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Abstract Earth science information used in mineral potential
mapping has an empirical component comprising an explora-
tion database and a conceptual component comprising an ex-
pert knowledge base. The hybrid neuro-fuzzy model com-
bines conceptual and empirical components of available earth
science information for predictive mineral potential mapping
effectively. This paper describes a neuro-fuzzy model, which
combines exploration data in the regional scale for copper
potential mapping in Kerman copper bearing belt in south of
Iran. Data layers or evidential maps are in six datasets namely
lithology, tectonic, airborne geophysics, ferric alteration, hy-
droxide alteration, and geochemistry. The modeling result was
1044 pixels selected as favorable in order to continue the
copper exploration in the study area; in other words, approx-
imately 11.7 % of the area was selected. Fifty six known
deposits out of 86 ones, equal to 65 % of all, were located in
favorable zone. Other main goals of this study were to deter-
mine how each input affects favorable output. For this pur-
pose, the histogram of each normalized input data with its
favorable output was drawn. The histograms of each input
dataset for favorable output showed that each information
layer has a certain behavioral pattern. These behavioral pat-
terns can be considered as regional copper exploration criteria.

Keywords Copper prospecting . Potential mapping . Hybrid
neuro-fuzzymodel . Evidential layer analysis . Behavioral
pattern

Introduction

Mineral exploration, as Knox-Robinson (2000) puts it, is a
multidisciplinary task requiring the simultaneous consider-
ation of numerous disparate geophysical, geological, and geo-
chemical datasets. Additionally, according to Brown et al.
(2000), a variety of sources such as remote sensing, airborne
geophysics, and large commercially available geological and
geochemical data are increasing the size and complexity of
regional exploration data.

Earth science information used in the mineral potential
mapping has two components, empirical and conceptual.
The empirical components are composed of a database that
is derived from exploration activities. The relationships be-
tween data of exploration database are the base of the data-
driven approaches. The conceptual components comprised
expert’s knowledge. They are the base of knowledge-driven
approaches. The two approaches are generally considered di-
chotomous and therefore implemented in mutual exclusion.
Consequently, a significant proportion of available informa-
tion remains underutilized in both types of approaches to min-
eral potential mapping (Porwal et al. 2004).

Some of the spatial modeling techniques that have been
proposed for mineral potential mapping are weights of evi-
dence (Bonham-Carter et al. 1988, 1989; Agterberg et al.
1990; Xu et al. 1992; Rencz et al. 1994; Pan 1996; Raines
1999; Carranza and Hale 2000; Tangestani and Moore 2001;
Carranza 2004; Agterberg and Bonham-Carter 2005; Jianping
et al. 2005; Nykanen and Raines 2006; Porwal et al. 2006;
Roy 2006; Nykänen and Ojala 2007; Raines et al. 2007; Oh
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and Lee 2008; Harris et al. 2008; Benomar et al. 2009),
Bayesian network classifiers (Porwal et al. 2006), logistic re-
gression (Chung and Agterberg 1980; Agterberg 1988; Oh
and Lee 2008), fuzzy logic (An et al. 1991; Bonham-Carter
1994; Eddy et al. 1995; D’Ercole et al. 2000; Knox-Robinson
2000; Luo and Dimitrakopoulos 2003; De Quadros et al.
2006; Carranza et al. 2008; Nykänen et al. 2008), artificial
neural networks (Singer and Kouda 1996; Harris and Pan
1999; Brown et al. 2000, 2003; Rigol-Sanchez et al. 2003;
Behnia 2007; Skabar 2007; Oh and Lee 2008), and evidence
theory model (Moon 1990, 1993; An and Moon 1993; Moon
and So 1995; Porwal et al. 2003; Carranza et al. 2005).

The hybrid neuro-fuzzy model combines conceptual and
empirical components of available earth science information
for predictive mineral potential mapping effectively (Porwal
et al. 2004). Most of mineral potential mapping studies were
focused onmodeling and evaluation of the model. These stud-
ies did not ponder on the effect of evidential layers on model-
ing output.

This paper describes a neuro-fuzzy model, which combines
exploration data in the regional scale for copper potential map-
ping in Kerman copper bearing belt in south of Iran. Finally,
the effect of each input parameter on the result (final map) will
be discussed. The effects of the input parameters and their
interpretation lead to a better understanding of copper miner-
alization mechanisms in the study area.

Study area

This paper studies a part of Urumieh–Dokhtar magmatic arc
(Fig. 1), which is of the Alpine–Himalayan orogenic belt
which resulted from the closure of the Neotethyan Ocean
between Arabia and Eurasia (Sengor et al. 1988; Agard
et al. 2005; Omrani et al. 2008). The protracted convergence
history between Arabia and Eurasia comprised a long-lasting
period of subduction followed by collision during the
Tertiary (Omrani et al. 2008). Two magmatic belts dominat-
ed by calc-alkaline igneous rocks (Berberian and Berberian
1981) run parallel to the Main Zagros Thrust on the
Eurasian upper plate and cut across the central Iran.
Urumieh–Dokhtar magmatic arc, which is classified as an
Andean magmatic arc (Alavi 1980; Berberian et al. 1982),
forms an elongate volcanoplutonic belt running from eastern
Turkey to south east Iran and has been interpreted as a
subduction-related feature (Takin 1972; Berberian and
Berberian 1981; Berberian et al. 1982). Magmatism in
Urumieh–Dokhtar magmatic arc occurred mainly during
the Eocene but resumed later, after a dormant period, during
the Upper Miocene to Plio-Quaternary. According to geo-
logical and exploration studies (e.g., Tangestani and Moore
2002a, b; Hezarkhani 2006a, b; Atapour and Aftabi 2007;
Boomeri et al. 2009), Urumieh–Dokhtar magmatic arc has
great potential for porphyry-Cu deposits.

Some of the porphyry-Cu deposits in this magmatic arc that
have been reported in the literature include the SarCheshmeh,
Meiduk, Sungun, Chah-Firuzeh, and Reagan deposits
(Hezarkhani 2006a, b, 2009; Boomeri et al. 2009; Afzal
et al. 2011). Unpublished reports by National Iranian Copper
Industries Company (NICICO) indicate that economically
exploited porphyry-Cu deposits in Urumieh–Dokhtar mag-
matic arc contain copper grades ranging between 0.15 and
0.8 %. Associated igneous rocks vary in composition and
are mainly granodiorites, quartzdiorites, diorites, diorite por-
phyry, granite-porphyry, monzonites, quartz-monzonites, and
granites with ages of Cretaceous, Eocene, Oligocene–
Miocene, and Neogene, which are spatially and genetically
related to porphyry-Cu deposits in Urumieh–Dokhtar mag-
matic arc. In this magmatic arc, volcanic rocks consist of
mainly pyroclastics, trachyandesites, trachybasalts, andesite-
basalts, andesite lavas, tuffaceous sediments, dacites,
rhyodacites, rhyolites, rhyolite tuffs, agglomerate tuffs, ag-
glomerates, ignimbrites, basaltic rocks, and andesites where
the age of Eocene and Neogene are spatially associated with
porphyry-Cu deposits, and some deposits are hosted by these
volcanic rocks (Yousefi and Carranza 2014).

The most significant features, related to mineralization, are
the sedimentation, magmatic activity, and structural displace-
ment that occurred during the Tertiary. The granodiorite and
diorite are the most common intrusive rocks. The porphyry-
Cu mineralization is related to regional scale faults, and the
most important fault trends in the study area are N–S, NE–
SW, E–W, and NW–SE, respectively (Jafari Rad and Busch
2011). The intrusive bodies are frequently hydrothermally al-
tered where two fault systems intersect (Titley and Beane
1981). These locations have the best situation for porphyry
mineralization. Hydrothermal alteration zoning follows the
Lowell and Guilbert pattern (Lowell and Guilbert 1970).

Method: neuro-fuzzy hybrid model

Fuzzy logic (FL) and artificial neural network (ANN) are ba-
sically model-free and nonlinear estimators that mostly aim at
achieving a stable and reliable model which can justify the
noise and uncertainties in the complex data (Tahmasebi and
Hezarkhani 2012).

A fuzzy inference system simulates humans’ understand-
ing of modeling concepts of informative components through
applying fuzzy membership functions and if–then rule state-
ments (Porwal et al. 2006; Jang et al. 1997). So far, various
fuzzy inference systems have been introduced such as
Mamdani (1974), Mamdani and Assilian (1975), Sugeno
and Kang (1988), Sugeno and Tanaka (1991), Takagi and
Sugeno (1985), Tsukamoto (1979), and Zadeh (1973).
However, the Mamdani (Mamdani, 1974; Mamdani and
Assilian 1975) and Takagi–Sugeno–Kang (Sugeno and
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Kang 1988; Sugeno and Tanaka 1991; Takagi and Sugeno
1985) methods are the most widely used ones. In the
Mamdani method, both comparison (if) and result (then) state-
ments have fuzzy rules, while in the Takagi-Sugno method,
the comparison part uses fuzzy rules, whereas the result part is
a mathematical function, commonly a first degree polynomial
function (Jang et al. 1997; Buckley and Feuringb 1999).
Fuzzy inference system (FIS) (Fig. 2) is composed of five
functional blocks namely a rule base (containing a number
of fuzzy if–then rules), a database (defines the MFs of the
fuzzy sets used in the fuzzy rules), a decision-making unit
(performs the inference operations on the rules), a
fuzzification interface (to calculate fuzzy input), and a
defuzzification interface (to calculate the actual output) (Jang
1993; Tahmasebi and Hezarkhani 2012). It is obvious that
some problems such as determining the shape and the location

of membership functions (MFs) for each fuzzy variable are
involved with FL. The FL efficiency basically depends on the
estimation of premise and the consequent parts (Tahmasebi
and Hezarkhani 2012).

The ANN also has some advantages such as its capability
of learning and high computational power. The problems like
the number of hidden layers, the number of neurons in each
hidden layer, learning rate, and momentum coefficient are also
involved with ANN modeling (Tahmasebi and Hezarkhani
2012).

Jang (1992, 1993) combined both FL and ANN to produce
a powerful processing tool, named adaptive neuro-fuzzy in-
ference system (ANFIS) (Fig. 3). ANFIS uses an ANN learn-
ing algorithm to set fuzzy rule with the appropriate MFs from
input and output data (Tahmasebi and Hezarkhani 2012).
Actually, this technique is an appropriate solution for function

Fig. 2 Fuzzy inference system
(FIS) (Jang 1993)

Fig. 1 Location of study area in
Iran
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approximation in which a hybrid learning algorithm is applied
for the shape and the location of MFs (Buragohain and
Mahanta 2008; Ying and Pan 2008; Tahmasebi and
Hezarkhani 2012). This study applies ANFIS to map favor-
able copper mineralization areas.

Datasets and analysis

Data preparation

Data layers or evidential maps are in six datasets namely li-
thology, tectonic, airborne geophysics, ferric alteration, hy-
droxide alteration, and geochemistry (Fig. 5). The geological
base map used for lithological layer was 1:250.000 geological
map provided by Geological Survey of Iran (GSI). For a com-
plete cover of the study area, Anar (Soheyli 1981), Rafsanjan
(Zohrehbakhsh 1987), and Sirjan (Soheyli 1985) 1:250.000
geological maps were used. These maps were digitized and
studied for lithology types; finally, nine groups were selected
based on Singer diagram (2008) (Fig. 4). This diagram was
proposed by Singer after studying host rocks of 407 known
copper deposits. The lithological groups were selected based
on frequency and availability of host rocks. Figure 5a shows
the lithological map according to these groups.

Tectonic effect is another mineralization controller. Faults
show a high rate of tectonic activity which means, if a large
number of faults exist in a region, a high tectonic activity is
expected. Therefore, at the first step, faults were extracted
from geological map and modified considering Landsat 8 sat-
ellite image. Then, fault density was mapped according to
extracted data. The results show the tectonically more or less
crushed zones (Fig. 5b).

Airborne magnetic data is the third dataset used in this
study. This data was extracted by Atomic Energy
Organization of Iran (AEOI) during 1977 and 1978. The flight
lines distance and the sensor altitude were about 500 and

120 m, respectively. According to Clark (1997), there is an
axial conformity between magnetic anomaly and reduction to
pole of magnetic data; RTP was used as an evidential map in
data analysis. Figure 5c represents the RTP map of the study
area.

Landsat 8 images are the fourth dataset used, which were
processed after correction. Two evidential maps were derived
from processed images as hydroxide and iron oxide alteration.
Hydroxide alteration has a high reflection in band 6 and a
strong absorption in band 7; therefore, by dividing band 6 into
band 7, one can distinct the effect of the hydroxide alteration
(Fig. 5d) (Chica-Olmo and Abarca 2002; Farrand 1997). It is
similar about the iron oxide alterations. They have high reflec-
tion in band 4 and strong absorption in band 2. Therefore,
band 4/band 2 ratio is used to distinguish iron oxide alteration
(Fig. 5e) (Chica-Olmo and Abarca 2002; Farrand 1997). The
results of these processes are demonstrated as grayscale im-
ages in which the white color represents the alteration zones.

Stream sediment geochemical data is the last dataset used
in this study. This data is extracted from the eleven 1/100,000
sheets belonging to Dehaj, Robat, Anar, Shahr-e-Babak,
Rafsanjan1, Rafsanjan2, Pariz, Chahar-Gonbad, Balvard,
Bardsir, and Baft which were published by GSI. Outlier sam-
ples of copper grade were removed from the dataset and all the
samples were attributed to their basin. The results were used as
an evidential map (Fig. 5f).

All evidential layers with continuous amounts are encoded
between 0 and 1 by using the flowing equation:

xnorm ¼ x–xminð Þ= xmax–xminð Þ

where x is the data which should be normalized and xmax and
xmin are the maximum and minimum of the original data,
respectively. Moreover, xnorm is the normalized data that is
transformed. Only for the lithology layer with discontinues
amount 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 are assigned for
the first to seventh lithology groups, respectively; however,
0.1 is assigned to any other host rocks.

Generation of feature vectors, training, and validation
data

Most GIS-based approaches to mineral potential mapping use
the concept of unique condition grids (Bonham-Carter and
Agterberg 1990). In the context of hybrid neuro-fuzzymodels,
each unique condition is considered a feature vector, whose
components are defined by the attributes of evidential maps
comprising the unique condition. The number of dimensions
of feature vectors is therefore equal to the number of input
evidential maps (Porwal et al. 2004).

The six evidential maps encoded as class scores were dig-
itally superposed. All evidential maps were combined to gen-
erate 8894 six dimensional feature vectors. Because the

Fig. 3 Simplified ANFIS architecture used in hybrid neuro-fuzzy model
for mineral potential mapping
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operation was carried out in a GIS environment, an associated
database was automatically generated, which stored the com-
ponents of the feature vectors.

Target vectors define output vectors to which input feature
vectors are mapped by an adaptive neuro-fuzzy inference sys-
tem. Input feature vectors with known target vectors constitute
training vectors. Validation vectors, also known as target vec-
tors, are used exclusively for validating the training of an
adaptive neuro-fuzzy inference system.

Regarding mineral potential mapping, there is only one
single-dimensional binary target vector encoded as 1 or 0,
representing the presence or absence of a target mineral de-
posit, respectively. The feature vectors corresponding to pres-
ence or absence of a target mineral deposit constitute training/
validation vectors. These vectors are referred to as deposit or
non-deposit training/validation vectors, respectively.

In the methods like ANFIS which are based on trial and
error, several parameters should be changed during the model-
ing; therefore, the dataset needs to be validated to control the
ANFIS performance. The first subset is the training set by
which the network finds an input–output spatial relationship
by repetitive analysis of the training set (about 90 % of
training/validation dataset). The second subset is the valida-
tion set (about 10 % of training/validation dataset).

As Brown et al. (2003) sets it, a well-explored region must
be selected as the training/validation site. Accordingly,
Sarcheshmeh and Meyduk were selected as two training sites.
These sites contain 31 known copper indices and have been
explored by National Iranian Copper Industries Company
(NICICO) for many years and are among the most suitable
sites for training/validation. In these two regions, 1568 pixels
exist that used as training/validation data. 315 pixels show
deposits and 1253 remaining pixels show non-deposits.
Deposit pixels selected from known copper occurrences.

Also, based on an expert knowledge of genetic models of
the copper deposits, the feature vectors that are least likely
to be associated with the target mineral deposit type can be
selected as non-deposit pixels. Selected non-deposit locations
have been previously studied by NICICO and considered as
very low probability of hosting a copper mineralization.

Construction of ANFIS

Based on the prototypical ANFIS for mineral potential map-
ping, an adaptive neuro-fuzzy inference systemwas construct-
ed with six inputs and an output. The fuzzy inference system
of this network is Takagi–Sugeno type. Each input node con-
tains three bell-typed fuzzy membership functions (MFs) that
return the fuzzymembership value. Bell-shapedMFs are more
flexible than other MFs, because they have three free param-
eters to get adjusted. Fuzzy inference system (FIS) is generat-
ed by grid partition method. This method divides the target
space to maximum part. It means that all possible connections
were used for generating of FIS. These connections are made
by if–then rules. Used If–then rule layer was Takagi–Sugeno
type and combines outputs by a first-degree polynomial func-
tion. Figure 3 shows a simplified ANFIS architecture used in
modeling.

Network was learned by training data and training process
was controlled by validation data. Using validation data in
training process prevents overlearning error (Wang et al.
1994). Among 1568 used training/validation data, 1411 were
for training and 157 for validation.Minimizing the sum square
error (SSE) was the main training propose. Minimum SSE
was achieved after 14 training epochs so the learning was
stopped.

At the end of the 14th training epochs, the sum square error
for validation vectors was converged to a minimum of

Fig. 4 Porphyry-Cu host rocks
frequency diagram (Singer et al.
2008)
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0.120749 and then rises again (Fig. 6). Therefore, 14 epochs
were selected for MPM process. The trained Takagi–Sugeno
type fuzzy inference system was used for MPM of all the
dataset available.

Results

All the study area feature vectors were classified by trained
ANFIS. Each of the outputs represents the favorability of
its related feature vector and indicates a pixel in final fa-
vorability map. All the outputs are rescaled to [0,1], then
the results less than 0.68 are considered as unfavorable,
and the results more than 0.68 are considered as favorable
ones. This threshold value was selected according to in-
flection point in the predictive classification value versus
cumulative percent area curve (Fig. 7). With this threshold,
the high favorability zones occupy 11.7 % of the study area
and contain all training deposit and about 84 % of valida-
tion deposits. The binary favorability map is shown in
Fig. 8.

Having received the final modeling result, the effect of
the input data on favorable areas was analyzed; therefore,
the histogram of normalized input data resulting in favor-
able or high potential output was drawn. Each input effect
on favorable area is represented in a diagram (Fig. 9).
Analyzing the diagrams shows that the behavior of the
input layers follows a special pattern, which means that
most of the copper mineralization is correlated with a
special range of the input data.

Discussion

Mineral exploration, nowadays, is infeasible with only
one information layer. For this purpose, various data
layers such as geology, geophysics, and geochemistry
must be considered. Earth science information that is used
in mineral potential mapping has an empirical component
comprising an exploration database and a conceptual
component comprising an expert knowledge base. The
hybrid neuro-fuzzy model combines conceptual and em-
pirical components for predictive mineral potential map-
ping effectively (Porwal et al. 2004).

In this paper, ANFIS was used to combine exploration data
in regional scale for copper potential mapping in the Kerman
copper bearing belt which has great potential for porphyry-Cu
deposits. Then, the effect of each input parameter on the result
was discussed.

Data layers or evidential maps are in six datasets in-
cluding lithology, tectonic, airborne geophysics, ferric al-
teration, hydroxide alteration, and geochemistry, and the
study area is comprehensively covered by these datasets.
The adaptive neuro-fuzzy inference system in the present
application classifies an input feature vector as favorable
or unfavorable with respect to copper deposits.

The modeling result was 1044 pixels selected as favor-
able in order to continue the copper exploration in the
study area; in other words, approximately 11.7 % of the
area was selected. Fifty six known deposits out of 86
ones, equal to 65 % of all, were located in favorable zone.

One of the main goals of this study was to determine
how each input affects favorable output. For this purpose,
the histogram of each normalized input data with its favor-
able output was drawn (Fig. 9). These histograms show the
favorable pixel frequency for each input layers. The result

Fig. 6 Number of training
epochs versus SSE for training
and validation vectors

Fig. 5 Evidential layers after processing the exploration data (a
lithological maps, b faults density, c magnetic RTP, d OH alteration, e
Fe alteration, f geochemistry of copper)

R
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was behavioral patterns extracted from each input informa-
tion layer (evidential map) with the copper deposit potential
viewpoint. These diagrams are discussed continuously.

& According to the histogram in Fig. 9a, copper min-
eralization events match four host rocks: quartz
monzonite, andesite, dasite, and granodiorite; these
findings match the host rocks of large mines such

as Sarcheshmeh and Meyduk (Hezarkhani 2006c;
Hassanzadeh 1993).

& Review of fault density diagram (Fig 9b) which re-
flects the intensity of tectonic activity indicates that
the favorable zones are located in the lowest crunch
ones. Therefore, it is assumed that intense tectonic
ac t iv i t ies reduce the probabi l i ty of copper
mineralization.

Fig. 8 Binary favorability map

Fig. 7 Variation of cumulative
percent area with predictive
classification values. Inflection
point marked by an arrow
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& According to the magnetic RTP data from Fig. 9c, the
probability of copper occurrences matches with non-
magnetic anomalies. This reduction in magnetism or mag-
netic depletion is due to the destruction of magnetite by
hydrothermal solutions (Thoman et al. 2000).

& Figure 9d, e expectedly demonstrates that high levels
of alteration derived from Landsat 8 are correlated
with favorable copper potential zones.

& Figure 9f indicates that areas with high favorability
is merely not correlated with the very low grade
copper values from stream sediment.

Finally, the results of Fig. 9 can be considered as
regional copper exploration criteria.

Conclusion

An adaptive neuro-fuzzy inference system (ANFIS) was pre-
sented for modeling the copper potential in Kerman copper
bearing belt. The results of the modeling were selecting 1044
pixels as favorable zones, meaning 11.7 % of the study area.
Besides, 56 out of 86 copper indices (approximately 65 %)
were located in favorable zones.

Most of the mineral potential mapping studies involve
modeling and evaluation of the model. In this paper, in addi-
tion to these, the output of modeling in relationship with input
layers was discussed. Therefore, the histograms of each input
dataset for favorable modeling output showed that each infor-
mation layer has a certain behavioral pattern.

Fig. 9 The histogram of the
normalized input data related to
the favorable pixels regarding
copper potential (a lithological
maps, b faults density, cmagnetic
RTP, d OH alteration, e Fe
alteration, f geochemistry of
copper)
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Behavioral pattern of copper deposits is made from the
distribution and types of rocks, mineralization, and alteration
zones. Every evidential layer shows a part of this pattern.
Therefore, these patterns can be considered as regional copper
exploration criteria.
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