpolation

Original
sequence
(mm)

Predicted
sequence
(mm)

Residual
(mm)

Relative
error (%)

1 2.04 2.243 −0.203 −9.95
2 3.50 3.423 0.077 2.2

3 8.95 8.490 0.450 5.03

4 20.25 20.182 0.068 0.34

5 39.24 40.492 −1.252 −3.19
6 67.79 69.445 −1.655 −2.44
7 107.74 107.004 0.736 0.68

Table 9 GAM-predicted data, residuals, and relative errors of the roof
separation in case 4

No. after
interpolation

Original
sequence
(mm)

Predicted
sequence
(mm)

Residual
(mm)

Relative
error (%)

1 1.00 0.96 0.04 4.0

2 2.45 2.582 −0.132 −12.24
3 4.75 4.643 0.107 2.25

4 8.09 8.021 0.069 0.85

5 12.65 12.713 −0.063 −0.49
6 18.62 18.719 −0.099 −0.53
7 26.18 26.041 0.139 0.53

Fig. 3 GAM-predicted and original curves for the experimental data
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Substituting for the number k (from 1 to 7) into the formu-
las above, the k represents the time point which is equivalent
to the time as kΔt, according to the actual situation; here, Δt
can be several days or hours, etc. The predicted sequence, the
residual, and the relative error can be solved by Eqs. (7), (10),
and (13), respectively, as shown in Tables 5, 6, 7, and 8.

The values for k = 8 and k = 9 are predicted to be 238.269
and 303.656 mm, respectively, in case 1. In Table 4, the two
time points of case 1 are experimentally set at 236.75 and
300.60 mm, respectively. The residuals of the predicted data
compared with the experimental data of the two time points
are −1.52 and −3.01 mm, while the relative errors are −0.64
and −1.02 %, respectively. Error detection in the predicted
data in Table 6 shows that the mean square deviation ratio
solved by Eq. (14) is C = 0.01 < 0.35, while the small error
probability solved by Eq. (15) is P = 1.

The values for k = 8 and k = 9 are predicted to be 170.260 and
222.369 mm, respectively, in case 2. In Table 4, the two time
points of case 2 are experimentally set at 174.22 and 232.48mm,

respectively. The residuals of the predicted data from the exper-
imental data of the two time points are 3.96 and 10.11mm,while
the relative errors are 2.3 and 4.3%, respectively. Error detection
in the predicted data in Table 7 shows that the mean square
deviation ratio solved by Eq. (14) is C = 0.03 < 0.35, while
the small error probability solved by Eq. (15) is P = 1.

The values for k = 8 and k = 9 are predicted to be 153.193 and
208.007 mm, respectively, in case 3. In Table 4, the two time
points of case 3 are experimentally set as 160.96 and 229.29mm,
respectively. The residuals of the predicted data with the exper-
imental data of the two time points are 7.77 and 21.28mm,while
the relative errors are 4.8 and 9.3 %, respectively. Error detection
in the predicted data in Table 8 shows that the mean square
deviation ratio solved by Eq. (14) is C = 0.05 < 0.35, while the
small error possibility solved by Eq. (15) is P = 1.

The values for k = 8 and k = 9 are predicted to be 34.675
and 44.626 mm, respectively, in case 4. In Table 4, the two
time points of case 4 are experimentally set as 35.53 and
46.83 mm, respectively. The residuals of the predicted data
with the experimental data of the two time points are 0.86 and
2.20 mm, while the relative errors are 2.4 and 4.7 %,

Fig. 4 GM(1,1)-predicted and original curves for the experimental data

Mechanical displacement meter

Fig. 5 Roof separation field-monitoring diagram

Table 10 GAM-predicted data, residuals, and relative errors of the roof
separation from the field measurements

No. Measured
sequence
(mm)

Predicted
sequence
(mm)

Residual
(mm)

Relative
error (%)

1 2.5 2.607 −0.107 −4.29
2 8.5 8.131 0.369 4.34

3 19.5 19.822 −0.322 −1.65
4 33 33.180 −0.180 −0.54
5 48.5 48.204 0.296 0.61

6 65 64.895 0.105 0.16

7 83 83.253 −0.253 −0.31
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respectively. Error detection in the predicted data in Table 9
shows that the mean square deviation ratio solved by Eq. (14)
is C = 0.09 < 0.35, while the small error possibility solved by
Eq. (7) is P = 1.

By observing the errors in Tables 5, 6, 7, and 8 and refer-
ring to the precision detection grade control in Table 1, we find
that most of the GAM prediction results are within precision
grade 1. Figure 3 shows the curves from the GAM predictions
and the experimental data of roof separation in Tables 5, 6, 7,
and 8. As shown in Fig. 3, it is clear that the GAM prediction
data show little error with respect to the experimental data.
Moreover, the prediction trend reflects the experimental re-
sults. For comparison, when the traditional gray model
GM(1,1) is used to forecast the experimental data, most of
the predicted results do not meet the necessary requirements
(Fig. 4). Thus, we prove that the GAM approach is more
effective in predicting roof separation trends than GM(1,1).

A case study

As an example, the Qidong coal mine in the Anhui Province
of China makes use of a mechanical displacement meter to
monitor the roadway roof separation. The shallow and deep
basis points of the displacement meter were set at 3 and 6 m,
respectively, above the roof interface (Fig. 5).

By selecting the first seven data from field measurement,
and using the GAMmethod, we obtain the corresponding gray
curve model equation as follows:

bX 1ð Þ
kð Þ ¼ 4:5000−6:3492k þ 4:1786k2 þ 0:2778k3 ð16Þ

Substituting k with 1 to 7 into the formulas above, we can
solve the predicted sequence, residual, and relative error with
Eqs. (7), (10), and (13), as shown in Table 9.

The values for k = 8 and k = 9 are predicted to be 103.278
and 124.970 mm, respectively. The two time points of field
measurement data were 101 and 123 mm, respectively. The
residuals of the predicted data compared with the

experimental data of the two time points are −2.28 and
−1.97 mm, while the relative errors are −2.3 and −1.6 %,
respectively. Error detection in the predicted data in Table 10
shows that the mean square deviation ratio solved by Eq. (14)
is C = 0.03 < 0.35, while the small error probability solved by
Eq. (7) is found to be P = 1, and the prediction level is grade 1.
Figure 6 shows the curves corresponding to the GAM and
GM(1,1) predictions and the field measurements.

Conclusions

(1) We introduce the GAM modeling approach and apply it
for the first time to forecast the change trend of roof
separation.

(2) To build our prediction model based on the GAM meth-
od, we use the roof separation data from a UDEC numer-
ical simulation as the original observation data. We then
apply the prediction model to predict the development
trends of roof separation. The prediction data show little
error with respect to the experimental data, and the trend
is consistent with the experimental observations. For the
sake of comparison, we also apply the traditional GM(1,
1) method and find that the predicted error was larger
than that in the GAM application. Thus, we prove that
GAM is the more effective method for predicting roof
separation trends.

(3) In the case study making use of field-monitoring roof
separation data from a mine, the GAM method leads to
good prediction results. When we get the warning crite-
rion of roof separation of a roadway according to empir-
ical data statistical analysis, and set roof separation indi-
cators to get a small amount data, then, we can predict the
development trend of roof separation using GAM meth-
od based on the existing data. The GAM method pro-
vides the desired auxiliary decision-making information
that can be used to issue warnings about roof fall acci-
dents and thus has the greatest potential to help reduce
and avoid these accidents.

Fig. 6 GAM- and GM(1,1)-
predicted and original curves for
the field measurements
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