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Abstract Landslides constitute the most widespread and
damaging natural hazards in the Constantine city. They repre-
sent a significant constraint to development and urban plan-
ning. In order to reduce the risk related to potential landslide,
there is a need to develop a comprehensive landslide hazard
map (LHM) of the area for an efficient disaster management
and for planning development activities. The purpose of this
research is to prepare and compare the LHMs of the
Constantine city, by applying frequency ratio (FR), weighting
factor (Wf), logistic regression (LR), weights of evidence
(WOE), and analytical hierarchy process (AHP) methods used
in a framework of the geographical information system (GIS).
Firstly, a landslide inventory map has been prepared based on
the interpretation of aerial photographs, high resolution satel-
lite images, fieldwork, and available literature. Secondly, eight
landslide-conditioning factors such as lithology, slope, expo-
sure, rainfall, land use, distance to drainage, distance to road,
and distance to fault have been considered to establish LHMs
using the FR, Wf, LR, WOE, and AHP models in GIS. For
verification, the obtained LHMs have been validated compar-
ing the LHMs with the known landslide locations using the
receiver operating characteristics curves (ROC). The validated
results indicate that the FR method provides more accurate
prediction (86.59 %) of LHMs than the WOE (82.38 %),
AHP (77.86 %), Wf (77.58 %), and LR (70.45 %) models.

On the other hand, the obtained results showed that all the
used models in this study provided a good accuracy in
predicting landslide hazard in Constantine city. The
established maps can be used as useful tools for risk preven-
tion and land use planning in the Constantine region.
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Introduction

Landslides constitute the most frequent and damaging natural
hazards threatening the human lives and properties in northern
part of Algeria. The landslide incidences in a region have been
of serious concern to the society due to the loss of life, natural
resources, infrastructural facilities, and also posing problem
for future urban development. The city of Constantine in
northeast, which is the third largest city of Algeria, suffered
from extensive and severe landslides causing serious damages
to property and infrastructure (Machane et al. 2008;
Guemache et al. 2011; Bourenane et al. 2014). The most re-
cent landslides that occurred in 2002, 2003, 2004, 2006, and
2012 have caused substantial damage to several buildings and
major infrastructures (such as the Sid Rached bridge, Ciloc
buildings, Rhumel bridge, Mentouri university, Boussouf dis-
trict, Benchargui district, Boudraa Salah district, the national
road number 27, etc.). These landslides have alerted the au-
thorities towards the seriousness of landslide management and
prevention. However, there has been too little consideration of
potential problems in land use planning and slope manage-
ment. Recently, the Algerian authorities have been stressing
the need for local planning authorities to take landslides into
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account at all stages of the landslide hazard mapping process.
So far, few efforts have been made to predict or prevent these
events which caused serious damages. Nowadays, the land-
slide disaster situation is further compounded by increased
vulnerabilities related to rapidly growing population, un-
planned urbanization, rapid development in high-risk areas,
environmental degradation, and climatic change with the
heavy rainfall. Landslide disasters also become the major ob-
stacle in development process because their economic losses
are relatively high.

Through scientific analysis, the landslide hazard map is of
crucial importance in the economic planning of urban areas
and engineering structures (Ercanoglu and Gokceoglu 2002).
Therefore, the preparation of landslide hazard mapping is a
basic tool for disaster management and planning development
activities in urban and rural areas. The result of landslide re-
search may provide valuable information that helps to forecast
such events as well as to find measures to mitigate subsequent
losses to future landslides.

Landslide hazard (LH) is defined as the probability of oc-
currence of landslides in a given area within a reference period
of time (Varnes 1984). Landslide hazard mapping is associat-
ed to the division of area in homogenous zones and their
ranking according to degrees of landslide hazard. LH is de-
duced from two aspects: (i) landslide susceptibility expressing
the spatial probability of occurrence of a landslide for given
predisposing terrain factors (lithology, slope, land use, etc.) in
a given area (Brabb 1984; Crozier and Glade 2005) and (ii) the
temporal dimension of landslides related to the occurrence of
triggering events (rainfalls, earthquakes, etc.). However, LH
is, often, restricted to landslide susceptibility and did not refer
to the time occurrence of landslides because of the absence of
historical landslide records. Consequently, most of the pub-
lished hazard maps have only presented the spatial informa-
tion of landslide hazard and did not refer to the time dimension
of landslides.

The aim of this research is to present and compare detailed
landslide hazardmaps (LHMs) for the Constantine city (north-
east of Algeria), using frequency ratio (FR), weighting factor
(Wf), logistic regression (LR), weights of evidence (WOE),
and analytical hierarchy process (AHP) methods in the frame-
work of GIS. These models are tested, and the obtained results
have been discussed. The results provide useful information
about landslide risk mitigation and may serve as guidelines for
land use planning in Constantine city.

The present paper is organized into four parts. The first
part describes the landslide phenomena in the Constantine
city and includes a related literature review of achieved
works prior to this research; the second part presents the
prepared landslide database; the third part describes the
application of two statistical approaches, namely, the bi-
variate and multivariate with an expert knowledge-based
model (AHP) for landslide hazard mapping in the studied

area and, finally, the fourth part provides the validation
and comparisons of the obtained LHMs.

Scientific literature review

Awide variety of methods and techniques for landslide hazard
mapping have been developed and applied in literature, in-
cluding qualitative and quantitative methods (Soeters and
Van Westen 1996; Leroi 1996; Guzzetti et al. 1999; Aleotti
and Chowdhury 1999; Van Westen et al. 2003; Dai et al.
2001). Recently, several attempts have been made to apply
different methods of LHM and to compare results searching
for the best suited model.

Qualitative methods are subjective, based on expert knowl-
edge, and portray hazard zoning in descriptive terms. These
methods can be classified into two groups. The first group is
base on the geomorphologic analysis where the landslide haz-
ard is determined directly using experiences and knowledge of
experts; a direct relationship between existing landslides and
causative terrain parameters is determined and used to con-
struct landslide hazard. The second group is a qualitative map
combination where a landslide hazard map is obtained by
combining a number of landslide influence factor maps. The
weights are assigned to subclasses of thematic maps based on
the field knowledge of experts; therefore, a landslide invento-
ry map is not needed. Moreover, there are qualitative method-
ologies which use weighting and rating procedures known as
semi-quantitative methods. These methods are the analytic
hierarchy process (AHP) (Saaty 1980; Barredo et al. 2000;
Yalcin 2008) and the weighted linear combination (WLC)
(Ayalew and Yamagishi 2005). The AHP method involves
the creation of hierarchy of decision elements (factors) and
the comparison between different pairs of elements in order
to assign a weight and a consistency ratio for each element.
While WLC approach is a concept which combines maps of
landslide-controlling parameters, by applying a standardized
score (primary-level weight) to each class of a certain param-
eter and a factor weight (secondary-level weight) to the pa-
rameters themselves. Although, results of these approaches
are partly subjective, depending on the expert knowledge
(Van Westen et al. 1997; Leroi 1996). The qualitative or
semi-quantitative methods have proved their utility in the case
of regional studies (Soeters and Van Westen 1996; Guzzetti
et al. 1999).

Quantitative methods are based on numerical expressions
of the relationship between causal factors and the landslides.
The main concept of the indirect approaches is that the con-
trolling factors of future landslides are the same as those ob-
served in the past (Carrara et al. 1995). Two types of quanti-
tative methods can be distinguished: deterministic and statis-
tical (Aleotti and Chowdhury 1999). Deterministic methods
are focuses on the analysis of the mechanical equilibrium of a

154 Page 2 of 24 Arab J Geosci (2016) 9: 154



potential slide block and calculate the slope safety factor
(Zhou et al. 2003). Due to the need of exhaustive data from
individual slopes, these methods are often effective to map
only small areas. Statistical methods are based on the analysis
of the functional relationships between landslide-controlling
factors and the distribution of landslides. The statistical
methods include the bivariate statistical models, the multivar-
iate, the logistic regression, the fuzzy logic, the artificial neural
network analysis, etc. These methods are formally very rigor-
ous because they consider the interrelationships among the
different causal factors.

Statistical methods are considered by the scientific commu-
nity as more objective and more suitable for susceptibility and
hazard mapping at medium and large scale (1:50.000, 1:25,
000, and 1:10.000) because of their potential to minimize the
expert subjectivity (Soeters and Van Westen 1996; Van
Westen et al. 1997; Van den Eeckhaut et al. 2006; Thiery
et al. 2007).

The statistical methods require the collection of a large
amount of data in order to produce reliable results.
Moreover, the geographic information system (GIS) is a valu-
able tool used to collect, to store, to process, manipulate, and

to correlate the large amounts of data in order to build land-
slide hazard maps. Thus, GIS constitute a basic tool for land-
slide hazard mapping due to its efficiency in spatial data man-
agement, manipulation, and spatial analysis which allow the
update of the hazard assessment procedures.

Geographical, geomorphological, and geological
setting of the study area

The Constantine city is located in northeast of Algeria, at
about 430 km east of the capital city of Algiers (Fig. 1). The
study area concerns the master plan city perimeter that covers
about 60 km2. The city of Constantine is highly affected by
landslide hazards, due to its geomorphological, geological,
climatic, and seismotectonic conditions, as well as the anthro-
pogenic factors.

Geomorphologically, the Constantine area belongs to the
northeast mountainous area of the Tellean Atlas, which is
characterized by contrasting relief that combines mountains,
plates, hills, and river plains. The altitude ranges from 300 to
1000 m and decreases from Northeast to Southwest. The

Fig. 1 Geographical location and
Digital Elevation Model (DEM)
of the study area
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hydrographic network is represented by two main rivers
(Rhumel and Boumerzoug) with a permanent flow that are
associated with the Mellah, Megharouel, and Chaabet El
Klab rivers having temporary flow (Fig. 1).

Geologically, the Constantine region belongs to the exter-
nal domain of the Tellean Atlas chain, a part of the North
African Alps (Maghrebides), built during the main paroxys-
mal compressional phases of Eocene, Miocene, and
Quaternary periods (Vila 1980; Letouzey and Tremolieres
1980). Lithologically, the studied area presents four main sed-
imentary units: (i) the Cretaceous marls and limestone bed
rock that belongs to the Constantine neritic formation; (ii)
the Cretaceous-Eocene marls and calcareous marls of the
Tellian thrust sheet unit; (iii) the Mio-Pliocene sandy clays,
marls and conglomerates; and (iv) the Quaternary alluvial ter-
races and lacustrine calcareous formations (Guiraud 1973;
Vila 1980; Aris et al. 1998; Benaissa and Bellouche 1999;
Bougdal et al. 2006). The Neogene clays and the conglomer-
ates formations, covering a large surface of the Constantine
urban plan, are very sensitive to the presence of the water with
average-to-high plasticity, and then, constitute prone zones to
landsliding.

The climate of the Constantine region is semi-arid, with a
typical hot and relatively dry season between June and August
and a wet season during December to April. The rainy period
corresponds to December, January, and February with the
rainfall amount ranges between 350 and 500 mm. However,
the rainfalls are concentrated in a short period as rainstorms
and super rainstorms representing a major landslide hazard
factor in the area.

The Constantine city is characterized by an important eco-
nomic, scientific, and cultural infrastructures as well as high

population density (2.374 inhabitants/km2) (RGPH 2008).
The city experienced significant urban changes during the
different periods of its history; each period offers a particular
developed urban area. Before and during the Ottoman period
(prior to 1837), Constantine was built and limited to the stable
bed rock. During the French period (1837–1962), the city
expanded towards less stable zone. Since the Algerian inde-
pendence (since 1962 up to now), the expansion of city has
accelerated and unstable zones have been occurred. Since
then, new settlements combined with inappropriate land use
constitute the main factors of the increase of the frequency of
landslides.

Spatial database construction using GIS

The first step for the production of LSM is data collection and
construction of a spatial database from which the relevant
landslide-conditioning factors have been extracted. A spatial
database that considers the landslide-related factors is con-
structed for the study area. The reliability of LHMs depends,
mostly, on the amount and the quality of the available data, the
working scale, and the selection of the appropriate methodol-
ogy of analysis and modeling.

Firstly, the landslide inventory map is prepared for
the study area, based on the analysis of aerial photo-
graphs and satellite images, completed by field investi-
gation. Secondly, eight possible causative factors such
as lithology, slope, exposure, land use, rainfall, distance
to stream, distance to road, and distance to fault have
been identified, analyzed, and thematic layers have been
derived and prepared from (Table 1): (i) the available

Table 1 Spatial database of the study area

Data layers Source of database

Landslide inventory Landslide inventory database, satellite imagery (Alsat 2A) at 1:10,000 scale, aerial photographs at
1:10,000 scale, Google Earth data, field surveys

Relief (slope and aspect) DEM at 1:10,000 scale (10-m resolution) generated by digitization and interpolation of elevation lines
extracted from topographic map at 1:10,000 scale from URBACO (centre d’études & réalisations en
urbanisme de Constantine)

Geology Geological maps at 1:10,000 scale, field survey, boreholes from geotechnical studies from DUC of
Constantine (Direction de l’Urbanisme et de la construction)

Hydrology (distance to streams and rainfall) Satellite imagery Alsat 2A at 1:10,000 scale (2.5 m resolution), aerial photographs at 1:10,000 scale,
national topographic map at the scale of 1:25,000, field survey. Precipitation database covering a
time period of 32 years from the 04 meteorological stations of the ANRH (National Agency of
Meteorology and Hydrology) and the ONM (National Office of Meteorology)

Land use Satellite imagery Alsat 2A, aerial photographs, Google Earth data, land use map at 1:10,000 scale
(master city plan BPDAU^) from DUC (Direction d’Urbanisme et de la Construction) and
field survey

Distance to roads Satellite imagery Alsat 2A, Google Earth data, aerial photographs, national topographic map at the
scale of 1:25,000, field survey

Distance to faults Geological maps at 1:50,000 and 10,000 scale, field survey
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national databases, (ii) aerial photographs and satellite
images analyses, and (iv) field surveys. The thematic
layers generated in GIS software have been re-sampled
in a 10 m×10 m grid size in order to facilitate the easy
raster-based computation. All maps were geo-referenced
in the local projection system of Algeria (UTM zone 32
WGS 84—Geodetic Reference System). The statistical
treatment of the data has been performed by using
Excel 2007 and Xl Stat 2014 trial version software.

Landslide characteristics and inventory map

The landslide inventory map is considered as the basis
and the most fundamental step in landslide hazard map-
ping. Landslide inventory maps provide the spatial distri-
bution of existing landslides and their properties. These
maps can be prepared using different techniques depend-
ing on the scope of the work, the extent of the study area,

the scales of base maps, the quality and detail of the
accessible information, and the available resources to carry
out the work. The landslide inventory map of the study
area (Fig. 3a) has been prepared at 1:10,000 scale, from
the analysis and interpretation of aerial photographs, recent
high resolution satellite images, field surveys, and avail-
able literature. Aerial photographs (Fig. 3d) were taken in
1980, at a scale of 1:10,000 by the National Institute of
Cartography (INCT). Alsat 2A panchromatic satellite im-
age (Fig. 3b) with spatial resolution of 2.5 m was taken in
2011 at a scale of 1:10,000. A satellite image of Google
Earth (Fig. 3c) taken between 2003 and 2013 has been
also used for visual detection of landslide occurrences in
the study area.

In some cases, recent landslide locations have been identi-
fied from Alsat 2A satellite images and from Google Earth
data. Field investigation has been conducted between 2008
and 2013 (Fig. 2) to verify and complete the photo

a

e 

c 

f

d

b
Fig. 2 Field photographs
showing the characteristics and
types of recently occurred
landslides in the study area: a
rotational slides over the road of
Massinissa, b rotational slides in
Boussouf, c rotational slides
along road in Benchergui, d fall
slides in Benchergui, e rotational
slides in Chabet El Merdja, and f
rotational slides of the Rhumel
bridge in Massinissa
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interpretation, check the sizes and shapes of landslides, iden-
tify the types of movements, the materials involved, and the
activity of failed slopes. In addition, all the available literature
including historical landslide reports, scientific publications,
thesis, dissertations, and archives from local authorities have
been gathered and examined in order to complete the landslide
inventory map (Arcadis 2003; Bougdal 2007; Machane et al.
2008; Guemache et al. 2011). The landslide database is ob-
tained by integrating the collected data and then imported into
GIS to create the landslide inventory map at 1:10,000 scale.
After that, the landslide vector map is transformed into a grid
database at 10×10 m cell size. The geometrical (perimeter,
area, and maximal length) and geomorphological characteris-
tics (typology and state of activity) of landslides have been
determined clearly and stored in a GIS database using Arc GIS
9.1 software.

The obtained landslides perimeter covers an area of
7.124 km2 that represents 12 % of the total urban area. The
most landslide-prone zones are located in the left bank of the
Rhumel river and in the most urbanized zone of the
Constantine city, as shown in Fig. 3a. An example of recent
landslides identified in the study area and their morphological
characteristics is shown in Fig. 2.

According to the landslide classification proposed by
Varnes (1978), active landslides can be grouped into three
main types: translational, rotational, and fall. The most
failures (72 %) correspond to rotational debris slides,
26 % correspond to translational slides, and the remaining
(2 %) are rockfalls. The rotational slides are located along
streams but in more gentle slopes compared to the trans-
lational slides and occur mainly in Miocene marly clay
deposits. The translational slides of variable sizes are lo-
cated on steep slopes and affect the Miocene conglomer-
ates and the Cretaceous marly-limestone of the Tellean
thrust sheet. Mostly, the determined landslides had oc-
curred as a result of heavy rainfalls. Landslide activity
reaches its maximum during and just after rainy events.
During the heavy rainfall of 2002–2003, 2003–2004, and
2005–2006 winters, the accumulated precipitation reached
460–800 mm and many landslides have been occurred and
reactivated in the studied area (Chemin forestier, Chabet
El Merdja - Sotraco-Boudraa Salah, Bardo, Poudriere,
Boussouf, and Massinissa). Besides, runoffs related to
snow melting and rain as well as infiltrations in the schis-
tose marl, favored by the high permeability of these fis-
sured rocks, increase the interstitial pressure and make

d 

b 

c 

a

Fig. 3 a Landslide inventory map of the study area and examples of
different types of optical remote sensing images used for determination
of landslides in the Constantine city. b Section of an aerial photo at

1:10,000 scale taken in 2002. c Section of a satellite image of Google
Earth. d Section of a satellite image (Alsat 2A) at a scale of 1:10,000
taken in 2012 (the white dashed line marks the scarp)
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them less resistant to shear stresses and making them
prone zones to gravitational movements.

In the analysis, landslide boundaries have limited only to
detachment zones of active landslides (Atkinson and Massari

1998; Van den Eeckhaut et al. 2006). But, in some places
where there are signs of further movement such as cracks
and tilted trees, the upper portions of accumulation zones were
also included.

Fig. 4 Landslide-conditioning factors of the study area: a Lithological
map. Legend: (1) Quaternary Colluviums, conglomerate and Thick fill;
(2) Quaternary recent alluvial terraces; (3) Quaternary ancient alluvial
terraces; (4) Quaternary lacustrine limestones; 5) Pliocene lacustrine
limestones; (6) Miocene conglomerates; (7) Miocene marly clay; (8)

Flysh Massylian (Upper cretaceous); 9) Tellian Calcareous marls
(Cretaceous-Eocene); (10) Neritic limestone (Cenomanian-Turonian). b
Slope angle map. c Exposure map. d Land use type. e Rainfall map. f
Distance to rivers map. g Distance to roads map. h Distance to faults
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In this study, the landslide inventory is randomly di-
vided into two independent groups, one for model train-
ing (70 %) and the other for validation (30 %) (Chung
and Fabbri 2003, 2008). The landslide inventory map is
helpful to understand the different triggering factors that
controlling the different types of slope movement (Fig. 3).

Landslide-conditioning factors

Lithology

Lithology is one of the most important factors that influence the
occurrence of landslides. Lithology with its structural and

Fig. 4 (continued)
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property variations may lead to variation in strength and perme-
ability of rocks and soils. The lithological map of the study area
(Fig. 4a) defined ten (10) main lithological classes. The
BMiocene marly–clay^ class dominates in the study area
(28 %) and has the highest landslide density (61.5 %) as shown
in Table 2. While the neritic limestone class without landslide
density (0).

Slope

Slope is the main causative factor because the shear forces are
directly influenced by the slope gradient (Dai et al. 2001). As
the slope gradient increases, it is correlated with the increased
likelihood of failure. The slope gradient map of the study area
was divided into five slope angle classes (Fig. 4b). The slope
varies from 0 to 5° in the plain area to near vertical cliffs >45°
in the steep areas. Land surfaces falling within the classes (5–
15°) are strongly predominant (62 % of the total area).
Landslide density is the highest in the 5–15° class, followed
by the 0–5° class (Table 2). Only few landslides fall in the 15–
30° class, and no landslides are observed in the 30–45° and
>45° classes.

Exposure

In landslide hazard studies, exposure is considered to be an
important factor influencing slope stability, since exposure
related parameters, such as exposure to sunlight, drying
winds, and rainfall (degree of saturation), control the concen-
tration of the soil moisture, which in turn determinant param-
eter for the occurrence of landslides (Magliulo et al. 2008).
The study area was classified into eight directions (Fig. 4c).
Both South to West facing slopes and West to North facing
slopes slightly predominate (55 % of the study are) over North
to South facing slopes (26 %). The North to East facing slopes
area is relatively less frequent (18 %), while only 0.2 % of the
land surface is perfectly flat zone (Table 2). Therefore, in the
east exposure, the landslide density is relatively low (12.5 %)
and increases with the orientation angle reaching its maximum
in the west exposure (43 %).

Land use

Land use is also related to the triggering and causal factors of
the landslides. The woody vegetation with large and strong
root systems provides both hydrological and mechanical ef-
fects that generally stabilize slopes (Gray and Leiser 1982).
On the contrary, landslides occur in unvegetated or irrigated
cultivated areas due to the lack of the previously mentioned
effects. Five land use classes have been identified and consid-
ered in the region (Fig. 4d). Most of the study area is covered
by the urban area with 37% of the study area. The low surface
is represented by forests (8%). The correlations with landslide

density showed that the high landslide density is concentrated
on the two layers (Table 2): the agriculture land (39 %) and
barren land (22 %). This high landslide density can be ex-
plained by a very high activity (or high cultivated areas) of
clear-cut logging as well as the increase in inappropriate new
highland settlements under population growth.

Rainfall

Rainfall is widely considered as the main triggering factor of
landslides hazard. Rainfall causes a change in the moisture
content of the soil. Changes in moisture content increase the
interstitial pore water pressure, seepage pressure, and soil
weight and reduce cohesion. Precipitation database from 04
meteorological stations (Constantine, Ain El Bey, Hamma
Bouziane and Fourchi) located in the vicinity of the study area
has been used to create a mean annual precipitation map
(Fig. 4e) by using Kriging interpolation (Isaaks and
Srivastava 1989). The average seasonal precipitation from
the period 1980 to 2012 ranges from 350 to 500 mm. The
landslide density percentage in each rainfall class is shown
in Table 2. It appears that the highest density of landslides
occurs in the 400–500 mm rainfall area (45 %). This indicates
clearly that landslides are directly related to precipitation.

Distance to streams

The proximity to the drainage lines is also an important control-
ling factor of the occurrence of landslides. Streams may nega-
tively affect the stability by eroding the slopes or by saturating the
material. Five equal buffer zones have been created within the
study area in order to determine the distance to streams area
affected by landslide (Fig. 4f). The correlation of the respective
distance class with the landslides occurrences indicates clearly
that locations close to rivers show increased landslide activity
(Table 2). The analysis shows that about 30%of landslides occur
within 50 m distance to streams especially on the left bank of the
Rhumel river. It is also observed that as the distance from drain-
age line increases, the landslide frequency decreases.

Distance to roads

Distance to roads has been considered as one of the most
important anthropogenic factors influencing landslides be-
cause road-cuts are usually the source of instability (Ayalew
and Yamagishi 2005). Extensive excavations, application of
external loads, and vegetation removal are among the most
common actions observed along the road network slopes, dur-
ing their construction. These actions are also responsible for
landslide triggering, that is why, the road network and buffer
zones should be evaluated during the analysis. The study area
has been divided into five different buffers categorized to des-
ignate the influence of the road on the slope stability (Fig. 4g).
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Table 2 Frequency ratio values of the landslide-conditioning factors

Factors Classes % of total area (a) % of landslide area (b) Frequency ratio (b/a)

(A) Lithology Neritic limestone (Cénomanian-Turonian) 3.44 0 0

Calcareous marls of the Tellian sheet
(Cretaceous-Eocene)

23.47 13.54 0.576

Flysh Massylian Upper cretaceous 0.92 0.86 0.934

Miocene marly clay 28.52 61.52 2.157

Miocene conglomerates 14.21 9.79 0.688

Quaternary lacustrine calcareous 1.28 6.03 4.710

Pliocene lacustrine calcareous 8.35 0.49 0.058

Quaternary recent alluvial terraces 5.31 5.61 1.056

Quaternary ancient alluvial terraces 10.32 0.33 0.031

Colluviums, conglomerate with muddy
matrix, and thick fill quaternary

4.17 1.84 0.441

(B) Slope (°) 0–5 28.92 16.38 0.566

5–15 62.50 70.1 1.121

15–30 8.00 13.52 1.69

30–45 0.48 0 0

>45 0.08 0 0

(C) Exposure Flat 0.2 0.3 1.5

North 18.20 29.72 1.632

East 25.85 12.5 0.483

South 27.72 14.12 0.509

West 28.01 43.36 1.548

(D) Land use Agriculture land 12.28 39.32 3.201

Natural forest land 8.24 8.18 0.992

Continuous urban area 31.2 16.44 0.526

Discontinuous urban area 37.28 10.22 0.274

Barren land 11 21.78 1.98

Pasture land 4.91 4.06 0.826

(E) Precipitation (mm) 350–400 2.98 0.57 0.191

400–450 17.42 23.61 1.355

450–500 23.4 31.18 1.332

>500 56.2 44.64 0.794

(F) Distance to streams (m) 0–50 24.03 29.53 1.228

50–100 17.93 24.44 1.363

100–150 12.41 15.30 1.232

150–200 9.24 9.16 0.991

>200 36.39 21.57 0.592

(G) Distance to roads (m) 0–50 30.85 29.32 0.950

50–100 20.6 21.1 1.024

100–150 13.6 13.58 0.998

150–200 9.35 9.7 1.037

>200 25.6 26.3 1.027

(H) Distance to faults (m) 0–50 13.16 9.37 0.688

50–100 12.08 9.58 0.793

100–150 10.87 7.23 0.665

150–200 9.46 5.91 0.624

>200 54.43 67.91 1.247
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It seems that 29 % of landslides occur within 0–150 m class,
after which the frequency decreases rapidly (Table 2).

Distance to faults

Faults are zones of weakness, characterized by heavily frac-
tured rocks which are prone to instability. Proximity (buffers)
to these structures increases the probability of occurrence of
landslides (Pradhan and Lee 2009). The study area has been
divided into five equal area classes (Fig. 4h). The figure shows
that the landslides density is higher within a distance of 200 m
far from the faults (Table 2) and then the density decreases
rapidly.

Landslide hazard mapping

As mentioned previously, the main purpose of the present
study is to investigate and compare the landslide hazard map-
ping in Constantine city using five (5) models such as FR,
AHP, Wf, WOE, and LR in the Constantine city, northeast
of Algeria. For verification, the accuracy of results has been
confirmed using the landslide inventory map.

Frequency ratio (FR) method

The FR model is one of the common methods in landslide
hazard assessment. The key advantage of the FR method is
the fact that it is easy to apply and the obtained results are
readily intelligible. The FR method allows on to derive spatial
relationship between the distribution of landslides and their
conditioning factors. The FR is the ratio between the percent-
age of landslides in a given class and the percentage of the area
in the same class. The Landslide Hazard Index (LHI) is cal-
culated by a summation of each factor ratio value (Lee and
Min 2001), as expressed in Eq. (1):

LHI ¼ Fr1 þ Fr2 þ Fr3 þ……þ Frn ð1Þ

Where LHI is the Landslide Hazard Index and Fr is the
rating of each factor’s type or range. In relationship analysis,
the ratio is that of the area where landslides occurred to the
total area, so that a value of 1 is an average value. If the value
is >1, it means a high correlation and a value lower than 1
means a lower correlation. Therefore, the frequency ratios of
each factor’s type are calculated from the relationship with the
landslide events as shown in Table 2.

Finally, the FR of each layer classes has been determined
and a landslide hazard map (Fig. 5) has been produced pre-
pared using the LHI map, as given in Eq. (1).

In the FR model, according to Table 2, lithological charac-
teristics of the study area constitute an important factor in
landslide occurrence. The Quaternary lacustrine calcareous

andMiocenemarly clay units are found to bemore susceptible
and exhibited higher frequency ratio values, respectively, of
4.71 and 2.15. The slope angle is among causes of sliding
because it is strongly linked to the involved forces. The (15–
30°) class has the highest value of FR (1.69), while, the slope
class between 0 and 15° contains the lower value of FR (0.56)
indicating clearly that the FR increases proportionally with the
slope angle. Slope exposure analyses shows that most of the
landslides occurred at the north (1.63), west (1.54), and flat
(1.5) directions. The variation in the vegetation in a given area
is a parameter that affects seriously the slope failures, and the
landslide hazard decreases with the presence of vegetation.
This is confirmed in this study, where the land use analysis
showed that the landslide commonly occurred in the unculti-
vated agriculture (3.20) and barren areas (1.98). For the closer
distances to the rivers, FR values greater than one (1) have
been obtained indicating a high probability of landslide occur-
rence. The distances between 100 and 150 and 150–200 m
have higher values of FR, respectively, 1.36 and 1.23, indicat-
ing a high probability of landslide occurrence. The distance to
road is usually taken into account in landslide hazard assess-
ments. The proximity to roads gives, respectively, values 0.95
and 1.02 for distances between 0 to 50 and 50 to 100 m. Also,
the obtained results show that as the distance from faults in-
creases, the landslide frequency increases (Table 2). The inter-
vals 150–200 and >200 m show a FR values of, respectively,
0.62 and 1.24. FR analysis shows that higher FR values were
distributed in higher precipitation zones (Table 2) with 1.33
observed in (450–500 mm) class and 1.35 (400–450 mm)

Fig. 5 Landslide hazard map obtained using the frequency ratio method
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class. This means that the landslide probability increases with
the amount of precipitation.

Weighting factor (Wf) method

The weighting factor (Wf) method (Cevik and Topal 2003)
known also as the InfoVal method used in this study is a
modification of the statistical index (Wi) method, namely,
the bivariate statistical method (Van Westen 1997). It is
outlined and considered in many works as a simple and quan-
titatively suitable method in landslide hazard mapping.

The statistical index (Wi) method is based on a statistical
correlation of the predisposing factors and the distribution of
landslide areas. For each predisposing factor, the density of
the landslide of the training set in each class is evaluated. The
weight value for each class is defined as the natural logarithm
of the landslide density in the categorical unit divided by the
landslide density in the entire map:

Wi ¼ In
Densclass

Densmap
¼ In

Npix Sið Þ=Npix Nið Þ
SNpix Sið Þ=SNpix Nið Þ

� �
ð2Þ

Where Wi is the weight given to the class of a particular
thematic layer, Densclass is the landslide density within the
thematic class, Densmap is the landslide density within the
entire thematic layer, Npix (Si) is the number of landslide
pixels in a certain thematic class, Npix (Ni) is the total number
of pixels in a certain thematic class, and n is the number of
classes in the thematic map. SNpix (Ni) is the number of pixels
of all landslide, and SNpix (Ni) is the total number of all pixels.
The natural logarithm is used to accommodate the large vari-
ation in the weights.

However, the statistical index method considers that each
parameter/thematic map has an equal effect on landslides,
which may not be the case in reality (Oztekin and Topal
2005). Therefore, a weighting factor (Wf) for each parameter
map has been evaluated. For this purpose, first, the Wi value
of each pixel has been determined by the statistical index
method, then, all pixel values belonging to each layer are
summed. By using the maximum and minimum of all layers,
the results are stretched (Cevik and Topal 2003). Finally, the
weighting factor ranging from 1 to 100 for each layer is deter-
mined by the following equation:

W f ¼ TWivalueð Þ− MinTWivalueð Þ
MaxTWivalueð Þ− MinTWivalueð Þ *100 ð3Þ

Where Wf is the weighting factor calculated for each layer,
TWivalue is the total weighting index value of cells within the
landslide bodies for each layer, MinTWivalue is the minimum
total weighting index value within the selected layers, and
Max TWivalue is the maximum total weighting index value
within the selected layers.

By using the Eq. (3), the weighting factor (Wf) values of
each layer have been determined and reported in Table 3. For
the analyses, the Wf value for each layer has been multiplied
by the Wi value of each attribute, and finally, all causal factor
maps have been summed in order to generate the final land-
slide hazard map (Fig. 6) from the Infoval or weighting factor.
The resulted map has been reclassified by dividing the total
number of elements (Wf value), mainly, into five distinct clas-
ses using the standard deviation method: low (−23 to −0.89),
moderate (−0.89 to 1.03), high (1.03 to 2.40), and very high
hazard (2.40 to 5.85). To control the accuracy of the landslide
hazard maps produced by Wf method, the landslide inventory
map and hazard map have been statistically compared.

Logistic regression (LR) method

The logistic regression (LR) is one of the most common sta-
tistical approach used in geosciences especially in landslide
assessment. Logistic multiple regression allows one to evalu-
ate a multivariate regression relationship between a dependent
(landslides) and independent variables (such as slope angle,
exposure, and lithology). As stated by Lee and Sambath
(2006), logistic regression is useful for predicting the presence
or absence of a characteristic or outcome based on value of a
set of predictor variables. The important advantages of LR is
that, through addition of an appropriate link function to the
usual linear regression model, the variables may be either
continuous or discrete, or any combination of both types,
and they do not necessarily have normal distributions (Lee
and Sambath 2006; Lee and Pradhan 2007). In the present
study, the dependent variable is a binary variable representing
the presence (1) or the absence (0) of a landslide, while the
independent variables can be continuous, discrete, dichoto-
mous, or a mix of any of these.

The algorithm of logistic regression applies maximum like-
lihood estimation after transforming the dependent variable
into a logic variable representing the natural logarithm of the
odds of the dependent occurring or not (Atkinson andMassari
1998; Bai et al. 2010). The mentioned model can be expressed
according to following equation (Lee and Pradhan 2007):

P ¼ 1

1þ e−z

� �
ð4Þ

Where P is the estimated probability of landslide occur-
rence, varying from 0 to 1 on an S-shaped curve, and Z is
the a linear combination defined as by the following
Equation (Eq. 5) and its value varies from −∞ to +∞:

Z ¼ intercept þ b1x1 þ b2x2 þ b3x3 þ…þ bnXn ð5Þ

Where here, b1, b2, b3, and bn are the slope coefficients of
the logistic regression model and x1, x2, x3, and xn are the
independent variables.
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Table 3 Weighting values (Wi) calculated, for each class of the selected landslide causal factors

Factors Classes Pixels in
classes

Landslide pixels
in classes

Statistical
index (Wi)

Wf in
classes

Weighting
factor (Wf)

(A) Lithology Neritic limestone (Cénomanian-Turonian) 2322 0 0 0 100
Calcareous marls of the Tellian sheet

(Cretaceous-Eocene)
15863 1155 −0.559 −55.9

Flysh Massylian upper cretaceous 619 73 −0.066 −6.6
Miocene marly clay 19271 5244 0.769 76.9

Miocene conglomerates 9608 834 −0.372 −37.2
Quaternary lacustrine calcareous 869 515 1.548 154.8

Pliocene lacustrine calcareous 5650 42 −2.830 −283
Quaternary recent alluvial terraces 3587 478 0.056 5.6

Quaternary ancient alluvial terraces 6976 29 0.032 3.2

Colluviums, conglomerate with muddy
matrix, and thick fill quaternary

2825 156 −0.824 −82.4

(B) Slope (°) 0–5 19554 1397 −0.567 −56.15 99.03
5–15 42245 5976 0.115 11.38

15–30 5408 1153 0.525 52

30–45 327 0 0 0

>45 56 0 0 0

(C) Exposure Flat 136 27 0.454 33.59 74.63
North 12307 2534 0.491 36.56

East 17475 1065 −0.726 −53.72
South 18739 1203 −0.674 −54.18
West 18933 3697 0.438 32.09

(D) Land use Agriculture land 7633 3352 1.248 122.18 98.54
Natural forest land 4904 698 0.121 11.82

Continuous urban area 20419 1401 −0.607 −59.81
Discontinuous urban area 24528 872 −1.265 −124.16
Barren land 6786 1856 0.775 76.36

Pasture land 3320 347 −0.186 −18.32
(E) Precipitation (mm) 350–400 2019 49 −1.647 −164.7 100

400–450 11771 2013 0.305 30.5

450–500 15817 2658 0.287 28.7

>550 37983 3806 −0.229 −22.9
(F) Distance to streams (m) 0–50 16236 2517 0.207 20.41 98.64

50–100 12116 2084 0.311 30.67

100–150 8383 1305 0.211 20.81

150–200 6253 781 −0.008 −0.78
>200 24602 1839 −0.522 −51.49

(G) Distance to roads (m) 0–50 20848 2499 −0.049 −4.19 85.55
50–100 13927 1799 0.024 1.71

100–150 9191 1158 −5.699 −487.54
150–200 6323 827 0.037 3.16

>200 17301 2243 0.028 2.39

(H) Distance to faults (m) 0–50 8894 800 −0.337 −28.99 87.61
50–100 8163 816 −0.231 −20.15
100–150 7344 617 −2.476 −216.39
150–200 6395 504 −0.469 −40.3
>200 36794 5789 0.222 19.44
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Using the logistic regression model, the spatial relationship
between landslide occurrence and landslide affecting factors is
assessed. For this purpose, the spatial databases of all the con-
ditioning factors and landslides have been converted into grid

format and, then, into Excel data format files to be used in the
statistical package XLSTAT 2014 trial version. Then, the cor-
relation between landslide event and landslide affecting factors
has been estimated, and the logistic regression model has been
run to obtain the coefficients of the landslide-conditioning fac-
tors. TheHosmer and Lemeshow test showed that the goodness
of fit of the equation can be accepted because the significance
of chi-square is larger than 0.05 (0.09). A higher R-square
value of Cox and Snell R2 (0.892) and Nagelkerke R2 (1.365)
indicates a better model. The relative operating characteristic
(ROC) value of 0.9502 indicates a good correlation between
the independent and dependent variables.

The weighting of the factor classes is based on the percent-
age area of landslides in the homogenous units. The percent-
age area of landslides which depend on each factor has been
identified by calculating the ratio of the observed landslide
area to the area of homogeneous units. The weight factor for
each class of a specific factor has been calculated by summing
the ratios for each class in different units. Weight factors have
been transferred to the quantitative values from 0 to 10. The
class with the maximum of the summation percentage area has
been given a weight of 10, and the in other classes, the given
weight is <10 based on their proportions.

The weight factor and the logistic regression coefficient for
each thematic layer are shown in Table 4. Finally, the binary
logistic regressionmodel developed for the study area is given
in Eq. 6:

Z ¼ −1; 099þ 1:99*lithology 1ð Þ þ 2:184*lithology 2ð Þ þ 1:256*lithology 3ð Þ þ 2:048*
lithology 4ð Þ þ 2:105*lithology 5ð Þ−0:008*lithology 5ð Þ þ 2:112*lithology 6ð Þ−0; 005*
lithology 8ð Þ−0; 028*lithology 9ð Þ−0:007*Slope 1ð Þ þ 1:552*Slope 2ð Þ þ 1:926*Slope 3ð Þþ
1:890*Slope 4ð Þ þ 1:255*Slope 5ð Þ−0:220*Exposure 1ð Þ þ 1:256*Exposure 2ð Þ þ 2:016*
Exposure 3ð Þ þ 1:255*landuse 1ð Þ þ 2:001*landuse 2ð Þ þ 1:803*landuse 3ð Þ þ 1:952*landuse
4ð Þ þ 1:675*landuse 5ð Þ þ 2:100*landuse 6ð Þ−0:012*Precipitation 1ð Þ þ 1:699*Precipitation
2ð Þ þ 1:540*Precipitation 3ð Þ þ 1:255*Precipitation 4ð Þ þ 1:255*River 1ð Þ þ 1:417*River 2ð Þþ
1:709*River 3ð Þ þ 2:197*River 4ð Þ þ 1:6707*River 5ð Þ þ 2:197*Road 1ð Þ þ 1:5195*Road 2ð Þ
þ1:761*Road 3ð Þ þ 1:120*Road 4ð Þ þ 2:064*Fault 1ð Þ þ 2:097*Fault 2ð Þ−0:082*Fault 3ð Þþ
2:010*Fault 4ð Þ

ð6Þ

According to Table 4 and Eq. 6, land use, precipita-
tion, distance to streams, and distance to roads are pos-
itively related to the occurrence of landslides because of
their positive coefficients. On the other hand, slope de-
gree has a positive role in landslides occurrence except
for the (0–5°) class which has a negative effect with a
values of −0.007. In the case of the slope exposure,
south (0), north (1.25), east (2.01), and west (0) facings
have positive coefficients. Unlikely, flat facing has a
value of −0.22. For the precipitation factor, results
showed that only rainfall classes ranging from 350 to
400 did not have any role in landslides occurrence with

a coefficient value of 0.875, while the remaining classes
are positively related to the probability of landslides for-
mation. Based on the results of the logistic regression
for the lithology factor, it appears that the lithological
formations of groups 7, 9, and 10 (Table 4) have an
inverse effect on landslide hazard with a negative values
of −0.008, −0.005, and −0.028, respectively, while the
remaining classes have a positive relation with the land-
slide occurrence showing positive value has been
observed.

The probability of landslide occurrence has been cal-
culated by using the above logist ic regression

Fig. 6 Landslide hazardmap obtained using the weighting factor method
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Table 4 Logistic regression coefficients for each class of the selected landslide causal factors

Factors Classes % of total
area

% of landslide
area

Factor
weight (W)

Logistic regression
coefficients

(A) Lithology
Lithology (1) Neritic limestone (Cénomanian-Turonian) 3.44 0 0.00 0.000
Lithology (2) Calcareous marls of the Tellian sheet

(Cretaceous-Eocene)
23.47 13.54 2.20 1.990

Lithology (3) Flysh Massylian upper cretaceous 0.92 0.86 0.14 2.184
Lithology (4) Miocene marly clay 28.52 61.52 10.00 1.256
Lithology (5) Miocene conglomerates 14.21 9.79 1.59 2.048
Lithology (6) Quaternary lacustrine calcareous 1.28 6.03 0.98 2.105
Lithology (7) Pliocene lacustrine calcareous 8.35 0.49 0.08 −0.008
Lithology (8) Quaternary recent alluvial terraces 5.31 5.61 0.91 2.112
Lithology (9) Quaternary ancient alluvial terraces 10.32 0.33 0.05 −0.005
Lithology (10) Colluviums, conglomerate with muddy

matrix, and thick fill quaternary
4.17 1.84 0.30 −0.028

(B) Slope (°)
Slope (1) 0–5 28.92 16.38 2.34 −0.007
Slope (2) 5–15 62.50 70.1 10.00 1.552
Slope (3) 15–30 8.00 13.52 1.93 1.926
Slope (4) 30–45 0.48 0 0.00 1.890
Slope (5) >45 0.08 0 0.00 1.256

(C) Exposure
Aspect (1) Flat 0.2 0.3 0.07 −0.220
Aspect (2) North 18.20 29.72 6.85 1.256
Aspect (3) East 25.85 12.5 2.88 2.016
Aspect (4) South 27.72 14.12 3.26 0.000
Aspect (5) West 28.01 43.36 10.00 0.000

(D) Land use
Land use (1) Agriculture land 12.28 39.32 10.00 1.256
Land use (2) Natural forest land 8.24 8.18 2.08 2.001
Land use (3) Continuous urban area 31.2 16.44 4.18 1.804
Land use (4) Discontinuous urban area 37.28 10.22 2.60 1.953
Land use (5) Barren land 11 21.78 5.54 1.676
Land use (6) Pasture land 4.91 4.06 1.03 2.100

(E) Precipitation (mm)
Precipitation (1) 350–400 2.98 0.57 0.13 −0.012
Precipitation (2) 400–450 17.42 23.61 5.29 1.699
Precipitation (3) 450–500 23.4 31.18 6.98 1.540
Precipitation (4) >550 56.2 44.64 10.00 1.256

(F) Distance to streams (m)
Distance to streams (1) 0–50 24.03 29.53 10.00 1.256
Distance to streams (2) 50–100 17.93 24.44 8.28 1.418
Distance to streams (3) 100–150 12.41 15.30 5.18 1.710
Distance to streams (4) 150–200 9.24 9.16 3.10 2.197
Distance to streams (5) >200 36.39 21.57 7.30 1.671

(G) Distance to roads (m)
Distance to roads (1) 0–50 30.85 29.32 10.00 2.197
Distance to roads (2) 50–100 20.6 21.1 7.20 1.520
Distance to roads (3) 100–150 13.6 13.58 4.63 1.761
Distance to roads (4) 150–200 9.35 9.7 3.31 2.197
Distance to roads (5) >200 25.6 26.3 8.97 1.120

(H) Distance to faults (m)
Distance to faults (1) 0–50 13.16 9.37 1.38 2.065
Distance to faults (2) 50–100 12.08 9.58 1.41 2.097
Distance to faults (3) 100–150 10.87 7.23 1.06 −0.082
Distance to faults (4) 150–200 9.46 5.91 0.87 1.065
Distance to faults (5) >200 54.43 67.91 10.00 2.010
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coefficients. The probability ranges from 0.94 to 1. The
obtained landslide hazard map has been obtained based
on the logistic regression model (Fig. 7). The probabil-
ity map has been divided into four hazard classes: very
low (0.9444–0.9991), low (0.9991–0.9996), moderate
(0.9996–0.9998), and high (0.9998–1).

Analytical hierarchy process

The analytical hierarchy process (AHP) is a theory of
measurement dealing with quantifiable and intangible
criteria applied to numerous cases, such as decision theory
and conflict resolution (Vargas 1990). This technique has
been already used for landslide hazard mapping and

widely applied, and the results showed encouraging
(Ayalew et al. 2005; Yalcin et al. 2011). The popularity
of the AHP is due to its simplicity, flexibility, ease of use,
and interpretation. The AHP is a multi-objective, multi-
criteria decision-making approach, enables to organize, an-
alyze, and solve complex decision problems (Saaty 1980).
It is based on three major main steps: decomposition,
comparative judgment, and synthesis of priorities. The de-
composition principle is applied to structure complex prob-
lems into component factors and hierarchies them. The
comparative judgment principle of AHP requires pair-
wise comparison of the decomposed elements within a
given level of hierarchal structure with respect to the next
higher level. The synthesis principle of AHP takes each of
the derived ratio local scale priorities in the various levels
of the hierarchy and constructs a composite set of priori-
ties for the elements at the bottom of the hierarchy. The
AHP provides a numerical fundamental scale, ranging
from 1 to 9 to calibrate the quantitative and qualitative
performances of the priorities (Table 5) (Saaty 2008).
This matrix ultimately enters in expert choice (EC) soft-
ware and calculates the final weight for each conditioning
factor with a consistency ratio (CR) expressed as:

CR ¼ CI=RIð Þ ð7Þ

Where RI is the average of the resulting consistency index
depending on the order of the matrix given by Saaty (1980)
and CI is the consistency index expressed as:

CI ¼ λmax−nð Þ= n−1ð Þ ð8Þ

Where λmax is the largest or principal eigenvalue of
the matrix and can be easily calculated from the matrix,
and n is the order of the matrix. If CR is less than
10 %, then the matrix can be considered as having an
acceptable consistency (Saaty 1977). A CR greater than
10 % requires revision of the judgment in the matrix

Table 5 Fundamental scale for pair-wise comparisons (Saaty 2000)

Intensity of importance Definition Explanation

1 Equal importance Two activities contribute equally to the objective

3 Moderate importance Experience and judgment strongly favor one activity over another

5 Strong importance The evidence favoring one activity over another is of the highest
possible order of affirmation

7 Very strong or demonstrated importance An activity is favored very strongly over another, its dominance
demonstrated in practice

9 Extreme importance The evidence favoring one activity over another is of the highest
possible order of affirmation

2.4,6.8 Intermediate values between adjacent scale values When compromise is needed

Reciprocals Opposites Used for inverse comparison

Fig. 7 Landslide hazard map obtained using the logistic regression
method
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due to an inconsistent treatment of particular rating fac-
tor. Finally, the landslide hazard map using AHP model
has been constructed by using the following equation:

LHIAHP ¼ Lithology �WAHP þ land use �WAHP

þ Slopedegree �WAHP

þ slopeExposurexWAHP

þ distance from rivers �WAHP

þ distance from roads �WAHP

þ Distance to faults � WAHP þ Altitude

�WAHP þ Precipitation �WAHP ð9Þ

Where, WAHP is the weightage for each landslide-
conditioning factor.

Using AHP method, the levels and weight values of the
conditioning factors have been defined and calculated
(Table 6). According to the degree of importance, land use,
lithology, and slope appear as the most important factors that
influence landslide occurrence with, respectively, values of
0.231, 0.228, and 0.166, whereas distance to fault is the less
influencing landslide occurrence with a value of 0.03
(Table 6). The following values: λmax=08.08, CI=0.011
(1.14 %) and CR=0.008, means that the pair-wise matrix is
consistent (threshold CR<0.10) and can be used for assigning
the weight criteria. Using the above factors evaluation and its
weights, the equation for landslide hazard is given as below:

LHIAHP ¼ 0:228� Lithologyþ 0:231� Precipitation

þ 0:166� Slopeþ 0:09� Land use

þ 0:102� Distance to streams

�þ0:088� Exposureþ 0:061

� Distance f rom roadsþ 0:030

� Distance to faults: ð10Þ

The weight values of the different factor classes have been
determined based on the percentages of the area of each class
covered by the landslide area (Table 7). In the presence of
lithology, the higher percentage of the area of Miocene marly
clay factor class covered by the landslide, thus it was given
highest factor class weight value, i.e., 100, which when mul-
tiplied with the factor weight gave the actual weight value of
22.8 as shown in Table 7. The lowest percentage of area of
Neritic limestone factor class covered by the landslide was
given the lowest factor class weight value of 0, when multi-
plied with the factor weight yield gave the value of 0.
Similarly, the weight values of different factor classes have
been determined and seen in Table 7.

As a result of the AHP analyses, a landslide hazardmap has
been established for the urban area of Constantine city (Fig. 8)
by summation of all weighted layers as given in Eq. (10). The
resulting landslide hazard map presents four hazard classes
following the LHI value: 33.5 % (2.921<LHI>6.831) of the
area falls in very low hazard class, 27.3 % (6.831<LHI>
8.407) in low hazard class, 20 % (8.407<LHI>11.307) in
medium hazard class, while very small portion 19.3 %
(11.307<LHI>16.4) of the area falls in the high hazard class.

Weights of evidence method

The weights of evidence (WOE) is a statistical method that
uses the log linear form of the Bayesian probability model to
estimate the relative importance of evidence by statistical
means. This method was first applied to the identification of
mineral potential (Bonham-Carter et al. 1989) and then to
landslide susceptibility and hazard mapping (Van Westen
1993; Van Westen et al. 2003; Suzen and Doyuran 2004).

This method calculates the weight for each landslide pre-
dictive factor (B) based on the presence or absence of land-
slides (L) within the area as follows (Bonham-Carter 1994):

Wþ ¼ In
p B=Lð Þ
P B=L
� � ð11Þ

Table 6 Preferences and weights of conditioning factors by analytical hierarchy

Conditioning factors (1) (2) (3) (4) (5) (6) (7) (8) Weight (W) Weight (%)

(1) Lithology 1 2 2 3 2 2 3 5 0.228 22.80

(2) Precipitation 1/2 1 3 4 3 3 3 5 0.231 23.14

(3) Slope 1/2 1/3 1 3 3 3 3 4 0.166 16.63

(4) Land use 1/3 1/4 1/3 1 2 2 2 3 0.09 09.00

(5) Distance to streams 1/2 1/3 1/3 0.5 1 2 3 4 0.102 10.20

(6) Exposure 1/2 1/3 1/3 0.5 0.5 1 3 4 0.088 08.80

(7) Distance to roads 1/3 1/3 1/3 0.5 0.33 0.33 1 4 0.061 06.16

(8) Distance to faults 1/4 1/5 1/4 0.33 0.25 0.25 0.25 1 0.030 03.00

λmax= 08.08; CI = 0.0114= 1.14; consistency ratio CR= 0.008
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W − ¼ In
p B=L
� �

P B=L
� � ð12Þ

Where P is the probability of ratio and ln is the natural
logarithm (logit), in order to estimate the conditional probabil-
ity of landslide occurrence. B is the presence of the predictive
factor, and L is the presence of landslide. The overbar sign B¯^
represents the absence of the class and/or landslide. PositiveW+

and negative W− weights are indications of the positive and

negative correlations between the landslides occurrence and
the presence of the predictable variable, respectively.

The difference between the positive and negative weights,
as computed for each class of each parameter analyzed, is
known as the weight contrast WC:

WC ¼ Wþ– W – ð13Þ

The magnitude of the contrast reflects the overall spatial
association between the predictable variable and landslides.

Table 7 Weight values of factor classes by analytical hierarchy process

Factors Classes % of total
area

% of landslide
area

Weight by % of
landslide area

Factor
weight (W)

Actual factor
weight (W)

(A) Lithology Neritic limestone (Cénomanian-Turonian) 3.44 0 0 0.228 0

Calcareous marls of the Tellian sheet
(Cretaceous-Eocene)

23.47 13.54 22.009 0.228 5.018

Flysh Massylian upper cretaceous 0.92 0.86 1.39 0.228 0.318

Miocene marly clay 28.52 61.52 100 0.228 22.80

Miocene conglomerates 14.21 9.79 15.91 0.228 3.62

Quaternary lacustrine calcareous 1.28 6.03 9.80 0.228 2.23

Pliocene lacustrine calcareous 8.35 0.49 0.79 0.228 0.18

Quaternary recent alluvial terraces 5.31 5.61 9.11 0.228 2.07

Quaternary ancient alluvial terraces 10.32 0.33 0.53 0.228 0.12

Colluviums, conglomerate with muddy
matrix, and thick fill quaternary

4.17 1.84 3 0.228 0.68

(B) Slope (°) 0–5 28.92 16.38 23.36 0.166 3.87

5–15 62.50 70.1 100 0.166 16.63

15–30 8.00 13.52 19.28 0.166 3.20

30–45 0.48 0 0 0.166 0

>45 0.08 0 0 0.166 0

(C) Exposure Flat 0.2 0.3 0.69 0.09 0.06

North 18.20 29.72 68.54 0.09 6.16

East 25.85 12.5 28.82 0.09 2.59

South 27.72 14.12 32.56 0.09 2.93

West 28.01 43.36 100 0.09 9.00

(D) Land use Agriculture land 12.28 39.32 100 0.231 23.14

Natural forest land 8.24 8.18 20.8 0.231 4.80

Continuous urban area 31.2 16.44 41.81 0.231 9.65

Discontinuous urban area 37.28 10.22 26 0.231 6.00

Barren land 11 21.78 55.39 0.231 12.79

Pasture land 4.91 4.06 10.32 0.231 2.38

(E) Precipitation (mm) 350–400 2.98 0.57 1.27 0.088 0.11

400–450 17.42 23.61 52.88 0.088 4.65

450–500 23.4 31.18 69.84 0.088 6.14

>550 56.2 44.64 100 0.088 8.80

(F) Distance to streams (m) 0–50 24.03 29.53 100 0.102 10.20

50–100 17.93 24.44 82.76 0.102 8.44

100–150 12.41 15.30 51.81 0.102 5.28

150–200 9.24 9.16 31.01 0.102 3.16

>200 36.39 21.57 73.04 0.102 7.45

(G) Distance to roads (m) 0–50 30.85 29.32 100 0.061 6.16

50–100 20.6 21.1 71.96 0.061 4.38

100–150 13.6 13.58 46.31 0.061 2.82

150–200 9.35 9.7 33.08 0.061 2.01

>200 25.6 26.3 89.69 0.061 5.47

(H) Distance to faults (m) 0–50 13.16 9.37 13.79 0.030 0.41

50–100 12.08 9.58 14.10 0.030 0.42

100–150 10.87 7.23 10.64 0.030 0.31

150–200 9.46 5.91 8.71 0.030 0.26

>200 54.43 67.91 100 0.030 3.00
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The value ofWC is typically between 0 and 2; when the value
of C tends to zero, the presence of the considered parameter
does not affect the distribution of landslides in the area; where-
as, when C is approximately two or more, the correlation is
significant (Barbieri and Cambuli 2009).

In this study, firstly, the various thematic maps showing the
landslides affecting factors have been overlapped with the
landslide map. On the basis of these intersections, for each
of the landslide-related factors, the weights, contrasts, and
weights of evidence probability values have been calculated
using Eqs. 11, 12, and 13 (Table 8). Then, the conditional
independence has been tested before the integration of the
patterns predictor to map the landslide hazard. The chi-
square values to test the conditional independence between
all pairs of binary patterns for each factor have been calculated
at the 95 % significance level and 1° of freedom. The calcu-
lated chi-square values are greater than values of the table
(7.9) suggest that the pairs are not significantly different.

The resulting contrast, as shown in Table 8, indicates di-
rectly the importance of each factor for the landslides occur-
rence. The contrast is positive for favorable factors to the
occurrence and negative for unfavorable factors to the occur-
rence of landslides. Results of contrast value (Table 8) analysis
showed that factors with highest landslide probabilities corre-
spond to Miocene marly clay and Quaternary Colluviums for-
mations, the agriculture land, the (450–500 mm) of precipita-
tion, (5–15°) of slope, the flat of slope exposure, the (100–
150 m) of distance to river classes. It can also be concluded
from Table 8 that the contrasts of the factors indicate that there

is no relation with the occurrence of landslides, as evidenced
by the weights close to 0. For instance, distance from road
classes show values near zero, indicates that the distance from
roads is not a very sensitive predicting factor in the study area.

Weights are assigned respectively to the classes of each
thematic layer, to produce weighted thematic maps, which
have been overlaid and numerically added according to
Eq. (14) in order to produce a Landslide Hazard Index (LHI)
map:

LHIWC ¼ WC Slope þ WC Exposure þ WC Fault

þ WC River þ WC Precip

þ WC Landuse þ WC Road

þ WC Lithology ð14Þ

where WC Slope, WC Exposure, WC Fault, WC River, WC
Precip, WC Land use, WC Road, and WC Lithology are
distribution-derived weights relative to slope, exposure, fault,
distance to river, precipitation, land use, distance to road, and
lithology maps, respectively.

Thus, the landslide hazard map (Fig. 9) of Constantine city
is prepared from the respective LHI values. The range of land-
slide hazard is classified into four categories: very low
(−8.58–−1.8), low (−1.8–0.7), moderate (0.7–3.15), and high
(3.15–9.55).

In this study, the LHMs have been divided into four
classes based on the standard deviations method, since
the data obtained values in the LHMs by using the FR,
Wf, LR, WOE, and AHP models show a normal distri-
bution (Suzen and Doyuran 2004; Ayalew et al. 2005;
Yalcin et al. 2011).

Validation and comparison of landslide hazard maps

The most important task, in landslide hazard modeling, is to
perform the validation of the predicted results. Without vali-
dation, the predicted models and prepared maps are less useful
and without scientific significance (Chung and Fabbri 2003).
There are different ways to validate LHM using mathematical
and statistical tools. The most useful methods to represent the
quality and the performance of LHM used in the literature are
the receiver operating characteristics (ROC) and the statistics
rules for spatial effective LHMs. The validation process has
been performed by comparing the known landslide location
data with the LHMs. In this comparison, the landslide activity
map is matched with the LHMs. Then, the distribution of
current landslide area is determined according to the landslide
hazard classes in order to test if the percentage of landslides is
effectively increasing with the hazard degree.

Fig. 8 Landslide hazard map obtained using the analytical hierarchy
process method
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Table 8 Weighting values (WC) calculated, for each class of the selected landslide causal factors

Factors Classes Pixels in
classes

Landslide pixels
in classes

Weights
(+)

Weights
(−)

Weight
contrast (WC)

(A) Lithology Neritic limestone (Cénomanian-Turonian) 2322 0 0 0 0

Calcareous marls of the Tellian sheet
(Cretaceous-Eocene)

15863 1155 −0.61 0.19 −0.8

Flysh Massylian upper cretaceous 619 73 0.11 0.001 0.10

Miocene marly clay 19271 5244 0.97 −0.69 1.66

Miocene conglomerates 9608 834 −0.44 0.05 −0.49
Quaternary lacustrine calcareous 869 515 2.48 −0.06 2.54

Pliocene lacustrine calcareous 5650 42 −3.11 0.09 −3.2
Quaternary recent alluvial terraces 3587 478 0.07 −0.004 0.074

Quaternary ancient alluvial terraces 6976 29 −3.60 0.11 −3.71
Colluviums, conglomerate with muddy

matrix, and thick fill quaternary
2825 156 2.72 0.03 2.69

(B) Slope (°) 0–5 19554 1397 −0.62 0.18 −0.8
5–15 42245 5976 0.13 −2.25 2.38

15–30 5408 1153 0.61 −0.06 0.67

30–45 327 0 0 0 0

>45 56 0 0 0 0

(C) Exposure Flat 136 27 1.09 0 1.09

North 12307 2534 0.59 0.32 0.27

East 17475 1065 −0.81 −1.4 0.59

South 18739 1203 −0.72 0.29 −1.01
West 18933 3697 0.54 −0.27 0.81

(D) Land use Agriculture land 7633 3352 1.71 −0.49 2.2

Natural forest land 4904 698 0.13 −0.49 0.62

Continuous urban area 20419 1401 −0.69 −0.31 −0.38
Discontinuous urban area 24528 872 −1.38 −0.03 −1.35
Barren land 6786 1856 0.96 −0.79 1.75

Pasture land 3320 347 −0.22 −0.42 0.2

(E) Precipitation (mm) 350–400 2019 49 −1.79 −0.19 −1.6
400–450 11771 2013 0.36 −0.08 0.44

450–500 15817 2658 0.34 −0.12 0.46

>550 37983 3806 −0.25 0.27 −0.52
(F) Distance to streams (m) 0–50 16236 2517 0.23 −0.26 0.49

50–100 12116 2084 −1.58 −0.26 −1.32
100–150 8383 1305 0.31 −0.16 0.47

150–200 6253 781 −0.02 −0.09 0.07

>200 24602 1839 −0.59 0.24 −0.83
(G) Distance to roads (m) 0–50 20848 2499 −0.06 0.02 −0.08

50–100 13927 1799 0.04 −0.01 0.05

100–150 9191 1158 −0.007 0.001 −0.008
150–200 6323 827 −0.03 −0.003 −0.027
>200 17301 2243 0.03 −0.17 0.2

(H) Distance to faults (m) 0–50 8894 800 −0.49 0.09 −0.58
50–100 8163 816 −0.28 0.09 −0.37
100–150 7344 617 −0.45 0.10 −0.55
150–200 6395 504 −0.58 0.10 −0.68
>200 36794 5789 0.25 −0.39 0.64
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The ROC curve is one of the statistical techniques that can be
used to provide predictions of the performance and to compare
the different models (sensitivity vs. specificity). The area under
ROC prediction curve (AUC) characterizes the quality of a fore-
cast system by describing the system’s ability to anticipate cor-
rectly the occurrence or nonoccurrence of a predefined Bevent^
(Yesilnacar and Topal 2005; Chung and Fabbri 2003; Lee et al.
2003). The ROC curves can be summarized quantitatively
based on the area under the ROC curve, which gives the accu-
racy of the developed model for predicting the landslide hazard.
The quantitative–qualitative relationship betweenAUC and pre-
diction accuracy can be given as follows: 0.9–1, excellent; 0.8–
0.9, very good; 0.7–0.8, good; 0.6–0.7, average; and 0.5–0.6,
poor (Yesilnacar and Topal 2005).

In this study, ROC curves have been obtained by comparing
the landslide training pixels 30 % (2558 landslide pixels) with
the six LHMs and the area under curves has been calculated.
Figure 10 shows the ROC curves for the six landslide models.
The validation results showed that the prediction accuracy of
LHMs, produced by FR, WOE, AHP, Wf, Wi, and LR are,
respectively, 86.59, 82.38, 77.86, 77.58, 76.77, and 70.45 %.
The obtained results indicate that the use of FR for generating
LSM provides more accurate prediction in comparison with
WOE, AHP, Wf, Wi, and LR. Hence, it is concluded that all
the employed models in this study show reasonably good accu-
racy in predicting the landslide hazard of the study area.

Also, the resulted LHMs have been verified using the two
rules for spatial effective LHMs: First, the percentages of
landslides increased concurrently with the degree of hazard

and the observed landslide should belong to the high hazard
class, and second, the high hazard class should cover only
small areas (Bai et al. 2010; Can et al. 2005; Pradhan and
Lee 2010a; Pourghasemi et al. 2012c). The percentages of
existing landslides falling into the four hazard classes have
determined and presented in Table 9. It is deduced that the
smaller amount of landslides was distributed in the low and
very low hazard classes, and the higher amount of landslides
were scattered in the high hazard class of the LHMs. Table 9
shows that the high hazard classes, found by using all the
methods, contain 51 to 53 % of the active landslide zones,
while the moderate zones give 26 % of the active landslide
zones and about 13 % of the active landslide zones coincide
within the moderate hazard class. The very low hazard zones
show less than 7.5 % of the active landslide zones in all used
methods. The results of Table 9 show that the percentages of
landslides increase effectively from low to very high hazard
and the high hazard class covers only small areas.

According to the obtained LHM from the FRmodel, 13% of
the total area falls in very low landslide hazard (Fig. 11). Low,
moderate, and high hazard zones represent, respectively, 20, 17,
and 13 % of the total area. In the established LHM with WOE
model, 24 % of the total area belong to very low landslide
hazard. Low and moderate hazard zones give, respectively, 26
and 25 % of the total area. While the high zones values give
approximatively 24 %. The obtained LHM by using the AHP
model shows 33.5 % of the total area in very low landslide
hazard. Low, moderate, and high hazard zones give, respective-
ly, 27, 20, and 19 % of the total area (Fig. 11). The produced
LHM through the Wf method gives small percentages (13 %)
for the high hazard areas, while the very low, low, and moderate

Fig. 9 Landslide hazard map obtained using the weights of evidence
method

Fig. 10 Receiver operating characteristics (ROC) curves representing
quality of the five models used
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hazard areas are 22, 36, and 27 %, respectively. The LRmethod
results are very low (40 %), low (28 %), moderate (21 %), and
high (11%). The high hazard zones percentages in the FR, AHP,
Wf, and LRmethods show small values of 13% (Fig. 11), while
the low hazard zones percentages in the FR, AHP, Wf, WOE,
and LR methods show high values more than 25 %.

Discussion and conclusion

Landslides are among the most damaging natural hazards con-
stituting a significant constraint for urban development in the
Constantine city. Therefore, a landslide hazard map depicting
the most vulnerable areas to landslides appears as a fundamen-
tal tool in risk management as an integral part of land use
planning in the hazard prone areas. From scientific literature,
various methods have been suggested for landslide hazard
mapping, including heuristic, statistical, and deterministic
based approaches. In recent years, several attempts have been
made to apply different methods of LHM and to compare
results in order to select the best suitable model.

In this research, we compare the obtained results of landslide
hazard mapping by using five different methods: FR, Wf, LR,
WOE, and AHP in the Constantine city, northeast of Algeria.
The usedmethods are based on real, field-surveyed data, i.e., the
spatial distribution of both landslides and/or the causal factors.
Firstly, a landslide location has been identified by using aerial
photographs and satellite images interpretation supported by
available literature and field surveys. As a result, 70 % of

identified landslides have been used as training data and the
remaining (30 %) have been used to validate the models.
Eight landslide-conditioning factors including lithology, slope
gradient, slope exposure, land use, distance from roads, distance
from streams, distance from faults, and precipitation have been
considered for which to derivemaps have been derived by using
various GIS tools. The LHMs have been classified into five
classes: very low, low, medium, and high using the standard
deviation classifier. After that, the obtained LHM has been val-
idated by comparison with known landslide locations.

According to the obtained area under the curve (AUC), the
FR model showed higher prediction performance (86.59 %)
than WOE (82.38 %), AHP (77.86 %), Wf (77.58 %), and LR
(70.45 %) models. Hence, we concluded that all the employed
models in this study give reasonably good accuracy in predicting
landslide hazard for the Constantine city. Also, the accuracy
results procedure by using statistics rules showed that the density
of the landslides increases from low to very high hazard zone,
and on the other hand, the high percentage of the landslides has
been occurring in very high hazard area which covers the lower
percentage the study area validating hence our results.

Such results have been observed in models such as FR,
AHP, LR, and artificial neural network ANN (Yılmaz 2009;
Pradhan and Lee 2010a; Park et al. 2012; Nourani et al. 2013);
heuristic and bivariate statistical models, probabilistic, bivari-
ate, and multivariate models (Pradhan and Youssef 2010; Tien
Bui et al. 2011a; Kevin et al. 2011; Ozdemir and Altural 2012;
Shahabi et al. 2012). Ayalew et al. (2005), Esmali Ouri, and
Amirian (2009), through their works, stated that AHP model
was better than the LR in Sado Island, Japan, and Iran,
respectively. Yalcin (2008) reported that AHP method is a
more realistic landslide susceptibility map than when using
the bivariate statistical models (Wi and Wf). Also, Yalcin
et al. (2011) found that the results of using the Wf method
are better than the FR, AHP, Wi, and LR models in Trabzon,
NE, Turkey. For landslide hazard analysis at Cameron area,
Pradhan and Youssef (2010) showed that the FR model is
provided better in predictions of landslides than bivariate
and LR models. Yalcin (2008) evaluated the accuracy of the
application of FR, LR, and ANN for landslide susceptibility
mapping in the Ardesen (Turkey). The results showed that the
AHP method provided realistic results of landslide

Table 9 Active landslide zones falling into the various classes of the landslide hazard maps

Methods FR LR WOE Wf AHP

Hazard classes Total pixel Area (%) Total pixel Area (%) Total pixel Area (%) Total pixel Area (%) Total pixel Area (%)

Very low 570 7.57 575 6.74 620 7.27 630 7.39 625 7.33

low 1158 15.38 1150 13.49 1170 13.72 1250 14.66 1160 13.61

Moderate 2298 26.96 2300 26.98 2355 27.62 2290 26.86 2350 27.57

Hight 4499 52.77 4500 52.79 4380 51.38 4355 51.09 4390 51.50
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Fig. 11 Histograms showing the relative distribution of various hazard
classes of different landslide hazard maps
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susceptibility than theWi andWfmethods. Pourghasemi et al.
(2013) presented the results of application of LR, SI, and AHP
models for landslide susceptibility mapping in the north of
Tehranmetropolitan, Iran. The validation results indicated that
the LRmodel is better in predictions of landslide susceptibility
than using the SI and AHP models.

The resulted LHMs in this study may constitute a helpful
tool for planners, decision makers, and engineers in slope
management and future development planning in the city of
Constantine. Theymay serve as useful guides for planners and
engineers in choosing suitable locations for the implementa-
tion of developments. As the results are given at large scale,
the exact extent of the slope instability areas and the details of
high hazard area classes are determined, this will be useful for
need further detailed site-specific studies. The area falling in
the predicted high hazard zone is required to be monitored,
and remedial and preventive measures may be initiated to
protect life and property from future landslides. Also, it is
worthy to mention that the same method can be used else-
where in the northern part of Algeria where similar geological,
geomorphological, and climatic feature prevails.
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