
ORIGINAL PAPER

A comprehensive VIKOR method for integration of various
exploratory data in mineral potential mapping

Maysam Abedi1 & Reza Mohammadi1 & Gholam-Hossain Norouzi1 &

Mir Saleh Mir Mohammadi1

Received: 9 February 2016 /Accepted: 13 May 2016 /Published online: 26 May 2016
# Saudi Society for Geosciences 2016

Abstract The central Iranian volcanic-sedimentary belt in
Kerman province of Iran that is located within the Urumieh-
Dokhtar magmatic arc zone is chosen to integrate diverse ev-
idential layers for mineral potential mapping. The studied area
has high potential of mineral occurrences especially porphyry
copper, and the prepared potential maps aim to outline new
prospect zones for further investigation. Two evidential layers
including the downward continued map and the analytic sig-
nal of filtered magnetic data are generated to be used as geo-
physical plausible traces of porphyry copper occurrences. The
low values of the resistivity layer acquired from airborne fre-
quency domain electromagnetic data are also used as an elec-
trical criterion in this study. Four remote sensing evidential
layers including argillic, phyllic, propylitic, and hydroxyl al-
terations are extracted from Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) images in or-
der to map the altered areas associated with porphyry copper
deposits. The Enhanced Thematic Mapper Plus (ETM+) im-
ages are used as well to prepare iron oxide layer. Since potas-
sic alteration is generally the mainstay of copper ore mineral-
ization, the airborne potassium radiometry data is used to ex-
plore both phyllic and potassic alteration. Finally, the geo-
chemical layers of Cu/B/Pb/Zn elements and the main geo-
chemical component responsible for ore mineralization ex-
tracted from principal component analysis are included in
the integration process to prepare final potential maps. The
conventional and the extended version of VIKOR method
(as a well-known algorithm in multi-criteria decision making

problems) produced two mineral potential maps, and the re-
sults were compared with the ones acquired from prevalent
methods of the index overlay and fuzzy logic operators of sum
and gamma. The final mineral potential maps based upon
desired geo-data set indicate adequately matching of high po-
tential zones with previous working and active mines of cop-
per deposits.

Keywords VIKORmethod . Index overlay . Fuzzy logic
operators . Mineral potential/prospectivity mapping .

Porphyry copper deposit

Introduction

Airborne geophysical survey is a prevalent effort in reconnais-
sance stage of various exploration projects that benefits pre-
dominant natural recourses industries such as mining, oil, and
environment. These surveys as efficient tools in the primary
stages of mineral exploration provide diverse pieces of infor-
mation concerning the background geology of a deposit-type
sought, as well as measure the geophysical variations arising
from the different physical properties of the subsurface targets.
They assist to cover large prospect areas simultaneously with
multi-sensor geophysical equipment consisting of magnetic,
radiometric, and electromagnetic devices. They subsequently
cause lower cost in conducting such projects in a short time
and provide advantageous information about geophysical
characteristics of the desired sources. Therefore, these infor-
mation can be used to mineral prospectivity modeling (MPM)
(Abedi et al. 2015a).

MPM aims to detect new ore mineralization prospects and
to delimit high potential zones of the mineralization in order to
further explorations (Abedi and Norouzi 2016). Various ex-
ploration datasets (e.g., geological, geophysical, and
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geochemical spatial data) must be collected, analyzed, and
integrated for MPM. MPM process is a multi-criteria decision
making (MCDM) operation that integrates numerous explor-
atory criteria/attributes and subsequently produces a predic-
tive model to outline new prospective zones for further inves-
tigation (Yousefi and Carranza 2015a). Several MPM ap-
proaches are now reputable which can be categorized into
two general groups of data- and knowledge-driven techniques
(Pan and Harris 2000; Carranza 2008). Different evidential
layers are extracted from the known deposit-type as training
points (Bonham-Carter 1994) in order to establish linear or
nonlinear spatial relationships between the known deposits
and various layers of geological, geochemical, and geophysi-
cal criteria based upon numerous statistical/mathematical al-
gorithms developed in data-driven groups (Carranza 2008).
The sought relationships yield the importance and weight of
each evidence layer (Carranza and Hale 2002a), and conse-
quently, such layers are integrated into a single MPM by
assigning the appropriate weights (Nykänen and Salmirinne
2007). The popular data-driven methods developed in the last
two decades involve weights of evidence (e.g., Agterberg
et al. 1990; Carranza and Hale 2002b), logistic regression
(e.g., Agterberg and Bonham-Carter 1999; Carranza and
Hale 2001; Mejía-Herrera et al. 2014), neural networks (e.g.,
Harris et al. 2003; Nykänen 2008; Abedi and Norouzi 2012),
evidential belief functions (e.g., Carranza and Hale 2002c,
2003; Carranza et al. 2005, 2008a), Bayesian classifiers
(e.g., Porwal et al. 2006; Abedi and Norouzi 2012), support
vector machines (e.g., Zuo and Carranza 2011; Abedi et al.
2012a), clustering methods (Paasche and Eberle 2009; Eberle
and Paasche 2012; Abedi et al. 2013a), and random forest
method (e.g., Rodriguez-Galiano et al. 2014; Carranza and
Laborte 2015). The other techniques in MPM process that
were established based upon the geoscientist’s opinions are
known as the knowledge-driven approaches. They include
the methods of Boolean logic approach (e.g., Bonham-
Carter et al. 1989), index overlay (e.g., Carranza et al. 1999;
Mirzaei et al. 2014; Sadeghi et al. 2014; Sadeghi and
Khalajmasoumi 2015), Dempster–Shafer belief theory (e.g.,
Moon 1990; Carranza et al. 2008b), fuzzy logic operators
(e.g., Abedi et al. 2013b; Moradi et al. 2015; Sadeghi and
Khalajmasoumi 2015), wildcat mapping (e.g., Carranza and
Hale 2002d), and different outranking methods (e.g., Abedi
et al. 2015a; Abedi 2015b; Hossaini and Abedi 2015; Abedi
et al. 2013c; Abedi et al. 2012b, 2012c; Pazand et al. 2012;
Pazand and Hezarkhani 2015).

Nowadays, two new variants ofMPM techniques are under
development, compared to the conventional ones, namely (1)
hybrid algorithm by simultaneous consideration of both loca-
tion of known mineral occurrences and expert opinions
(Porwal et al. 2003, 2004, 2006; Pazand and Hezarkhani
2015; Yousefi and Carranza 2015c) and (2) weighting to the
continuous spatial evidence without using location of known

mineral occurrences and without using expert judgments.
Fuzzy logic MPM with continuous evidential data, data-
driven index overlay, data-driven Boolean logic, expected val-
ue, and geometric average are the developed ones to overcome
the bias resulting from (a) expert judgments in knowledge-
driven MPM and from (b) using characteristics of known
mineral occurrences in data-driven MPM (e.g., Yousefi and
Carranza 2015b, 2016; Yousefi and Nykänen 2016).

Various MCDM algorithms have been developed to make
an optimal decision in multi-criteria/attribute problems. Some
of well-known ones were successfully accomplished in MPM
(e.g., Abedi and Norouzi 2016; Abedi et al. 2015a; Abedi
2015). This study is the first attempt in MPM to evaluate the
applicability of another MCDM algorithm, i.e., VIKOR tech-
nique proposed by Opricovic (1998), in data fusion of numer-
ous evidential layers extracted from the airborne geophysical
survey, satellite imagery, and geological and geochemical data
sets in the desired area, pertaining to the central Iranian
volcanic-sedimentary belt located in Kerman. Here, the effi-
ciency of conventional and new formulation of the VIKOR
algorithm (Opricovic and Tzeng 2004; Jahan et al. 2011) as a
knowledge-driven method is figured out. We have revisited
our previous exploratory geo-dataset comprising of 11 eviden-
tial layers (Abedi et al. 2015a) and have completed the data-
base in this study by incorporating the information acquired
from stream sediment geochemical data. The obtained results
of the VIKOR method are compared to the outputs of the
index overlay and the fuzzy logic operators algorithms,
showing high matching of the generated MPMs. The
validity of outputs were done by superimposing the location
map of some active copper mines in the area, indicating good
correlation between the copper mines and high potential zones
of MPM maps.

The methodology, VIKOR algorithm in MPM

The VIKOR method was introduced by Opricovic (1998) as a
powerful technique in MCDM problems to rank diverse attri-
butes under different criteria or attributes. It determines the
compromise solution and the weight stability intervals for
preference stability of the compromise solution obtained with
the initial assigned weights. The method is used to rank and
select from a set of alternatives in the presence conflicting
multi-criteria. It introduces the multi-criteria ranking index
based upon the particular measure of “closeness” to the “ideal
solution” (Opricovic 1998; Opricovic and Tzeng 2004). The
following section describes concisely the formulation of the
conventional and new version of VIKOR method.

Let us assume that Ai(i=1,2,…,n) and Cj(j=1,2,…,m)
are a set of n alternatives andm criteria/attributes, respectively.
The formulation of the conventional VIKOR method can be
described in a series of steps;
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Stage 1. Construct a decision matrix acquired from a multi-
disciplinary geo-dataset by assigning a priority
score X= (xij)n ×m to each alternative i on each cri-
terion j.

Stage 2. Determine the important weight (wj) of all criteria
from developed methods (e.g., Delphi, AHP,
Fuzzy-AHP techniques (e.g., Abedi et al. 2013b))
such that;

X m

j¼1
wj ¼ 1; j ¼ 1; 2;…; m: ð1Þ

Stage 3. Obtain the normalized decision matrix (rij). We
should normalize each column of decision matrix
to avoid scaling effects perturbing the VIKOR re-
sult.

ri j ¼ xi j=
X n

p¼1
x2p j

� �0:5
; i ¼ 1; 2;…; n & j ¼ 1; 2;…;m

ð2Þ

Stage 4. Determine the best fj
+ and the worst fj

− values of all
criteria. If higher values of jth criterion are more

favorable for ore occurrences (or benefit mode in
MCDM problems), then

f þj ¼ maxiri j
f −j ¼ miniri j

�
ð3Þ

In cases that lower values of each criterion correspond to
more favorable ore occurrences (or cost mode in MCDM
problems), it is

f þj ¼ miniri j
f −j ¼ maxiri j

�
ð4Þ

Stage 5. Compute the values of Si and Ri from the following
equation. Development of the VIKOR method
started from Lk metric as (Opricovic and Tzeng
2004),

Lk;i ¼
X m

j¼1
wj f þj −ri j

� �.
f þj − f

−
j

� �h ik� �1=k

; 1≤k≤∞

ð5Þ
Here, the values of Si and Ri are calculated from the Eq. (5)

to apply conventional VIKOR method:

Fig. 1 Location of the studied area in the general geological map of Iran (reproduced from National Geoscience Database of Iran, http://www.ngdir.ir)
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Si ¼ L1;i ¼
X m

j¼1
wj f þj −ri j

� �
= f þj − f

−
j

� �
ð6Þ

Ri ¼ L∞;i ¼ max j w j f þj −ri j
� �

= f þj − f
−
j

� �� �
ð7Þ

Stage 6. Compute the values ofQi for each alternative i from
the following equation:

Qi ¼ v
Si−S−

Sþ−S−

� �
þ 1−vð Þ Ri−R−

Rþ−R−

� �
; 0≤v≤1

ð8Þ

where

Sþ ¼ max
i

Si; S
− ¼ min

i
Si

Rþ ¼ max
i

Ri;R
− ¼ min

i
Ri

(

and parameter v is introduced as a weight for the

strategy of the majority of criteria “ Si−S−
Sþ−S− ” and (1

− v) is the weight of the individual regret “ Ri−R−

Rþ−R− .”

The value of v lies in the range of [0, 1] and in most
cases, it was chosen equal to v=0.5 for a compro-
mise solution (Jahan et al. 2011).

Stage 7. Compute MPM values ofMi for final prospectivity
mapping as

Fig. 2 Generalized 1:100,000
scale geological and mineral
occurrence map of the study area
located in Kerman province of
Iran (reproduced from Ranjbar
and Honarmand 2004; Abedi
et al. 2013d)
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Table 1 Main geological characteristics of all active mines in the study area (extracted from Ghorbani 2013)

ID Name Size Host rock/age Genetic/
mineralization

Orogenic
phases

Morphology

1 Ardiz Intermediate Granite/Oligo-Miocene; rhyolite Hydrothermal Post-
Pyrenean

Vein

2 Band-e-Mamezar1 Intermediate Microdiorite/Oligo-Miocene; volcanics
and pyroclastic/Eocene

Hydrothermal Post-
Pyrenean

Vein

3 Band-e-Mamezar2 Intermediate Granodiorite/Oligo-Miocene; volcanics
and pyroclastic/Eocene

Porphyry Post-
Pyrenean

Vein

4 DarrehZar Large Quartz microdiorite/Miocene; andesite, tuff/Eocene Porphyry Post-
Pyrenean

Vein

5 Deh Siah Khan Intermediate Quartz monzonite and quartz diorite/Oligo-Miocene Porphyry Post-
Pyrenean

Vein

6 Gowd-e-Konarak Intermediate Conglomerate, sandstone, and limestone/Miocene Hydrothermal Post-
Pyrenean

Vein

7 Hoseyn Abad Small Porphyrite quartz diorite and diorite/Oligo-Miocene;
andesite, dacite, pyroclastic, and sedimentary
rocks/Late Eocene

Porphyry (?) Post-
Pyrenean

Vein

8 Nowchun Large Granite, porphyry diorite, and Rhyodacite/Oligo-Miocene;
andesite and pyroclastic/Eocene

Hydrothermal Post-
Pyrenean

Vein

9 Piran Small Volcanics and pyroclastics/Eocene Hydrothermal Post-
Pyrenean

Vein

10 Sar-Cheshmeh Large Granodiorite/Oligo-Miocene; andesite/Eocene Porphyry Post-
Pyrenean

Vein

11 Sar-e-Kuh Large Granodiorite, porphyrite granodiorite, and porphyrite
quartz diorite/Oligo-Miocene; volcano sedimentary
rocks/Eocene

Porphyry Post-
Pyrenean

Vein

12 Seridun-e-Shomali Intermediate Andesite and dacite/Eocene Hydrothermal Post-
Pyrenean

Vein,
disseminated

Fig. 3 Geological evidential layers: (a) faulted areas; (b) host rock zones. Higher values correspond to high potential zones in geological map
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Mi ¼ Qþ−Qi

Qþ−Q− ð9Þ

where Qþ ¼ max
i

Qi and Q− ¼ min
i

Qi. Higher

values of Mi correspond to higher potential zones
for ore occurrences in the region of interest.

To implement new version of VIKOR
method proposed by Jahan et al. (2011),
the values of Si and Ri are calculated from
the following equations while the other steps
are similar to the conventional VIKOR
method.

Fig. 4 Remote sensing evidential
layers extracting alteration zones
fromASTER data: (a) argillic; (b)
phyllic; (c) propylitic; (d)
hydroxyl
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Si ¼
X m

j¼1
wj 1−e

ri j− fþ
jj j

f −
j
− fþ

j

0
@

1
A ð10Þ

Ri ¼ max j w j 1−e
ri j− fþ

jj j
f −
j
− fþ

j

0
@

1
A

2
4

3
5 ð11Þ

Background geology

The prospect area is located within the Urumieh-Dokhtar
Magmatic Assemblage (UDMA) arc of the Central Iran do-
main, where extensive Tertiary to Plio-Quaternary extrusive
and intrusive units are exposed along a NW-SE trend (shown
in Fig. 1). The output of various studies in this region state that
a subduction-related magmatic model for the UDMA zone
can be assumed (e.g., Alavi 1994; Berberian and Berberian
1981; Ahmad and Posht Kuhi 1993; Hassanzadeh 1993;
Moradian 1997; Omrani et al. 2008) owing to the closure of
the Neo-Tethyan ocean between Arabian and Eurasia plates.
The UDMA zone as an Andean-type volcanic magmatic arc

consists of frequent porphyry-type deposits (especially Cu
occurrences) associated with granitoids, plutonic bodies, and
volcanic rocks. Generalized geological and mineral occur-
rence map of the prospect area located in Kerman province
at SE of Iran is indicated in Fig. 2. Oligocene-Miocene grano-
diorite, quartz diorite, diorite porphyries, and monzonite
dykes are predominant rock types of probable ore mineraliza-
tion in this area. Sar Cheshmeh as a well-known world-class
porphyry copper ore deposit has occurred in this region by
locating within the southern part of the Central Iranian
Volcanic-Sedimentary complex, southwest of Kerman City.
The main reason of porphyry copper mineralization at Sar
Cheshmeh is associated with a granodioritic stock intruded
into a folded and faulted early tertiary volcanic-sedimentary
series of andesite, tuffs, ignimbrites, and agglomerates. A
widespread potassic alteration zone exists in the center that
has imprints of phyllic alteration, and such alteration is
surrounded by a weak biotite and phyllic zone. Propylitic zone
surrounds the whole complex and extends away for few kilo-
meters. Ore mineralization occurs in the potassic, biotite, and
phyllic zones. Hydrothermal alterations of chlorite, sericite,
epidote, carbonate, silica, tourmaline, and clay minerals are
common in this ore deposit, but phyllic, argillic, and propylitic
alterations are more prevalent in whole prospect area (Ranjbar
and Honarmand 2004; Abedi et al. 2015a). Main geological

Fig. 5 Iron oxide alteration layer extracted from ETM+ bands

Table 2 The statistical summary of four elements were considered in
final MPM

Statistics Cu (ppm) Pb (ppm) Zn (ppm) B (ppm)

Minimum 18 2 10 2

Maximum 1200 460 850 241

Range 1182 458 840 239

Mean 105.65 34.92 105.49 46.40

Median 71.00 24.00 94.00 39.00

Mode 68 2 72 7

Variance 18513.334 2229.429 4215.565 1067.633

Std. Deviation 136.064 47.217 64.927 32.675

Skewness 5.042 5.293 5.476 1.856

Kurtosis 30.608 35.181 50.054 5.860

Table 3 The linear correlation coefficient between five evidential
geochemical layers

Cu 1

Pb 0.654 1

Zn 0.648 0.531 1

B 0.697 0.510 0.504 1

C_1 0.711 0.810 0.582 0.507 1

Cu Pb Zn B C_1
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Fig. 6 Histogram and probability plots of four elements Cu, B, Pb, and Zn
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characteristics of most active mines in the study area have
been presented in Table 1.

Data setting

The following sub-sections discuss concisely all considered
evidential layers extracted from geological map, satellite im-
agery data, stream sediment geochemical data, and airborne
geophysics comprising of radiometric, magnetic, and
Frequency Domain Electromagnetic (FDEM) data in order
to generate mineral potential maps.

Geological layer

Two evidential layers of faulted areas and host rock zones
were extracted by a group of geologists who are experts in
MPM from the geological map shown in Fig. 2. These geo-
logical evidential maps show high potential zones which are
more favorable for mineral occurrences (Fig. 3). According to
the geology of the study area and the knowledge of decision
making team, five 100-m-interval buffers are considered
around fault lineation areas (Fig. 3a) to represent the faulted
zones feature as a criterion in final preparation of MPM.
Oligocene-Miocene granodiorite, quartz diorite, diorite por-
phyries, and monzonite dykes are the probable host rocks of
the porphyry deposit in the studied area. Subsequently, four
250-m-interval buffers are considered in Fig. 3b around the

mentioned units to represent the presence of mineralization
(Abedi et al. 2015a).

Remote sensing layer

The alteration layers of argillic, phyllic, propylitic, hy-
droxyl, and iron oxide are common in most porphyry-
type ore deposits. Here, band ratios of the Advanced
Spaceborne The rma l Emis s ion and Ref l ec t ion
Radiometer (ASTER) satellite imagery are used to extract
these alterations in the study area. Because of the absence
of an ASTER image in the blue region of the spectrum,
iron oxide minerals cannot be enhanced from the ASTER
data. Therefore, Enhanced Thematic Mapper Plus (ETM+)
images are used to plot iron oxide alteration as well
(Ranjbar et al. 2011; Gholami et al. 2012; Abedi et al.
2015a).

The study area has a semi-arid climate, a mountainous
topography with a poor vegetation cover. Hence, it has
great potential for exploration of porphyry-Cu deposits
using remote sensing data (Abedi et al. 2015a). Mapping
surface alterations using remote sensing sensors provides
advantageous information in the reconnaissance stages of
copper exploration especially at regional scales and arid
areas. The shortwave length infrared (SWIR) spectral
bands of ASTER images are a suitable tool for mapping
hydrothermal alteration zones associated with porphyry-
Cu deposits. Relative absorption band depth (RBD) was
used by Abedi et al. (2013c, d; 2015a) to delineate

Fig. 7 Dendrogram of cluster
analysis using average linkage
method on stream sediment
samples
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argillic, phyllic, propylitic, and hydroxyl mineral assem-
blages. Three RBD ratios adopted in this study namely

RBD5 (mineral features: alunite/kaolinite/pyrophyllite),
RBD6 (mineral features: sericite/muscovite/illite/

Fig. 8 Geochemical evidential
layers with normalized values: (a)
Cu, (b) Pb, (c) Zn, and (d) B
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smectite), and RBD8 (mineral features: carbonate/chlorite/
epidote) were used to delineate argillic, phyllic, and
propylitic hydrothermal alteration zones (van der Meer
et al. 2012). The RBD ratios have been derived based
on Crowley et al. (1989) as follows:

RBD5 ¼ band4þ band6

band5
ð12Þ

RBD6 ¼ band5þ band7

band6
ð13Þ

RBD8 ¼ band7þ band9

band8
ð14Þ

A band ratio corresponding to band4/(band6+band9) was
used as well to map hydroxyl-bearing minerals (Abedi et al.
2013d). All alterations are shown respectively in Fig. 4a–d.

Since iron oxide minerals (e.g., goethite, hematite,
and jarosite) by processing of ETM+ images are better
localized and have higher resolution, the principal com-
ponent analysis (PCA) as a multivariate statistical tech-
nique is applied to image such alteration shown in
Fig. 5. Bands 1, 2, 3, and 4 of ETM+ images are in
the visible and near infrared (VNIR) region, and bands
5 and 7 are in the SWIR region as well. Six ETM+
bands as input (bands 1, 2, 3, 4, 5, and 7) were incor-
porated in the PCA method to generate iron oxide al-
tered areas (Abedi et al. 2013d).

Geochemical layer

To acquire geochemical information in the prospect area, 392
stream sediment samples were collected in a larger area (only
232 samples out of all locate in the studied area) and analyzed
for 15 elements under the supervision of the Geological
Survey of Iran (GSI). After statistically preparatory of all sam-
ples, it was found that three elements of Pb-Zn-B have more
correlation with Cu concentration in the region. Table 2 has
summarized the statistical characteristics of these elements,
while their linear correlation coefficient with each other are
presented in Table 3 showing high values respect to Cu ele-
ment. The histogram and probability plots of these elements
are shown in Fig. 6 indicating non-normal distribution of four
geochemical elements. The average linkage algorithm based
upon the average distance between cluster pairs was applied to
10 elements that have higher quality data in order to cluster

Table 4 PCA of stream sediment geochemical data for three main
components. Component 1 was considered as a geochemical layer in
final MPM

Component

C_1 C_2 C_3

B 0.708 0.370 0.119

Ba 0.747 −0.142 0.018

Co 0.243 0.851 −0.060
Cr 0.039 0.775 0.171

Cu 0.750 0.421 −0.235
Mo 0.182 0.152 −0.775
Ni 0.104 0.828 −0.086
Pb 0.845 0.168 −0.007
Sn 0.228 0.246 0.696

Zn 0.450 0.468 0.168

% of variance ∼40 ∼15 ∼12

Fig. 9 Geochemical evidential layer extracted from the first component
of PCA analysis
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them in some groups. The variations within groups are low but
between them are expected to be significant. The acquired
dendrogram of clustering method is shown in Fig. 7, in which

close similarity was observed between Cu/Pb/Zn and B. The
geochemical layers of these elements shown in Fig. 8 were
prepared to be incorporated in the final MPM map. All layers

Fig. 10 Evidential geophysical
layers: (a) downward continued
magnetic data, (b) analytic signal
of magnetic data, (c) resistivity,
and (d) potassium radiometry. All
layers were transformed to the
interval of [0,1]
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have been plotted linearly at interval of [0,1] to not change the
original distribution pattern of each element, in all which
higher values correspond to more favorable mineral potential
zones. It is worth mentioning that several algorithms have
been developed to transform the geochemical data into a spe-
cific interval (Parsa et al. 2016a, b). Finally, the PCA algo-
rithm was applied to 10 elements in order to extract main
geochemical component related to Cu ore occurrences in the
region. Table 4 presents three main components that show
67 % variance of all data. First component (C_1) corresponds
to higher weights of four elements of Cu/Pb/Zn and B. This

component shown in Fig. 9 could appropriately enhance the
location of probable zones of copper occurrences in the region
and was considered as another geochemical layer in MPM.

Geophysical layer

Alteration zones in porphyry-type deposits have a spe-
cial magnetic signature that causes a specific pattern in
magnetic maps. These magnetic patterns coincide with
(1) increased concentration of secondary magnetite con-
tent in potassic/propylitic alteration zones, (2) magnetite

Fig. 11 Decision tree plot for preparation of final MPM. The weight of each evidential layer has been superimposed on the flowchart

Table 5 The normalized weight
of each criterion acquired from a
group of geoscientist decision
makers

Criterion Weight Sub-criterion Weight Sub-criterion Weight Final weight

Geology 0.367 Surface study 0.570 Fault 0.340 0.071

Rock type 0.660 0.138

Remote sensing 0.430 Argillic 0.200 0.032

Phyllic 0.400 0.063

Propylitic 0.100 0.016

Hydroxyle 0.150 0.024

Iron oxide 0.150 0.024

Geophysics 0.306 Radiometry 0.200 Potassium 1.000 0.061

Magnetic 0.350 Downward 0.530 0.057

Analytic signal 0.470 0.050

FDEM 0.450 Resistivity 1.000 0.138

Geochemistry 0.327 Stream sediment 1.000 Cu 0.270 0.088

B 0.187 0.061

Pb 0.177 0.058

Zn 0.175 0.058

C_1 0.191 0.062
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destruction in other lateral alterations, or (3) high mag-
netite in the main intrusive plutons responsible for min-
eralization (Daneshfar 1997; Pazand et al. 2012; Abedi
et al. 2013d).

The airborne geophysical survey (magnetometry and
potassium radiometry) was conducted in 1977 under su-
pervision of the Atomic Energy Organization of Iran.
Flight line spacing and height of survey were chosen
500 and 150 m, respectively. The collected data were
in the form of a 1:50,000 scale geophysical contour
maps and were converted into digital form by using
on-screen digitization of contour lines. Thus, a set of
2601 data points were chosen to downward continued
the reduced-to-pole (RTP) magnetic map at a height of
150 m to the ground surface in order to enhance subtle
changes of earth’s magnetic field arising from near sur-
face causative sources. The main characteristic of the

RTP technique is that it eliminates the dipolar nature
of magnetic anomalies, converts their asymmetric shape
to a symmetric shape, and put positive pole over the
main source of anomaly. The 150-m stably downward
continued map applied on the RTP data is shown in
Fig. 10a (Abedi et al. 2013d).

Since the data integration of various evidential layers
attempts to enhance probable near surface causative ore
mineralization targets and as well these layers provide
near surface exploratory information, the gradient of
magnetic data aims to enhance such near surface
effect. Therefore, the analytic signal method which
was extensively discussed by Nabighian (1972, 1974,
1984) was applied to the downward continued data, in
which high values of Fig.10b correspond to high poten-
tial zones of mineral occurrences (Abedi et al. 2013d).
Since our case study is a part of a regional-scale pros-
pect, high values of magnetic data were corresponded to
high potential zones in order to enhance simultaneously
potassic/ propylitic alterations and intrusive plutons re-
sponsible for Cu mineralization. These traces can play
an important role in regional-scale Cu prospect to de-
crease the whole area of study into some potential zones
(or deposit-scale zones). But in deposit-scale Cu pros-
pect since the aim is to optimally locate boreholes lo-
cation, the phyllic alteration is one of the main evi-
dences of the Cu-bearing mineralization. Generally, this
alteration is depleted of magnetite ore and subsequently
reduces the magnetic susceptibility property of the main
source of mineralization. Therefore, lower values of
magnetic anomalies correspond to such alteration and
recommended for exploratory borehole (Abedi et al.
2013e, 2015b).

FDEM data provide advantageous information about
the electrical resistivity distribution for anomaly map-
ping in a variety of fields especially mineral explora-
tion. The lateral resistivity variation can be displayed
by apparent resistivity maps at single frequencies in
FDEM survey (Siemon 2001). The line spacing of the
conducted EM survey by Aerodat (a Canadian compa-
ny) on behalf of the national Iranian copper industries
company (NICICo) is 200 m, the sensor elevation was
30 m, and 5-frequency data acquisit ion system
employed two vertical coaxial pairs at 912 and
4445 Hz, and three horizontal coplanar coil pairs at
516 Hz, 4131 Hz, and 32.37 KHz. Based upon the
viewpoints of decision making team, the acquired appar-
ent resistivity map at frequency 4445 Hz shown in
Fig. 10c was processed to be included in the MPM.

Fig. 12 The plot of index overlay (Io) MPM, on which the locations of
active Cu mines have been superimposed
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Hydrothermal alteration minerals (i.e., sericite, biotite,
K-feldspars, and many K-bearing clay minerals) contain
potassium (K) in porphyry-Cu deposits and are abundant
particularly in the sericite zone. Therefore, K radiometric

map shown in Fig. 10d can be used as a tool for explo-
rat ion of such geological feature (Ranjbar and
Honarmand 2004; Ranjbar et al. 2011; Abedi et al.
2013d). Chemical weathering also results in K

Fig. 13 The plot of fuzzy MPM,
on which the locations of active
Cu mines have been
superimposed. Different gamma
values of 0.8, 0.85, 0.90, and 0.95
were assumed to prepare MPMs
of (a), (b), (c) and, (d)
respectively
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enrichment; therefore, it is preferable to use Th/K ratio.
The Th radiometric map was not in access for decision
makers to be used in this study.

Mineral potential mapping

To integrate sixteen prepared layers extracted from vari-
ous geology, satellite imagery, airborne geophysics, and
geochemical data, a decision matrix of x2601 × 16 was con-
structed in which 2601 alternatives and 16 evidential
layers as criteria were considered. Each alternative corre-
sponds to a location point with a specific coordinate in the
study area. The decision tree map shown in Fig. 11 pre-
sents graphically the procedure of preparation final MPM.
A group of geoscientists were gathered in a decision mak-
ing team in order to assign the relative weigh of each
criterion. These weights are tabulated in Table 5 such that
∑j = 1
16 wj= 1. Before applying the VIKOR method, the in-

dex overlay (Io) method as a linear combination of the
weighted layers was applied to prepare final MPM. The
output was plotted in Fig. 12 in which higher potential
zones with more favorability for Cu occurrences corre-
spond to higher values of the final MPM.

Another powerful algorithm for data fusion of various
exploratory geo-dataset is the application of fuzzy oper-
ators in MPM (Abedi et al. 2013a). Here, fuzzy sum
operator was used separately to integrate sub-criteria of
each geology, airborne geophysics, and geochemical da-
ta. The produced fuzzy sum maps of these three criteria
finally were integrated by fuzzy gamma (γ) operator.
Four different values (γ= 0.80, 0.85, 0.90, 0.95) were
assigned to produce fuzzy maps of Fig. 13. Higher nor-
malized values of MPM maps are in good agreement
with the location of active copper mines in the area.

The conventional and the extended VIKOR methods
were used to produce MPM shown in Fig. 14. Similar
to previous generated MPM maps by the index overlay
and the fuzzy methods, high potential zones of both
VIKOR maps correspond to the location of twelve ac-
tive and working mines in the region. To better present
the procedure of application of the VIKOR method, an
illustrative example for a decision matrix of x10 × 16 is
put in Table 6. Two columns of the old and new
VIKOR contain the calculated values of Qi acquired
from the Eq. 8. These values are normalized at interval
of [0, 1] by Eq. 9 and finally plotted based upon those
specific coordinates of X (m) and Y (m).

Fig. 14 The plot of VIKOR MPM: (a) the conventional approach and (b) the extended version on both the locations of active Cu mines have been
superimposed

482 Page 16 of 21 Arab J Geosci (2016) 9: 482



T
ab

le
6

Il
lu
st
ra
tiv

e
ex
am

pl
e
of

ap
pl
yi
ng

V
IK

O
R
m
et
ho
d
in

M
PM

fo
r
16

cr
ite
ri
a
as

ev
id
en
tia
ll
ay
er
s
an
d
10

al
te
rn
at
iv
es

A
lte
rn
at
iv
e

C
ri
te
ri
a/
su
b-
cr
ite
ri
a

V
IK

O
R
M
P
M

N
um

X
(m

)
Y
(m

)
F
au
lt

R
oc
k

A
rg
.

Ph
y.

Pr
o.

H
yd
.

Ir
on

Po
t.

D
C
.

A
S.

R
es
.

C
u

B
P
b

Z
n

C
_1

O
ld

V
.

N
ew

V
.

1
38
41
36

33
07
75
5

0.
00
9

0.
80
0

0.
22
1

0.
53
8

0.
99
7

0.
24
5

0.
66
4

0.
18
2

0.
38
0

0.
06
7

0.
00
9

0.
10
5

0.
51
2

0.
08
5

0.
21
2

0.
45
9

0.
15

0.
16

2
39
82
24

33
17
03
7

0.
00
9

0.
00
9

0.
49
4

0.
63
2

0.
74
6

0.
28
8

0.
33
3

0.
36
0

0.
20
6

0.
04
1

0.
47
5

0.
11
5

0.
27
0

0.
10
2

0.
23
2

0.
47
8

0.
77

0.
80

3
39
91
99

33
18
13
7

0.
00
9

0.
00
9

0.
23
8

0.
55
3

0.
74
2

0.
05
4

0.
61
7

0.
41
1

0.
19
1

0.
02
2

0.
50
0

0.
07
8

0.
26
9

0.
06
6

0.
16
0

0.
43
5

0.
85

0.
88

4
38
90
70

33
18
23
4

0.
20
0

0.
00
9

0.
52
3

0.
54
1

0.
72
8

0.
34
7

0.
85
4

0.
70
9

0.
19
7

0.
03
8

1.
00
0

0.
41
4

0.
24
5

0.
15
2

0.
25
6

0.
73
7

0.
50

0.
50

5
40
34
05

33
02
58
4

0.
00
9

0.
00
9

0.
55
4

0.
37
2

0.
72
1

0.
39
3

0.
41
0

0.
70
0

0.
39
9

0.
18
0

0.
71
0

0.
05
3

0.
16
1

0.
02
8

0.
17
3

0.
43
5

0.
72

0.
74

6
38
07
98

33
11
67
0

1.
00
0

0.
20
0

0.
54
8

0.
30
8

0.
71
8

0.
37
4

0.
67
3

0.
07
5

0.
33
9

0.
03
1

0.
00
9

0.
10
1

0.
56
9

0.
04
5

0.
21
5

0.
33
2

0.
25

0.
27

7
38
46
02

33
06
08
8

0.
60
0

0.
60
0

0.
40
8

0.
26
8

0.
71
5

0.
46
5

0.
40
5

0.
30
9

0.
21
9

0.
08
7

0.
00
9

0.
08
8

0.
52
5

0.
06
6

0.
16
1

0.
37
4

0.
22

0.
26

8
40
20
00

33
07
58
3

0.
60
0

0.
80
0

0.
66
7

0.
10
6

0.
71
4

0.
43
6

0.
73
9

0.
53
9

0.
23
9

0.
08
3

0.
00
9

0.
05
7

0.
24
0

0.
04
5

0.
23
7

0.
40
1

0.
18

0.
20

9
40
35
35

33
17
54
4

0.
80
0

0.
60
0

0.
00
0

0.
00
8

0.
00
0

0.
00
0

0.
70
5

0.
89
6

0.
07
7

0.
05
9

0.
00
9

0.
00
1

0.
00
1

0.
00
5

0.
00
1

0.
00
1

0.
47

0.
44

10
39
56
77

33
02
65
4

0.
00
9

0.
00
9

0.
58
7

0.
31
8

0.
10
2

0.
23
8

0.
20
5

0.
55
6

0.
21
0

0.
01
5

0.
00
9

0.
04
2

0.
13
9

0.
03
8

0.
11
4

0.
34
8

1.
00

1.
00

Arab J Geosci (2016) 9: 482 Page 17 of 21 482



To evaluate the performance of the applied methods
in preparation of the final potential maps, the MPM
efficiency index (MPM E.I.) is suggested to compare
the produced maps. Such index is defined as:
MPM Efficiency Index %ð Þ

¼ w1 100−predicted area %ð Þ
þ w2 ore prediction rate %ð Þ ð15Þ

where ∑i = 1
2 wi= 1, and wi shows the relative importance

of each criterion. The prediction area corresponds to the
ratio of the occupied area of prospectivity map to the
whole study area. Ore prediction rate also corresponds
to the percentage of known mineral occurrences predict-
ed by the desired algorithm (or the ratio of the predict-
ed deposit sources to the all deposit numbers in the

studied region). Indeed, the MPM output is selected
based upon such index that simultaneously predicts the
highest numbers of the known deposit sources along
with the lowest areas as potential zones. In cases that
we chose w1 =w2 = 0.5 (the best unbiased weights), the
MPM E.I. values are more than 50 %. Higher values of
the index indicates that the produced MPM presents
betted the prospectivity zones of mineral occurrences.
Figure 15 shows the curve of this index versus the
MPM values for all applied algorithms, considering an
equal weight of 0.5 for each criterion. The extended
version of VIKOR method produced the highest index
equal to ∼80 %. The average and maximum values of
this index for all applied methods have been plotted in
Fig. 16, showing that the proposed approach have
higher values compared to the conventional methods.
The information of twelve active Cu mines summarized
in Table 1 have been used to calculate these index
values.

In this study, the data integration methods have been ap-
plied to the satellite imagery, the airborne geophysics, the
sparse pattern of collected geochemical samples, and geolog-
ical map with 1:100,000 scale. Therefore, the produced
MPMs could only enhance high potential zones of Cu miner-
alization that should be considered for further investigations.
In cases that ground-based geophysical data, field-based alter-
ation mapping, denser collection of geochemical sample
points, and using detailed geological map of the studied area
(or collecting high frequency signals in the region) are used, it
certainly yields the localization of high potential zones with
higher resolution in mineral exploration. In this study, since
we have used airborne data, low frequency data dominate the
resulted MPM maps; therefore, some working mines like
Hosen Abad could not be detected appropriately in the poten-
tial maps.
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Fig. 15 The MPM efficiency
index versus the MPM values for
all applied algorithms of Index
overlay (Io), Gamma values of
0.80, 0.85, 0.90, 0.95, and two
new techniques of VIKOR, i.e.,
the conventional (old) and the
extended (new) versions
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Fig. 16 The average and maximum values of the MPM efficiency index
for all applied algorithms of Index overlay (Io), Gamma values of 0.80,
0.85, 0.90, 0.95, and two new techniques of VIKOR, i.e., the
conventional (old) and the extended (new) versions
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Conclusion

The presented work discussed for the first time the ap-
plication of a well-known method in MCDM problems,
i.e., the VIKOR technique, which could appropriately
integrate various evidential layers extracted from a
multi-disciplinary data sets pertaining to the central of
Iran. The straightforward formulations of two variants of
the method, i.e., the conventional and the extended ver-
sions, were explained in detail within the work. The
MPM outputs of the proposed method were compared
to the conventional methods of the index overlay and
the fuzzy, while properly could enhance high potential
zones responsible for copper occurrences in the region.
The localized potential zones were also in good agree-
ment with the locations of some active and working
copper mines in the area. Furthermore, the MPM effi-
ciency index as a tool of measuring performance of
each applied method was proposed to evaluate the suit-
ability of the MPMs. Such index considered simulta-
neously the predicted area and ore prediction rate as
main factors in final decision of exploration program.
It is worth to mention that the proposed approach could
better present the prospectivity map of Cu occurrences
in analogous with the conventional methods. As a con-
sequence, the VIKOR method can be an effective ap-
proach in mineral potential mapping when various ex-
ploration criteria must be incorporated in datasets.
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