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Abstract This paper describes a GIS-based application of a
fuzzy analytical hierarchy process (AHP) tomap porphyry-Cu
prospectivity in the Dananhu metallogenic belt, NW China.
Based on a model of porphyry-Cu mineralization, evidential
layers were derived from geological, geochemical, and geo-
physical data. These layers were subsequently assigned
weights by implementing a fuzzy AHP method using knowl-
edge from three experts in porphyry-Cu exploration. After
obtaining normalized weights, different fuzzy operators were
tried to combine the weighted evidential layers into potential
maps, which were then compared and evaluated by
predication-area (P-A) plots. Subsequently, a ternary map
was generated by defuzzification of the optimum
prospectivity map as selected by the P-A plot; this ternary
map shows zones of high, moderate, and low favorability for
porphyry-Cu deposits in the study area. To further evaluate the
results, potential zones were analyzed for two-dimensional
spatial domain. The results demonstrate that the fuzzy AHP
method can be effectively applied to mineral prospectivity
mapping in vaguely known areas.

Keywords Fuzzy analytical hierarchy process . Mineral
prospectivitymapping . Porphyry-Cu deposits . Dananhu
metallogenic belt

Introduction

Mineral prospectivity mapping (MPM) aims to delineate tar-
get areas that are most likely to contain mineral deposits of a
certain type in the region of interest. To achieve this goal, one
of the challenges in MPM is to assign weights to the individ-
ual evidential layers that are used as indictors. A variety of
methods are used to weight individual evidential layers and to
integrate them into a single potential map. These methods can
be categorized into three types (Bonham-Carter 1994;
Carranza 2008; Yousefi and Carranza 2015c). (1)
Knowledge-driven MPM methods qualitatively assess the re-
lationship between each evidential layer and the presence of
deposits of the type sought based on expert knowledge.
Boolean logic (Bonham-Carter 1994), index overlay
(Carranza et al. 1999), fuzzy logic (An et al. 1991; Knox-
Robinson 2000), wildcat mapping (Carranza and Hale 2002;
Carranza 2010), and outranking method (Abedi et al. 2013a)
are examples of knowledge-driven MPM methods, which are
properly used in frontier or less-explored areas (so-called
greenfields) with no or very few mineral deposits of the de-
sired type. (2) Data-driven MPM methods analyze and quan-
tify spatial associations between each evidential layer and the
locations of known deposits that share a common genesis. The
ultimate aim of this process is to obtain a mineral potential
map by combining quantified spatial associations. Data-
driven MPM methods include weights of evidence (Liu
et al. 2014; Zuo 2011), evidence belief functions (Carranza
2014; Carranza and Hale 2003; Liu et al. 2015), logistic
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regression (Agterberg and Bonham-Carter 1999; Carranza
and Hale 2001), neural networks (Porwal et al. 2003a;
Singer and Kouda 1996), etc. These methods are commonly
applied in well-explored areas with sufficient known mineral
deposits of the type sought. (3) There are other methods that
assign weights to evidential layers using neither known min-
eral occurrences nor the judgments of experts (Yousefi and
Carranza 2014, 2015a, b, c; Yousefi and Nykänen 2015).

The knowledge and data-driven MPM methods each have
their weaknesses in application. In terms of data-driven
methods, enough known mineral deposits are needed as
Btraining points^ to ensure well performance. For the
knowledge-driven methods, the assignment of meaningful
weights to each evidential layer is a highly subjective exercise
that usually involves trial and error, even in cases where
Breal-expert^ knowledge is available, and particularly when
a number of different experts are involved. Nevertheless, the
analytical hierarchy process (AHP) proposed by Saaty (1980)
can resolve this difficulty in evaluating the relative impor-
tance of each evidential layer, aided by making pairwise com-
parisons (Carranza 2008). In addition, this method is straight-
forward for decision-makers (DMs) to use to structure a com-
plex problem into a systematic hierarchy using the AHP tech-
nique. Despite of the above strengths, the AHP is criticized
for expressing human judgment in crisp values in that DMs
usually feel more confident to provide fuzzy judgments than
crisp numbers (Dagdeviren 2008; Wang et al. 2008). As a
result, fuzzy AHP and its extensions have been proposed to
solve fuzzy justification problems (Laarhoven and Pedrycs
1983; Buckley 1985; Chang 1996; Xu 2000). Chang’s
(1996) extent analysis for fuzzy AHP is applied in this study,
which has proved to be a useful tool in mineral prospectivity
mapping (Abedi et al. 2013b; Najafi et al. 2014; Pazand et al.
2014).

The purpose of this study is to highlight high potential
zones of porphyry-Cu depos i t s in the Dananhu
metallogenic belt, NW China, where only five porphyry-
Cu deposits have been discovered. For this purpose, a fuzzy
AHP method was applied to determine the weights of 12
evidential layers obtained from geological, geochemical,
and geophysical data, based on the opinions of three DMs
who are professionals in porphyry-Cu exploration.
Prospectivity maps were then generated by combining the
weighted evidential layers using fuzzy operators.
Subsequently, prediction-area (P-A) plot (Yousefi and
Carranza 2014, 2015a, b, c; Yousefi and Nykänen 2015)
was then used for comparison and evaluation of the results
to obtain the optimum result, and concentration-area (C-A)
model (Cheng et al. 1994) was used to determine the
thresholds of the optimum result for getting a ternary
prospectivity map (Yousefi and Carranza 2015b, c;
Yousefi and Nykänen 2015). Ultimately, the ability of the
applied method was demonstrated in a spatial domain.

Study area

Geological setting

The study area is located in the southern margin of the Turfan-
Hami (commonly abbreviated as TuHa) Basin in eastern
Tianshan, which contains parts of the Dananhumetallogenic belt
(Dong et al. 2010) and covers an area of about 15,800 km2

(Fig. 1). The region is characterized by extensive occurrences
of Quaternary gravel and aeolian sand covering an area of more
than 6500 km2, in which a number of massive sulfide and por-
phyry copper-zinc deposits were discovered. The region is chief-
ly composed of Devonian to Carboniferous volcanic and intru-
sive rocks with several genetically affiliated porphyry-Cu de-
posits of different sizes, including the Yandong, Tuwu,
Linglong, and Chihu deposits (Zhang et al. 2006). The base of
the belt is represented by basaltic to andesitic volcanic rocks,
with locally overlying Lower Carboniferous carbonates and cal-
careous mudstones (Mao et al. 2005). The structures of the re-
gion are dominated by a series of NW- and NE-trending strike-
slip faults, including theKanggurtag fault and theDacaotan fault.
Permian and older strata have been regionallymetamorphosed to
lower greenschist and prehnite-pumpellyite facies (Han et al.
2006). As far as the geological setting, theDananhumetallogenic
belt is similar to the Gobi desert of southern Mongolia, in which
a world-class Oyu Tolgoi Cu–Au–Mo porphyry deposit was
discovered. Generally, the Dananhu metallogenic belt has pro-
spective potential for porphyry-Cu deposits (Zhang et al. 2006).

Porphyry-Cu mineralization model

Porphyry-Cu deposits are formed by magmatic-hydrothermal
transport of metals along fractured conduits within porphyritic
intrusive rocks. Commonly, once the magma solidifies,
hydrothermal fluids are converted into porphyries and
its surrounding host rocks (Lindsay et al. 2014;
Yousefi and Carranza 2014).

In the Dananhu metallogenic belt, the heat sources for
porphyry-Cu mineralization were Carboniferous to Permian
intermediate-acid porphyritic intrusions, such as plagiogranite
and dioritic porphyrite, which provided heat and metal-
bearing magmatic-hydrothermal fluids for porphyry-Cu min-
eralization (Zhu 2003). The emplacement of deposits is pre-
dominantly controlled by proximity to NE-trending regional
faults, which facilitate the channeling of magma and the cir-
culation of hydrothermal fluids. In particular, the most impor-
tant structural zone, the Kanggurtag and Dacaotan faults along
which intense deformation, magmatic activity, and associated
mineralization took place, can be regarded as a favorable in-
dicator for the occurrence of porphyry-Cu deposits. Chen
(2006) and Xiao (2013) indicate that the porphyry-Cu miner-
alization is mainly hosted within Carboniferous intermediate–
basic volcanic rocks. In the formation of porphyry-Cu
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deposits, the process is commonly accompanied by hydrother-
mal alteration. The pattern of this alteration is characterized by
sericite, silicified, pyritized, and propylitic alteration.
Mineralogy and geochemistry show that the ore-bearing
plagiogranite porphyries have an affinity with the early
Carboniferous adakitic tonalitic rocks. It indicates that early
Carboniferous tonalitic rocks play an important role for
porphyry-Cu mineralization (Wang et al. 2015; Zhang et al.
2006). To summarize, the occurrence of heat sources, regional
faults, favorable host rocks, and alteration are essential for the
deposition of porphyry-Cu mineralization. The mineral as-
semblages of porphyry-Cu mineralization exhibit high con-
centrations of Ag, Au, Cu, Mo, Pb, and Zn, which are indica-
tor elements for porphyry-Cu mineralization (Xiao 2013;
Zhuang 2003; Zhuang et al. 2003 ). Additionally, geophysical
anomalies in the airborne magnetic and Bouguer gravity data,
represented by locally high magnetic and low gravity data, are
symptomatic of porphyry-Cu mineralization (Zhu et al. 2003;
Zhuang et al. 2003). The characteristics of porphyry-Cu min-
eralization discussed above are considered as a model that
informs the choice of spatial data as evidential layers.

A typical Porphyry-Cu deposit

The Tuwu porphyry-Cu deposit, which reserves about 2.04
million tons of copper at an average grade of 0.67 % Cu, is
one of the largest porphyry-Cu deposits in western China (Liu
et al. 2003; Wang et al. 2001). The Tuwu deposit is hosted in
the Carboniferous Qi’eshan Group, which can be divided into
three sections. The lowest section, exposed north of the
Kanggurtag fault, is composed of volcaniclastics and tuff with

minor biolithite and glutenite. The middle section is represent-
ed by basalt, andesite, and dacite. The composition of volcanic
rocks varies from calc-alkaline to alkaline. The upper section,
distributed south of the Dacaotan fault, is mainly composed of
sandstone and basalt with intercalated tuff and andesite (Wang
et al. 2001). The ore-bearing plagiogranite porphyries yielded
SHRIMP zircon U–Pb ages of 333±2 Ma and Re–Os iso-
chron ages of 323 ± 2.3 Ma (Liu et al. 2003; Rui et al.
2002a). Primary fluid inclusion indicates that mineralizing
temperatures are of 150 to 280 °C (Rui et al. 2002b). The
mineral assemblages are chiefly chalcopyrite, pyrite, chalco-
cite, molybdenite, quartz, and sericite. Wall-rock alteration is
divided into five zones from the core to the margin in se-
quence: quartz core zone, biotite zone, phyllic zone, argillite
zone, and propylitic zone (Wang et al. 2001).

Data and method

Data

In this study, the spatial dataset was derived from established
multi-source geological spatial databases containing geologi-
cal, geochemical, and geophysical data. Geological maps at a
scale of 1:200,000 were collected from the Bureau of Geology
andMineral Resources of Xinjiang. The stream sediment geo-
chemical data at a 1:200,000 scale were obtained from the
National Geochemical Mapping Project of China (Xie et al.
1997). Geophysical datasets include Bouguer gravity data and
airborne magnetic intensity data with a 2-km spatial
resolution.

Fig. 1 Simplified geological map of the study area (modified from Bureau of Geology and Mineral Resources of Xinjiang)
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Fuzzy AHP method

This study presents the extent fuzzy AHP (Chang 1996), in
which the weights of the nine-level fundamental scales of
judgments are expressed via the triangular fuzzy numbers
(TFNs) in order to represent the relative importance among
the hierarchy criteria (Karimi et al. 2011).

The steps involved in applying the fuzzy AHP in MPM
based on the paper published by Abedi et al. (2013b) are
summarized as follows.

Step 1. Construction of a hierarchy

In the first step, a complex decision problem is simplified
into a hierarchy of interrelated decision elements (criteria, de-
cision alternatives). A hierarchy has at least three levels: the
first hierarchy is the goal; the middle hierarchy refers to mul-
tiple criteria that define alternatives; and the final hierarchy
consists of decision alternatives (Albayrak and Erensal 2004).
The hierarchical structure established to represent the interre-
lationships in MPM for this study is illustrated in Fig. 2.

Step 2. Construct pairwise comparison matrix

A group of t decision-makers (DMp) compares
pairwise criteria and alternatives according to their rel-
ative importance with respect to a proposition, and uses

the fundamental comparison scale of nine levels (Table
1) (Carranza 2008). Each DM will individually con-
struct a pairwise comparison matrix (PCM), as shown
in Eq. (1), for each criterion:

DMp ¼
a11p a12p ⋯ a1mp
a21p a22p ⋯ a2mp
⋮ ⋮ ⋮ ⋮
am1p am2p ⋯ ammp

2
664

3
775p ¼ 3; 4;…; t; ð1Þ

where ai jp is the quotient of weights of the alternatives, m is
the number of alternatives for each criterion, and t is the num-
ber of DMs.

Step 3. Check for consistency ratio (CR)

If the pairwise comparison matrix DMp=(aijp)m×n satisfies
aijp=aikp×akjp for any i, j, k=1,…,m, then DMp is considered
to be perfectly consistent; otherwise, it is said to be inconsis-
tent. The consistency index (CI) is:

CI ¼ λmax −n
n−1

ð2Þ

where λmax is the maximum eigenvalue of DMp.
The final consistency ratio (CR) determines whether the

evaluations are sufficiently consistent, and is calculated as
the ratio of the CI and the random index (RI) (Table 2):

Fig. 2 Hierarchical structure of
mineral prospectivity mapping

Table 1 The fundamental scale
for pairwise comparisons (Saaty
1980)

Intensity of importance Definition

1 Equal importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance

2, 4, 6, 8 Intermediate values between the 2 adjacent judgments

Reciprocals of above values If activity i has one of the above nonzero numbers assigned
to it when compared with activity j, then j has the reciprocal
value when compared with i.
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CR ¼ CI

RI

If CR≤0.1, the consistency of a pairwise comparison ma-
trix is accepted; otherwise, the pairwise comparisons must be
revised in step 2.

It should be noted that the consistency of the
pairwise comparison judgments not only measures the
consistency of decision makers but also evaluates the
quality of the model (Albayrak and Erensal 2004;
Pazand et al. 2014).

Step 4. Construct fuzzy evaluation matrix

A fuzzy number M on R is a TFN if its membership func-
tion μM(x):R→[0, 1] is equal to

μM xð Þ ¼
x

m−l
−

l

m−l
; x∈ l; m½ �;

x

m−u
−

u

m−u
; x∈ m; u½ �;

0; otherwise;

8>><
>>:

9>>=
>>; ð4Þ

where l<<m<<u, l and u stand for the lower and upper
values of the support of M, respectively, and m gives the
modal value of the membership function μM(x). The tri-
angular fuzzy number can be denoted by (l, m, u). The
support of M is the set of elements {x∈R|l<x<u} (Chang
1996).

First, a comprehensive PCM is constructed by integrating
the grades of all DMs via Eq. (5). In this way, the PCM values
of DMs are transformed into TFNs to make the fuzzy evalu-
ation matrix:

li j ¼ min ai jp
� �

; mi j ¼ ∑
t

p ¼ 1

ai jp
t
; ui j ¼ max ai jp

� �
; Mij ¼ li j; mi j; ui j

� �
p ¼ 1;…; t; i ¼ 1;…;m; j ¼ 1;…;m

ð5Þ
where min (aijp) and max (aijp) indicate minimum andmax-

imum values of the PCMs prepared by DMs for each i and j,
respectively.

Second, compute the value of the fuzzy synthetic extent
with respect to the ith object of m alternatives for each crite-
rion via Eq. (6):

Si ¼ ∑
m

j¼1
Mij⊗ ∑

m

k¼1
∑
m

j¼1
Mk j

 !" #−1
i; j; k ¼ 1;…;m ð6Þ

where all the Mij are TFNs after construction of the
fuzzy evaluation matrix. Considering two TFNs,
M1=(l1, m1, u1) and M2=(l2, m2, u2), their operational
laws are as follows:

l1; m1; u1ð Þ⊗ l2;m2; u2ð Þ≈ l1l2;m1m2; u1u2ð Þ ð7Þ

l1;m1; u1ð Þ−1≈ 1

u1
;
1

m1
;
1

l1

� �
ð8Þ

Third, calculate the degree of possibility (V) of M2>>M1

via Eq. (9):

V M 2>>M 1ð Þ ¼
1; i f m2>>m1

0; i f l1>>u2
l1−u2

m2−u2ð Þ− m1−l1ð Þ ; otherwise

8><
>:

ð9Þ

To compare M1 and M2, it is necessary to consider both
values of V(M2>>M1) and V(M1>>M2).

Finally, the degree of possibility (V) that a convex fuzzy
number is greater than k convex fuzzy numbersMi(i=1, 2,…,
k) can be defined by the following equation:

V M >> M1;M 2;…;Mkð Þ
¼ V M >> M1ð Þ and M >> M2ð Þ and…and M >> Mkð Þ½ �
¼ minV M >> M1ð Þ i ¼ 1; 2;…; k

ð10Þ

Assume that d(Bi)=minV(Si>>Sk), k=1,…,m, and k≠ i.
The weight vector is then given by

W 0 ¼ d0 B1ð Þ;…; d0 Bmð Þð ÞT ð11Þ

Where Bi(i=1,…,m) has m elements.

Step 5. Calculate normalized weights

Via normalization, the normalized weight vectors are

W ¼ d B1ð Þ; …; d Bmð Þð ÞT ð12Þ

where W is a non-fuzzy number.
As pointed out by Wang et al. (2008), the weights deter-

mined by the extent analysis method do not represent the
relative importance of decision criteria or alternatives and
could not be used to give their priority, on condition that
irrational zero weights are assigned to some useful decision
criteria and alternatives.

Step 6. Using fuzzy operators

Table 2 Random index (RI) (Saaty 1980)

Number

1 2 3 4 5 6 7 8 9 10

RI 0.00 0.00 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49
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There are five fuzzy operators that are useful for integrating
the weighted evidential layers to generate the final potential
map: fuzzy AND, fuzzy OR, fuzzy algebraic product, fuzzy
algebraic sum, and fuzzy gamma (γ) (An et al. 1991; Bonham-
Carter 1994).

Prediction-area plot

The P-A method is a simple prediction rate-occupied
area plot, which can be used not only to compare and
evaluate the ability of different prospectivity models in
predicting mineral deposits, but also to assign weights

Table 3 Summary of classes and class scores with respect to evidence
layers

Evidential layer Class Class score

Host rock Volcanic rock (andesite, basalt,
augite andesite)

10

Buffer 1 km 8

Buffer 2 km 6

Buffer 3 km 4

Heat source Intrusive rocks by a composition
of diorite

10

Buffer 1 km 8

Buffer 2 km 6

Buffer 3 km 4

Intrusive rocks by a composition
of monzodiorite

8

Buffer 1 km 6

Buffer 2 km 4

Buffer 3 km 2

Intrusive rocks by a composition of A

monzonite and quartz monzonite o

Buffer 1 km 4

Buffer 2 km 2

Buffer 3 km 1

Alteration Silicified ± carbonated zone 10

Buffer 0.5 km 8

Buffer 1 km 6

Buffer 1.5 km 4

Hornfelsed ± silicified zone 7

Buffer 0.5 km 5

Buffer 1 km 3

Buffer 1.5 km 2

Zeolitic zone 4

Buffer 0.5 km 3

Buffer 1 km 2

Buffer 1.5 km 1

Structure (fault) Density >1.53 (length per unit area) 10

Density 1.36–1.53 (length per unit area) 9

Density 1.19–1.36 (length per unit area) 8

Density 1.02–1.19 (length per unit area) 7

Density 0.85–1.02 (length per unit area) 6

Density 0.68–0.85 (length per unit area) 5

Density 0.51–0.68 (length per unit area) 4

Density 0.34–0.51 (length per unit area) 3

Density 0.17–0.34 (length per unit area) 2

Density 0–0.17 (length per unit area) 1

Distance 0–1 km 7

Distance 1–2 km 6

Distance 2–3 km 5

Distance 3–4 km 4

Distance 4–5 km 3

Distance 5–6 km 2

Distance >6 km 1

Magnetic
intensity

Magnetic intensity l 10

Magnetic intensity 2 9

Table 3 (continued)

Evidential layer Class Class score

Magnetic intensity 3 8

Magnetic intensity 4 7

Magnetic intensity 5 6

Magnetic intensity 6 5

Magnetic intensity7 4

Magnetic intensity 8 3

Magnetic intensity 9 2

Magnetic intensity 10 1

Gravity intensity Gravity intensity l 10

Gravity intensity 2 9

Gravity intensity 3 8

Gravity intensity 4 7

Gravity intensity 5 6

Gravity intensity 6 5

Gravity intensity 7 4

Gravity intensity 8 3

Gravity intensity 9 2

Gravity intensity 10 1

Au anomaly High anomaly 10

Moderate anomaly 6

Low anomaly 1

Ag anomaly High anomaly 10

Moderate anomaly 6

Low anomaly 1

Cu anomaly High anomaly 10

Moderate anomaly 6

Low anomaly 1

Mo anomaly High anomaly 10

Moderate anomaly 6

Low anomaly 1

Pb anomaly High anomaly 10

Moderate anomaly 6

Low anomaly 1

Zn anomaly High anomaly 10

Moderate anomaly 6

Low anomaly 1
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to evidential layers (Yousefi and Carranza 2014, 2015a,
c; Parsa et al. 2016).

In a P-A plot, there are two curves, the curve of the per-
centage (prediction rate) of known mineral occurrences corre-
sponding to the classes of the prospectivity map and the curve
of the percentage of occupied areas corresponding to the clas-
ses of the prospectivity map.When an intersection point of the
two curves is at a higher place in the P-A plot, it portrays a
small area containing large number of mineral deposits.
Furthermore, it chooses objectively a better model to give
priority for mineral exploration (Yousefi and Carranza 2014,
2015a, c).

Application of the fuzzy AHP to porphyry-Cu
deposits

Criteria for MPM

Considering expert opinions, the geological setting, the
model of porphyry-Cu mineralization, a typical
porphyry-Cu deposit, and the available data in the study
area, three main criteria, including geological data,
stream sediment geochemical data, and geophysical da-
ta, were used as input evidential layers to provide the
mainstays in prospecting for porphyry-Cu deposits. The
three main criteria consisted of (1) host rock lithology,
(2) intrusive rock lithology as heat sources, (3) the den-
sity of faults and the distance to faults as structure, (4)
different alteration zones, (5) geochemical anomalies of
indicator elements Au, Ag, Cu, Mo, Pb, and Zn, and (6)
the intensity of airborne magnetic and Bouguer gravity
data, which are the most significant alternatives for ex-
ploration and characterization of porphyry-Cu deposits.

Preparation of evidential layers

Data preprocessing

The selection of evidential layers requires extensive consider-
ation of the characteristics of porphyry-Cu deposits and the
favorable conditions for mineralization. As discussed above,
host rock lithology, intrusive rock lithology, alteration types,
and faults were extracted and compiled from geological maps
to obtain evidential layers.

The different types of intrusive rocks were extracted as
separate maps, and each map of intrusive rocks and the host
rock map were buffered into three zones, each 1 km wide, up
to a distance of 3 km. Similarly, maps were generated for the
different types of alteration, and these were buffered into three
zones, each 0.5 km wide, up to a distance of 1.5 km. The
density and distance of faults were analyzed by ArcGIS soft-
ware. The density map was divided into nine equal-sizedT

ab
le
4

C
on
si
st
en
cy

ra
tio

(C
R
)
fo
r
pa
ir
w
is
e
co
m
pa
ri
so
n
m
at
ri
x

C
I

C
ri
te
ri
a

G
eo
lo
gi
ca
ld

at
a

G
eo
ch
em

ic
al
da
ta

G
eo
ph
ys
ic
al
da
ta

G
eo
lo
gy

G
eo
ch
em

is
tr
y
G
eo
ph
ys
ic
s
H
os
t

ro
ck

H
ea
t

so
ur
ce

S
tr
uc
tu
re

A
lte
ra
tio

n
A
u

an
om

al
y

A
g

an
om

al
y

C
u

an
om

al
y

M
o

an
om

al
y

Pb an
om

al
y

Z
n

an
om

al
y

M
ag
ne
tic

an
om

al
y

G
ra
vi
ty

an
om

al
y

D
M
1
0.
03
70

0.
03
43

0.
02
36

0

D
M
2
0.
00
36

0.
01
38

0.
01
69

0

D
M
3
0.
00
53

0.
03
94

0.
00
92

0

Arab J Geosci (2016) 9: 298 Page 7 of 15 298



zones in the range 0–1.53 length per unit area, and values
greater than 1.53 comprised the tenth zone. In this way, six
1-km-interval zones around the faults formed the sections of
the distance map, and the seventh zone comprised area at a
distance greater than 6 km.

Stream sediment geochemical anomalies were analyzed
using the singularity mapping technique (Cheng 2007; Zuo
et al. 2009). In simple terms, the element content of Au, Ag,
Cu, Mo, Pb, and Zn were used as six other evidential layers,
which were discretized into three classes. The thresholds of
evidential layers corresponded to the second, fifth, and tenth
quantiles. In addition, magnetic and gravity intensity data
were assigned to ten classes, providing the evidential layers
for airborne magnetic and Bouguer gravity data.

Data encoding

After categorizing evidential maps, the classes of the eviden-
tial maps must be ranked according to expert opinions of
geoscientists. Based on Table 3, the above multi-class eviden-
tial maps were coded with integer values from 1 to 10. It
should be noted that maps of different intrusive rocks, maps
of different alterations, the density map, and the distance map
were merged to generate the evidential layers for heat source,
alteration, and structure. To simplify the process and improve
efficiency, the above evidential layers were converted into
grid format with a pixel size of 1 km.

Weights of evidential layers

In this study, three DMs with expertise in porphyry-Cu min-
eralization were invited to compare the relative importance of
hierarchical elements using the scale in Table 1. In this phase,
pairwise comparison matrices were formed to construct fuzzy
evaluation matrices in case that CR ≤0.1.

All consistency ratios derived from the PCMs are less than
0.1 (Table 4). Consequently, the results were considered

reasonable. The values of PCMs are then transformed into
TFNs to construct fuzzy evaluation matrices presented in
Tables 5, 6, 7, and 8.

After establishing fuzzy evaluation matrices, the weights of
12 evidential layers for mineral exploration can be calculated
by the fuzzy AHP method. Taking geological alternatives as
an example, details of calculating weights from the fuzzy
evaluation matrix (Table 6) are given below.

From Eq. (6), the value of the fuzzy synthetic was comput-
ed as follows:

SHost rock ¼ 1:8095; 3:0698; 5:2ð Þ⊗ 1

42:95
;

1

29:1396
;

1

17:6191

� �
¼ 0:0421; 0:1053; 0:2951ð Þ

SHeat source ¼ 12; 15:6667; 20ð Þ⊗ 1

42:95
;

1

29:1396
;

1

17:6191

� �
¼ 0:2794; 0:5376; 1:1351ð Þ

SStructure ¼ 1:9167; 4:9833; 9:5ð Þ⊗ 1

42:95
;

1

29:1396
;

1

17:6191

� �
¼ 0:0446; 0:1710; 0:5392ð Þ

SAlteration ¼ 1:8929; 5:4198; 8:25ð Þ⊗ 1

42:95
;

1

29:1396
;

1

17:6191

� �
¼ 0:0441; 0:1860; 0:4682ð Þ

The degrees of possibility of these fuzzy values were then
determined from Eq. (9) as follows:

V SHost rock≥SHeat sourceð Þ ¼ 0:035; V SHeat source≥SHost rockð Þ ¼ 1
V SHost rock≥SStructureð Þ ¼ 0:7922; V SHeat source≥SStructureð Þ ¼ 1
V SHost rock≥SAlterationð Þ ¼ 0:7567; V SHeat source≥SAlterationð Þ ¼ 1
V SStructure≥SHost rockð Þ ¼ 1; V SAlteration≥SHost rockð Þ ¼ 1
V SStructure≥SHeat sourceð Þ ¼ 0:4148; V SAlteration≥SHeat sourceð Þ ¼ 0:3494
V SStructure≥SAlterationð Þ ¼ 0:9706; V SAlteration≥SStructureð Þ ¼ 1

Finally, the weights were assigned and normalized using
Eqs. (10) and (12):

V 0 Host rockð Þ ¼ min 0:035; 0:7922; 0:7567ð Þ ¼ 0:035
V 0 Heat sourceð Þ ¼ min 1; 1; 1ð Þ ¼ 1
V 0 Structureð Þ ¼ min 1; 0:4148; 0:9706ð Þ ¼ 0:4148
V 0 Alterationð Þ ¼ min 1; 0:3494; 1ð Þ ¼ 0:3494

The weights vector was (0.035, 1, 0.4148, 0.3494) and the
normalized weights vector was calculated as (0.0195, 0.5558,
0.2305, 0.1492). In the sameway, all normalizedweights were
obtained from fuzzy evaluation matrices. Final normalized
weights for each criterion and alternative are presented in
Table 9. It is apparent that heat source, structure, alteration,

Table 5 Fuzzy evaluation matrix
with respect to criteria Geological data Geochemical data Geophysical data

Geological data (1, 1, 1) (2, 3.3333, 5) (3, 4.3333, 5)

Geochemical data (0.2, 0.3444, 0.5) (1, 1, 1) (0.3333, 0.8889, 2)

Geophysical data (0.2, 0.2444, 0.3333) (0.5, 1.3333, 3) (1, 1, 1)

Table 6 Fuzzy evaluation matrix
with respect to geological
alternatives

Host rock Heat source Structure Alteration

Host rock (1, 1, 1) (0.1429, 0.1810, 0.2) (0.3333, 0.9444, 2) (0.3333, 0.9444, 2)

Heat source (5, 5.6667, 7) (1, 1, 1) (2, 4.3333, 6) (4, 4.6667, 6)

Structure (0.5, 1.8333, 3) (0.1667, 0.2889, 0.5) (1, 1, 1) (0.25, 1.8611, 5)

Alteration (0.5, 1.8333, 3) (0.1429, 0.1865, 0.25) (0.25, 2.4, 4) (1, 1, 1)
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and airborne magnetic data have higher values, so they play a
significant role in prospecting for porphyry-Cu mineralization
in the study area.

Integration of evidential layers

The corresponding evidential layers must be multiplied by
final weights before employing fuzzy operators (Fig. 3). The
evidential layers were combined using γ values of 0.78, 0.83,
0.88, and 0.93 to generate prospectivity maps (Fig. 4).
Subsequently, these maps are divided into ten natural break
(Jenks) classes. Each prospectivity map was evaluated and
compared using the P-A plot. Figure 5 and Table 10 show that
the prospectivity map obtained using a γ value of 0.83 was
appropriate because it quantitatively depicts a smaller area
containing the same number of mineral deposits. For further
evaluation of this prospectivity map, the C-A model was used
to determine the thresholds to defuzzify the map. The ternary
map (Fig. 6) was generated using two thresholds, shown in
Fig. 7, which identified the appropriate areas for porphyry-Cu
mineralization.

Results and discussion

As mentioned above, the AHP’s pairwise comparison is made
in crisp values, relying on expert knowledge. Any incorrect
opinions of the expert can convey into the assignment of
weights. In this process, the vagueness and uncertainty intro-
duced into pairwise matrix lead to the difficulty providing
exact weights for evidential layers (Feizizadeh and Blaschke
2013; Feizizadeh et al. 2014). To overcome this problem,
fuzzy AHP use TFNs to simulate DMs’ preference in pairwise

comparison process. In the fuzzy AHPmethod, each choice of
the relative importance of hierarchy criteria is expressed by a
vector, which is better to simulate human judgment than crisp
comparison. Therefore, the fuzzy AHP method can provide
more realistic weights than other knowledge-driven MPM
methods

One of the key procedures in the implementation of the
fuzzy AHP modeling is the selection of fuzzy operators.
Knox-Robinson (2000) pointed out that fuzzy γ operator is
useful and realistic, which focuses on balancing the
Bdecreasive^ and Bincreasive^ effects of fuzzy algebraic prod-
uct and fuzzy algebraic sum operators. Using appropriate
values of γ can control the propagation of extreme-value noise
to the final prospectivity map (Porwal et al. 2003b). The ulti-
mate aim for carefully tempering the value of γ is to select one
that provides the Bbest^ result. A number of γ were tried,
values of 0.78, 0.83, 0.88, and 0.93 were selected to generate
prospectivity maps. However, Fig. 4 shows that the
prospectivity maps for different γ values are remarkably sim-
ilar. For avoiding subjective judgment, the P-A method
(Yousefi and Carranza 2014, 2015a, b, c; Yousefi and
Nykänen 2015) is used to select the Bbest^ result.
Consequently, the result of applying a γ value of 0.83 is the
best one in that it reduces the target area of the study area

Table 7 Fuzzy evaluation matrix with respect to geochemical alternatives

Au anomaly Ag anomaly Cu anomaly Mo anomaly Pb anomaly Zn anomaly

Au anomaly (1, 1, 1) (1, 2.3333, 3) (0.1429, 0.2699, 0.3333) (0.25, 0.75, 1) (0.3333, 3.4444, 6) (0.3333, 3.4444, 6)

Ag anomaly (0.3333, 0.5556,1) (1, 1, 1) (0.1429, 0.1810, 0.2) (0.25, 0.3056, 0.3333) (0.3333, 1.7778, 3) (0.3333, 1.7778, 3)

Cu anomaly (3, 4.3333, 7) (5, 5.6667, 7) (1, 1, 1) (2, 2.6667, 3) (4, 6.6667, 9) (6, 7.3333, 9)

Mo anomaly (1, 2, 4) (3, 3.3333, 4) (0.3333, 0.3889, 0.5) (1, 1, 1) (2, 4, 6) (2, 4, 6)

Pb anomaly (0.1667, 1.1389, 3) (0.1667, 1.1389, 3) (0.1111, 0.1680, 0.25) (0.1667, 0.3056, 0.5) (1, 1, 1) (1, 1.3333, 2)

Zn anomaly (0.1667, 1.1389, 3) (0.1667, 1.1389, 3) (0.1111, 0.1402, 0.1667) (0.1667, 0.3056, 0.5) (0.5, 0.8333, 1) (1, 1, 1)

Table 8 Fuzzy evaluation matrix with respect to geophysical
alternatives

Magnetic anomaly Gravity anomaly

Magnetic anomaly (1, 1, 1) (1, 2, 3)

Gravity anomaly (0.3333, 0.6111, 1) (1, 1, 1)

Table 9 Weights of criteria and alternatives

Criterion Weight Alternative Weight Final weight

Geological data 0.7292 Host rock 0.0195 0.0142

Heat source 0.5558 0.4052

Structure 0.2305 0.1681

Alteration 0.1942 0.1416

Geochemical data 0.0841 Au anomaly 0.3482 0.0293

Ag anomaly 0.0050 0.0004

Cu anomaly 0.3695 0.0311

Mo anomaly 0.2340 0.0197

Pb anomaly 0.0351 0.0030

Zn anomaly 0.0082 0.0007

Geophysical data 0.1867 Magnetic anomaly 0.6805 0.1270

Gravity anomaly 0.3195 0.0597
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Fig. 3 Weighted evidential layers: a Host rock, b Heat source, c Structure, d Alteration, eMagnetic anomaly, f Gravity anomaly, g Au anomaly, h Ag
anomaly, i Cu anomaly, j Mo anomaly, k Pb anomaly, and l Zn anomaly
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Fig. 4 Prospectivity maps obtained using γ values of a 0.78, b 0.83, c 0.88, and d 0.93
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while predicting the same number of known deposits, and it is
meaningful in mineral exploration.

In the ternary map, high favorability zones occupy only
7.16 % of the study area, and these zones are mostly in the
south and southwest; the moderate favorability zones are

mainly close to the high favorability zones, occupying
18.61 % of the study area. The spatial distribution of high
favorability zones is confined to specific intrusive rocks with
a composition of diorite and monzodiorite, which emphasizes
a strong heat sources control of porphyry-Cu mineralization in
the study area. This conforms to characterizations of spatial
associations between geological features and porphyry-Cu de-
posits. However, it fails to predict the Chihu deposit, a small,
low-grade porphyry-Cu deposit, in high favorability zone.
The metallogenetic epoch and the metallotectonic setting of
the Chihu deposit, discovered in 1986, are uncertain as its
formation age is vigorously debated (Ji and Sun 2011; Wu
et al. 2006). Therefore, it is difficult to predict such a deposit
in high favorability zones based on regional scale data and
criteria for MPM. The larger scale data and local scale criteria

Fig. 5 Prospectivity maps obtained using γ values of a 0.78, b 0.83, c 0.88, and d 0.93

Table 10 Extracted parameters from intersection point of P-A plots in
Figure 5

Prospectivity map Prediction rate (%) Threshold Occupied area (%)

Gamma γ= 0.78 79.9 0.3 20.1

Gamma γ= 0.83 84 0.33 16

Gamma γ= 0.88 82.2 0.36 17.8

Gamma γ= 0.93 78.5 0.38 21.5
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for porphyry-Cu mineralization are synthesized to predict the
Chihu deposit and demarcate other prospects within the pre-
dicted potential targets for guiding follow-up exploration
using the same method. Therefore, high favorability zones
and the specific moderate favorability area containing the
Chihu deposit should be prioritized in the exploration of
porphyry-Cu deposits.

The study area with only five porphyry-Cu deposits re-
stricted the validation of prospectivity model using the known
mineral deposits. From the perception of spatial domain, the
spatial distribution of high favorability zones is in conformity
with the model of porphyry-Cu mineralization. It well illus-
trates the effectiveness of fuzzy AHPmethod for porphyry-Cu
deposits in this study. In addition, field observations will be
used to evaluate target areas in the future.

Conclusions

1. The application of the fuzzy AHP approach simulates
human judgment for the relative importance of hierarchy
criteria, as well as reducing the vagueness and uncertainty

of crisp comparison via the triangular fuzzy numbers.
Furthermore, more realistic weights for evidence layers
are provided than those given by other knowledge-
driven MPM methods.

2. A key element of the proposed approach is the use of
different values of γ to obtain the most suitable potential
map, which has an advantage over other knowledge-
drivenMPMmethods in that it avoids subjective opinions
when selecting the final potential map.

3. The P-A plot provides an objective method to weight the
relative effectiveness in terms of reducing the exploration
area while decreasing the exploration costs, when the
prospectivity maps for different values of γ are remark-
ably similar.

4. The ternary map shows a strong spatial correlation be-
tween high favorability zones and specific intrusive rocks
composed of diorite and monzodiorite, which is consis-
tent with the model of porphyry-Cu mineralization, thus,
the fuzzy AHP method for mapping prospectivity for
porphyry-Cu deposits is valid in this study.

5. In this study, potential targets are delineated in the
Dananhu metallogenic belt. For obtaining a more detailed

Fig. 6 Ternary prospectivity map generated by defuzzification of the prospectivity map (Fig. 4b)

Fig. 7 Concentration-area (C-A)
model for the prospectivity map
(Fig. 4b)
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result, with the larger scale data, the same method needs
to further delineate other prospects within the predicted
potential targets to guide follow-up exploration.

6. The fuzzy AHPmethod described in this paper provides a
simple yet effective method for prioritizing potential tar-
gets in Bgreenfield^ areas.
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