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Abstract Particulate matter with aerodynamic diameter of
10 μm or less (PM10) causes numerous adverse health and
environmental impacts; therefore, it is vital to characterise its
behaviour in association with the controlling factors. In this
paper, the effects of several meteorological parameters and
gaseous pollutants on PM10 concentrations (μg/m3) are
analysed employing a quantile regression model (QRM).
The study uses air quality and meteorology data collected in
the arid climatic conditions of Makkah, Saudi Arabia. In this
study, it is shown that the effects of covariates vary at different
levels of PM10 distributions, which confirms a non-linear as-
sociation between PM10 and independent variables. Tempera-
ture had positive significant effect at the middle quantiles (0.2
to 0.8) of PM10. The effect of atmospheric pressure was sig-
nificant only at quantile 0.95 (slope = −1.85). Relative humid-
ity had significant effect at quantiles 0.05 to 0.3 and insignif-
icant effect at higher quantiles. Both wind speed and
lag_PM10 demonstrated significant positive effect at all
quantiles, and the magnitude of slopes gradually increased
as PM10 concentration increased. The effect of CO was sig-
nificant at all quantiles, and the magnitude of slopes ranged
from −8 to −47 at quantile 0.05 and 0.95, respectively. The
negative effect of SO2 was significant at most of the quantiles,
except at quantiles 0.05, 0.8 and 0.9, where the effect was
insignificant. NO showed significant positive effect at all
quantiles; in contrast, NO2 had positive effect only at quantiles
0.05 to 0.6. The performance of the model was assessed both

locally (at each quantile) and globally (amalgamating the ef-
fect of all quantiles). QRM provides a new insight into air
quality data analysis and outperforms other regressionmodels.
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Introduction

It is well established that air pollution has negative impacts on
human health, agricultural crops, ecosystem and building ma-
terials (e.g. Dockery et al. 1993; Burnett et al. 2000; WHO
2004; Al-Hobaib et al. 2010). Atmospheric particulate matters
aggravate chronic respiratory and cardiovascular diseases, al-
ter host defence, damage lung tissues, lead to premature death
and possibly cause cancer (WHO 2004; Harrison 2001). Fur-
thermore, particles have a range of important non-biological
impacts, including soiling of man-made materials and build-
ings, reducing visibility and affecting heterogeneous atmo-
spheric chemistry (Harrison 2001). The adverse impacts of
air pollutants are not limited to local areas where the pollutants
are emitted and rather extend to regional and global levels in
the form of acid rain and ground level ozone, which have
transboundary impacts (AQEG 2009). Recently, several in-
vestigations have been made in Saudi Arabia and the sur-
rounding Arab Gulf region to investigate spatial and temporal
variability of particulate matters (Mashal et al. 2014; Munir
et al. 2013b), quantify their emission sources (e.g.
Abdelwaheb et al. 2014; Rushdi et al. 2013; Khodeir et al.
2012) and determine various factors contributing to the deg-
radation of air quality (e.g., Al-Dabbas et al. 2013; Al-
Khadouri et al. 2014). However, further investigations are
required on health impacts and advanced modelling to
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characterise the behaviour of aerosols, which can lead to better
air quality management.

Makkah is one of the busiest cities in the world. Every year,
millions of people visit the city due to its religious importance
in the Muslim world. High levels of air pollutants is one of the
growing concerns in Makkah, especially during the season of
Hajj (Al-Jeelani 2009; Othman et al. 2010; Seroji 2011; Munir
et al. 2013a; Munir et al. 2013b; Habeebullah 2013a;
Habeebullah 2013b). PM10 concentrations in Makkah exceed
air quality standards set for the protection of human health.
The reasons for the high particulate matter concentrations are
most probably high volume of road traffic, construction work,
resuspension of particles, windblown dust and sand particles
and geographical conditions (arid region) with hot tempera-
ture and low rainfall (Khodeir et al. 2012; Munir et al. 2013b).
Furthermore, it is reported that the concentrations of PM10 in
Makkah have increased during the last 15 years or so (Munir
et al. 2013b).

PM10 levels are affected by various atmospheric parame-
ters, such as wind speed and direction, relative humidity, tem-
perature and rainfall (e.g. Elminir 2005; Ordonez et al. 2005;
Cheng et al. 2007; Beaver and Palazoglu 2009; Pearce et al.
2011). The levels of PM10 are associated with emission
sources, the entering of particles from the ground surface, their
residence time in the atmosphere, the formation of secondary
pollutants, wind speed, turbulence level, air temperature and
precipitation (Bhaskar and Mehta 2011). Furthermore, other
air pollutants, for instance carbon monoxide (CO), sulphur
dioxide (SO2) and nitrogen oxide (NOx), can affect PM10

concentrations in various ways. These pollutants can result
in secondary aerosol formation; for example, SO2 is oxidised
in the atmosphere to form sulphuric acid (H2SO4), which can
be neutralised by ammonia (NH3) to form ammonium sul-
phate ((NH4)2SO4). Nitrogen dioxide (NO2) is oxidised to
nitric acid (HNO3), which in turn can react with NH3 to form
ammonium nitrate (NH4NO3). The particles produced by the
intermediate reactions of gases in the atmosphere are called
secondary particles. Secondary sulphate (SO4

−2) and nitrate
(NO3

−) particles are usually the dominant component of fine
secondary particles (Harrison 2001; WHO 2003). Moreover,
the interaction of these pollutants with each other and with
PM10 can result in synergistic (positive interdependence) or
antagonistic (negative interdependence) effects that can affect
the adverse impact on human health and natural environment
(WHO2003). Howmeteorology and other air pollutants affect
the concentration of PM10 in an arid region like Makkah,
where air quality data are limited, is not well characterised.
Furthermore, how the effects of meteorological parameters
and other pollutants change at various regimes of the PM10

distributions require further considerations. Therefore, ad-
vanced modelling studies are required to analyse the effects
of various controlling factors on PM10 to help better under-
stand the association of these parameters with PM10. This

paper intends to answer these questions, which is vital for
preparing an effective management plant in Makkah and
elsewhere.

Previously Munir et al. (2013a) has developed a generalised
additive model (GAM) to analyse the effect of several traffic-
related air pollutants and meteorological parameters on PM10;
however, GAM was unable to capture the variability in PM10

concentrations. Several metrics for the GAM model were esti-
mated including coefficient of determination (R2 = 0.52), root
mean square error (RMSE = 84) and fractional bias
(FB = −0.22). In a more recent study by Sayegh et al. (2014),
the performances of several statistical models were compared.
QRM outperformed the other models and therefore was recom-
mended for Makkah. However, there are several shortcomings
in the Sayegh et al. (2014) study, which are addressed in this
study: (a) data for the month of June were used as testing data,
which for model comparison purposes is understandable as it
would have the same effect on all models; however, ideally, the
testing dataset should have been randomly selected. In this
study the testing dataset has been randomly selected; (b) the
outputs of QRM and its coefficients at different quantiles are
not explained (for the purpose of brevity), which makes the
study difficult to be understood, particularly for those readers
who are new to this approach. In this study, the model outputs
and how the coefficients change at various quantiles are ex-
plained in details; (c) only global prediction and resulted statis-
tical metrics are considered, and no consideration is given to
local performance of the model. This study analyses both glob-
al and local performance of the model. Furthermore, Sayegh
et al. (2014) have focused on comparing the performance of
several models, whereas this study focuses on the non-linear
association between PM10 and the independent variables.

Methodology

Data source

This study uses data collected at the Presidency of Meteorol-
ogy and Environment (PME) monitoring station, situated near
the Holy Mosque (Al-Haram) in Makkah, Saudi Arabia, for
the year 2012. This is a continuous monitoring station and
measures several air pollutants and meteorological parame-
ters. The location of the monitoring station is shown in
Fig. 1. The air quality monitoring network was previously
described by Munir et al. (2013a and b).

This study characterises PM10 concentration (μg/m3) with
the aid of several air pollutants (CO mg/m3, SO2 μg/m

3, NO
μg/m3, NO2 μg/m

3) and meteorological parameters (relative
humidity (RH %), temperature (T °C), wind speed (WS m/s),
wind direction (WD degrees from the north) and atmospheric
pressure (P) measured in hectopascal (hPa), which is equiva-
lent to the conventional unit millibar (mbar)). A summary of
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these parameters is presented in Table 1, showing minimum
(min), first quartile (0.25 quantile), mean, median (0.5
quantile), third quartile (0.75 quantile) and maximum levels
of the given parameters. Data capture is greater than 90 % for
all parameters, except SO2 where 88 % data were present.
Gaseous air pollutant levels can be expressed as mixing ratios
[e.g. parts per million (ppm) or parts per billion (ppb)] or as
concentrations (e.g. μg/m3 or mg/m3); however, PM10 is al-
ways expressed as concentration (e.g.μg/m3). In this paper, all
pollutants are expressed as concentrations (μg/m3 or mg/m3)
to be consistent in the use of units for both gaseous and non-
gaseous pollutants.

It is shown in Fig. 2 that PM10 concentrations and indepen-
dent variables are not normally distributed. The histograms are
right (positive) skewed. This has been reported previously by
several authors (Duenas et al. 2002; Munir et al. 2011) that air
pollutants and meteorological variables are not normally

distributed. The majority of classical statistical tests are based
on the assumption that the data to which the tests are applied
should exhibit a normal distribution (i.e. bell shape, symmet-
rical and with a common mean and median). If the parametric
tests are applied to non-normal data, they can result in biased
or even erroneous results (Reiman et al. 2008). Therefore,
before applying a classical test, it is vital to check data distri-
butions and if the data are non-normally distributed, robust
and non-parametric methods should be applied that are not
based on such assumptions.

General statistics

Statist ical Software R programming language (R
Development Core Team 2012) and associated packages
Quantreg, version 4.9.1 (Koenker 2012) and openair, version
2.13.2 (Carslaw and Ropkins 2012) were used for running

Fig. 1 Map of the air quality and meteorological monitoring sites in Makkah, Saudi Arabia, where AQMS 112 represents the PME
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QRM, performing other statistical analysis and making
graphs. Graphical presentations (e.g. histograms, polar plot
and scatter diagram) are also used to present the outputs of
the analysis.

Quantile regression model

In this paper, QRMmodel is employed to analyse the effect of
covariates (e.g. meteorological parameters and other air

pollutants such as NOx, CO, SO2) on PM10 concentrations.
QRM allows the covariates to have different contribution at
different quantiles of the dependent variable distribution (here
PM10) and is robust (insensitive) to departures from normality
and to skewed tails. Air pollutant data are not normally dis-
tributed as reported by several authors (e.g. Duenas et al.
2002; Munir et al. 2011) and is also demonstrated in Fig. 2.
Furthermore, some air pollutants, such as ozone, exhibit non-
linear association with its predictors (e.g. Gardner and Dorling

Table 1 Showing a summary of
the parameters used in this study
measured at the PME monitoring
station near the Holy Mosque in
Makkah, Saudi Arabia for the
year 2012

Pollutant Min First quartile Mean Median Third quartile Maximum % Data capture

CO (mg/m3) 0 0.79 0.98 1.12 1.27 6.87 95

SO2 (μg/m
3) 0 5 8 11 15 125 88

NO2 (μg/m
3) 0 27 42 46 61 223 99

NOx (μg/m3) 0 21 33 42 52 367 99

NO (μg/m3) 0 2 5 12 13 299 99

PM10(μg/m
3) 0 79 124 180 199 5761 93

P (hPa) 649 971 975 974 978 984 100

RH (%) 4 18 31 33 45 86 100

T (°C) 16 27 32 32 36 46 100

WS (m/s) 0 1 1 1 2 6 100

WD (degrees) 1 185 285 243 333 360 100

SO2 sulphur dioxide, CO carbon monoxide, NO nitric oxide, NO2 nitrogen dioxide, NOx nitrogen oxides, O3

ozone, PM10 particles with aerodynamic diameter of 10 µm or less, WS wind speed, WD wind direction, T
temperature, RH relative humidity, P atmospheric pressure

Fig. 2 Histograms showing the
frequency distributions of mean
hourly data of PM10, SO2, CO,
NOx, wind speed, and relative
humidity at the PME monitoring
station near the Holy Mosque in
Makkah, Saudi Arabia for the
year 2012
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2000; Baur et al. 2004). This means that the contributions of
the explanatory variables (e.g. meteorological variables) to
independent variable vary significantly at different levels
of ozone. This suggests that statistical models should have
the capability to address the linearity and normality issues
when applying to analyse air quality data. QRM is capable
of addressing these issues. Readers are referred to Koenker
(2005) and Hao and Naiman (2007) for details on QRM
and to Baur et al. (2004) and Munir et al. (2012) for the
applicability of QRM to ground level ozone concentra-
tions. Baur et al. (2004) modelled the impact of meteorol-
ogy on ozone concentrations in Athens, whereas Munir et
al. (2012) modelled the effect of road traffic on ozone con-
centrations in the UK.

Using hourly mean PM10 concentrations as a dependent
(modelled or response) variable and several meteorological
parameters (T, RH, P, WS and WD) and air pollutants (CO,
NO, NO2, SO2 and lag_PM10) as independent variables, a
QRM is developed intending to analyse the non-linear rela-
tionship between PM10 the covariates. These covariates are
important for modelling PM10 concentrations and controlling
a significant proportion of PM10 variations as previously
shown by Munir et al. (2013a). Multiple linear regression
model (MLRM) specifies the conditional mean function,
whereas QRM specifies the conditional quantile function.
MLRM and QRM are shown below in equations (1) and (2),
respectively (Hao and Naiman 2007). MLRM is used here to
facilitate the understanding of QRM.

PM10 ¼ βo þ β1Pþ β2RHþ β3Tþ β4WSþ β5WDþ β6COþ β7SO2 þ β8NOþ β9NO2 þ β10

lag PM10 þ εi
ð1Þ

PM10 ¼ βo
pð Þ þ β1

pð ÞPþ β2
pð ÞRHþ β3

pð ÞTþ β4
pð ÞWSþ β5

pð ÞWDþ β6
pð ÞCOþ β7

pð ÞSO2 þ β8
pð ÞNOþ

β9
pð ÞNO2 þ β10

pð Þlag PM10 þ εi
ð2Þ

In equations (1) and (2), βo represents the intercept, β1 to
β10 represent the slopes (gradients) of the covariates and εi is
the error term. The (p) shows the pth quantile, and its value lies
between 0 and 1. Equation (1) gives one coefficient for each
variable; on the other hand, equation (2) can have numerous
quantiles and will require a separate equation for each quantile
and therefore will produce numerous coefficients for each var-
iable. This study adopts 11 quantiles (0.05, 0.1–0.9, 0.95), and,
therefore, 11 equations will generate the same number of
quantile regression coefficients for each covariate. Several met-
rics are calculated to assess the model performance. These met-
rics are as follows: RMSE, normalised mean gross error
(NMGE), coefficient of determination (R2), normalised mean
bias (NMB) and factor of 2 (FAC2). For more details on these
metrics, their definition and their mathematical formulae, see
Carslaw (2011) and Derwent et al. (2010).

When we assess the performance of a model, we compare
the observed concentrations with the predicted concentrations
of the modelled variable, here PM10. Other statistical models,
such as GAM or MLRM, have one prediction based on mean
effect. In contrast, QRM has several predictions based on the
number of quantiles used in the model. This makes assessing
the performance of the QRM model somewhat different from
other models. To assess the performance of QRM model, (1)
either the prediction of QRM for each quantile is compared

with observed concentration or (2) global prediction (amal-
gamation of the prediction of all quantile) is compared with
observed concentrations. The first method in which the pre-
diction of each quantile is used is known as local performance,
whereas the latter method is known as global performance.

To assess local performance, the prediction of each quantile
was compared with observed PM10 concentration of the test
dataset. The test dataset was taken as 10 % independent ran-
dom sample out of the total dataset. To evaluate the global
performance of the QRM, this study adopts the amalgamated
quantile regression model (AQRM) approach suggested by
Baur et al. (2004). However, Baur et al. (2004) have used only
R2 for assessing the model performance, whereas this paper
extends this concept further to other metrics, such as NMB,
NMGE, RMSE and FAC2. To determine these metrics, the
first step is to run QRM and determine quantile regression
coefficients for all the quantiles used in the model. QRM will
normally give numerous predictions according to the number
of quantiles. To turn those predictions into one global predic-
tion, the dataset is divided into the same number of subsets as
the number of quantiles and then the model for that respective
quantile is used to predict PM10 concentration. The predicted
PM10 concentration for these quantiles is then re-integrated in
such a way that it corresponds to the observed concentrations
in the exact order. This gives a global prediction (prediction
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taking into account all quantiles), which is compared with
observed concentration to calculate various metrics for
assessing the performance of the model using various metrics
according to the formulae given by Carslaw (2011) and Der-
went et al.(2010). ‘ModStat’ function in the openair package
(Carslaw and Ropkins 2012) was used to calculate both local
and global metrics for the model. An air quality model is
considered acceptable if more than half of the predicted values
are within a FAC2 of the observed concentrations and faulty if
not. Furthermore, it is recommended that air quality models
are considered acceptable if NMB values lie within the range
between −0.2 and +0.2 and faulty otherwise (Derwent et al.
2010).

Results and discussions

The outputs of QRM are depicted in Fig. 3, which shows the
effect of various covariates on PM10 concentrations. The

quantiles used in this study are shown on the x-axis and their
respective coefficients (slopes) are shown on the y-axis. The
dashed-dotted black line represents the coefficients of QRM,
the solid red line represents the mean coefficient and the solid
black is the zero line. When confidence intervals overlap with
the zero line, it shows non-significant effect and vice versa.
Understandably, negative coefficients show negative effect,
whereas positive coefficients show positive effect of the inde-
pendent variables on PM10 concentrations.

The first panel in Fig. 3 shows the intercept of the model.
The intercepts are within the range of +100 and −113 for
quantiles 0.9 and 0.8, respectively, except quantile 0.95 which
has higher intercept. The effect of atmospheric pressure
(Fig. 3, top-middle panel) is significant only at quantile 0.95,
and for the rest of the quantiles, the confidence intervals over-
lap with the zero line, showing non-significant effect. Signif-
icant negative effect at quantile 0.95 may be due to the fact
that high PM10 concentration in Saudi Arabia is linked with
high wind speed which in turn is associated with low pressure.

Fig. 3 The outputs of quantile
regression model (QRM)
showing the effect of atmospheric
pressure (hPa), relative humidity
(%), temperature (°C), wind
speed (m/s), wind direction
(degrees from the north), carbon
monoxide (CO mg/m3), sulphur
dioxide (SO2 μg/m

3), nitrogen
dioxide (NO2 μg/m

3), nitric oxide
(NO μg/m3) and lag_PM10

(previous day PM10

concentrations μg/m3) on PM10

concentration (μg/m3). Quantile
regression coefficients (dashed
dotted dark line) and mean
coefficients (solid red line) are
presented with their 95 %
confidence interval. Various
quantiles are shown on the x-axis
and their respective coefficients
on the y-axis
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This means that high PM10 concentration is linked with low
atmospheric pressure. It is worth mentioning here that quantile
0.95 is related to high PM10 concentration and not with high
atmospheric pressure. Relative humidity shows significant
negativemean (average) effect, which is significantly different
from the effect at various quantiles. Furthermore, the negative
effect of relative humidity is significant at quantiles 0.05 to 0.3
and non-significant at higher quantiles. As reported previously
by Munir et al. (2013a), high relative humidity is generally
linked with night times when dust concentration is generally
low and therefore shows negative correlation with PM10

concentrations. Furthermore, high relative humidity might be
related with precipitations which wash out the atmospheric
particles. Duenas et al. (2002) have reported that relative hu-
midity plays an important role in the overall reactivity of the
atmospheric system, either by affecting chain termination re-
actions or in the production of wet aerosols, which in turn
affect the flux of ultraviolet radiation. Furthermore, relative
humidity is also considered to be a limiting factor in the dis-
position of NO2 because high percentages of humidity favour
the reaction of NO2 with salt particles, e.g. sodium chloride.
Barmpadimos et al. (2011) have reported that the relationship
between PM10 and relative humidity is not the same for dif-
ferent monitoring sites. They have shown that the nature of
relationship between relative humidity and PM10 changed at
various monitoring sites and also at different levels of the
relative humidity; e.g. the association was positive at low rel-
ative humidity (<60 %) and negative at high relative humidity
(>60 %).

The effect of temperature on PM10 concentration is insignif-
icant at extreme values (top and bottom 10%) and significant at
the middle quantiles (0.2 to 0.8), where the effect is positive.
High temperature can result in enhanced re-suspension of soil
and road dust and formation of secondary aerosol; hence, a
temperature increase from 10 to 35 °C increases PM10 concen-
tration by a factor of 4 in warm days during summer
(Barmpadimos et al. 2011). High levels of PM10 (extreme
levels) in Makkah are mostly caused by sand storms and con-
struction activities near the monitoring site (Munir et al.
2013b), which are more dependent onwind speed and direction
than temperature; therefore, probably that is why temperature
shows non-significant effect. The mean effect of temperature is
negative, and the regression coefficient is about −2. Mean can
be biased by the presence of outliers in the data. Therefore, for
air quality analysis, more robust metrics (e.g. median or other
quantiles) should be used, which are not affected by extreme
values. When temperature was used as the only model input,
even the mean effect became positive. This might mean that the
effect of temperature changes when other inputs are added to
the model, probably due to interaction of various input vari-
ables. The effect of wind speed is positive and significant at all
quantiles. Wind speed shows much stronger effect than the
other covariates. The effect gradually becomes stronger as
PM10 concentration increases, showing greater rate of increase
at higher quantiles. The slope for wind speed at quantile 0.95 is
about 120. The stronger effect of wind speed at higher PM10

concentration is expected as high wind speed blows sand and
dust particles from the barren desserts around the Makkah city

Fig. 4 Polar plot of PM10

concentration (μg/m3) near the
Holy Mosque, Makkah, colour-
coded by PM10 concentrations for
2012
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causing sand and dust storms. This might show that the sources
of PM10 are mostly regional. In case of local sources, the wind
speed would normally have negative impact by dispersing the
locally emitted particles (e.g. Barmpadimos et al. 2011). The
effect of wind direction is positive at lower quantiles until
quantile 0.7 and becomes negative at higher quantiles. Because
of the circular nature of wind direction, its effect is more com-
plicated and is further investigated with the help of polar plots
(Fig. 4).

Polar plots are constructed by averaging pollutant concen-
trations by wind speed categories (0–1 m/s, 1–2 m/s, etc.) as
well as wind direction (0–10, 10–20, etc.). In polar plots, the
levels of PM10 concentration is shown as a continuous sur-
face, which is calculated through using GAM smoothing tech-
niques (Carslaw and Ropkins 2012). It can be observed in
Fig. 4 that highest PM10 concentration is related with high
wind speed (5–6 m/s) from the southeast direction. In addi-
tion, at a wind speed about 3 m/s, high PM10 concentration is
shown in the west, northwest and east directions. Mostly low
PM10 concentration can be observed at lowwind speed (<2 m/
s) from all directions. Further investigation of the local area
revealed that there was a large construction work going on
near the Holy Mosque in the west-to-northwest direction.
There are some barriers between the monitoring site and the
construction location; however, it seems like when westerly
wind blows at a speed greater than 2 m/s, the dusts manage to
reach the monitoring site. On the eastern side, there is a busy
road (Masjid Al-Haram road) and a couple of bus stations,
which probably contribute to the PM10 concentration.

CO shows negative effect on PM10, and the strength of
coefficients (in absolute terms) increase as PM10 concentra-
tion increases. The effect of CO is significant at all quantiles
and slopes range from −8 to −47 at quantiles 0.05 and 0.95,
respectively. Mean regression coefficient was −60, which is
stronger than the quantile coefficients; however, it is not sig-
nificantly greater than the coefficients of quantiles 0.9 and
0.95. The effect of SO2 is negative and significant at most of
the quantiles, except at quantiles 0.05, 0.8 and 0.9. Mean
regression coefficient is about −2 and is significantly different
from the quantile regression coefficients. The positive effect
of NO2 is significant at quantiles 0.05 to 0.6, whereas at higher
quantiles (0.7 to 0.95), the effect is insignificant. On the other
hand, the effect of NO is positive and significant at all
quantiles. Furthermore, for NO, the strength of coefficients
gradually increases from quantiles 0.05 to 0.95, in contrast
to NO2, where the strength of coefficients shows the opposite
pattern. The effect of lag_PM10 (previous day PM10 concen-
tration) is positive, and the effect becomes stronger as the
concentration of PM10 increases. Fine and extra-fine particles
stay in the atmosphere for long time and contribute positively
to the measured concentration hours or even days later (Munir
et al. 2013a); probably, that is why lag_PM10 demonstrates
positive effect.

It can be observed in Fig. 3 that the effect of independent
variables on PM10 concentration is not linear and changes as
the concentration of PM10 changes. For some variables, only
the strength of coefficients changes and the nature (positive or
negative) remains unchanged as in the case of wind speed,
CO, NO and lag_PM10, whereas for other covariates, both
strength and nature of the coefficients change as in the case
of atmospheric pressure, temperature and wind direction. It is
shown that independent variables can have significant effect at
some quantiles and insignificant at other quantiles (e.g. pres-
sure, relative humidity, temperature, wind direction, SO2 and
NO2); however, wind speed, CO, NO and lag_PM10 have
significant effects at all quantiles. The insignificant effect is
mostly related with high quantiles as in the case of relative
humidity, temperature, NO2 and SO2; however, temperature,

Fig. 5 Scatter plots of hourly PM10 concentrations (μg/m
3) versus NOx

(μg/m3), CO (mg/m3) and SO2 (μg/m
3) concentrations measured at PME

monitoring stations near the Holy Mosque in Makkah, Saudi Arabia,
2012. The red and blue colour indicates different patterns in the
association of PM10 and the gaseous pollutants
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pressure and SO2 show insignificant effect at lower quantiles
as well. This type of relationship usually remains hidden when
applying linear models, e.g. MLRM, which assumes linear
association between dependent and independent variables.

CO and SO2 would be expected to show positive associa-
tion with PM10 concentrations if they had the same sources of
emissions. However, here the association is predominantly
negative, which probably shows that they have different
sources of emissions. In Makkah, PM10 mainly comes from
re-suspension and windblown dust and sand particles, where-
as the gaseous pollutants are mainly emitted by road traffic
(e.g. Habeebullah 2013a; Munir et al. 2013 a and b). In addi-
tion, meteorological parameters, especially wind speed, prob-
ably play an important role in the negative association of PM10

and gaseous air pollutants. To investigate this further, scatter
plots of CO, SO2 and NOx against PM10 are shown in Fig. 5,
which clearly shows two different patterns in the association
of PM10 and gaseous pollutants. The red colour shows high
PM10 concentrations associated with low concentrations of
gaseous pollutants (e.g. CO). The blue colour indicates a dif-
ferent pattern; i.e., as the concentrations of gaseous pollutants
increase, PM10 concentrations show little variations. Wind
speed probably plays the dominant role in the negative asso-
ciation of PM10 with the gaseous air pollutants. High wind
speed, on the one hand, blowing sand and dust particles, en-
hances the concentration of PM10; on the other hand, dispers-
ing locally emitted gaseous pollutants, it reduces the concen-
trations of gaseous pollutants. PM10 levels are extremely high
in the red sections, showing extreme episodes of PM10, which
are probably caused by wind storms in Makkah. Episodes of
high PM10 are associated with low levels of other pollutants
and vice versa, which probably explains the negative effect of
CO and SO2 on PM10 concentration.

QRM model assessment

The performance of QRM was assessed by both using global
prediction and local prediction of each quantile. Firstly, the
data were divided into two subsets: training data and testing
data. For testing data, a 10 % random sample was selected,
which was not included in the training dataset. Table 2 shows
the values of various metrics calculated from global prediction
(as described in BQuantile regression model^ section). It is
shown in Table 2 that the values of these metrics for both
QRM and MLRM are within the recommended range, as

Table 3 Statistical metrics for assessing the local performance at each
quantile of PM10 concentrations (μg/m

3). The metrics are calculated for
the testing dataset (10 % random sample) at PME monitoring station in
Makkah

Quantile FAC2 MB MGE NMB NMGE RMSE R2

0.05 0.18 −175.06 175.26 −0.72 0.72 274.92 0.34

0.1 0.41 −150.25 152.21 −0.62 0.63 257.37 0.36

0.2 0.64 −121.53 128.47 −0.50 0.53 239.44 0.37

0.3 0.75 −96.94 112.33 −0.40 0.46 226.62 0.38

0.4 0.82 −74.52 102.21 −0.31 0.42 217.84 0.38

0.5 0.85 −51.95 98.45 −0.21 0.41 212.97 0.38

0.6 0.87 −28.75 98.18 −0.12 0.41 211.37 0.38

0.7 0.85 −0.05 102.35 −0.00 0.42 212.89 0.39

0.8 0.81 40.04 116.19 0.16 0.48 223.87 0.39

0.9 0.63 118.18 165.04 0.49 0.68 270.39 0.40

0.95 0.39 254.18 278.84 1.05 1.15 396.28 0.40

Fig. 6 Comparison of observed and predicted PM10 concentrations (μg/
m3) based on the testing dataset for 2012. Themiddle solid line is 1:1, and
the above and below dashed lines are 0.5:1 and 2:1, respectively. So, the
area between the two dashed lines is the factor of two (FAC2) regions

Table 2 Statistical
metrics for assessing the
global performance of
the model calculated for
the testing dataset (10 %
random sample) at PME
monitoring station in
Makkah

Metric QRM MLRM

FAC2 0.96 0.82

MB 25.71 −14.35
MGE 69.66 104.58

NMB 0.12 −0.06
NMGE 0.34 0.43

RMSE 129.06 204.34

R2 0.82 0.39

For definitions and calculation methods of
these metrics, see Derwent et al. (2010)
and Carslaw (2011)

QRM quantile regression model, MLRM
multiple regression model, FAC2 factor of
2,MBmean bias, RMSE root mean square
error, MGE mean gross error, NMGE nor-
malised mean gross error, R2 for coeffi-
cient of determination, NMB normalised
mean bias
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more than half of the predicted values are within a FAC2 of the
observed concentration and NMB values lie within the range
of −0.2 and +0.2 (Derwent et al. 2010). Therefore, the perfor-
mance of the models is acceptable. In addition, the perfor-
mance of the QRM is better than that of MLRM; for instance,

FAC2 and R2 for QRM and MLRM are 0.96, 0.82 and 0.82,
0.39, respectively.

Figure 6 compares observed and predicted PM10 concen-
trations of both QRM and MLRM with the help of a scatter
plot, which is very useful for model evaluation (Carslaw

Fig. 7 Scatter plots of predicted and observed PM10 concentrations (μg/
m3) at various quantiles based on the testing dataset (10 % random
sample) for 2012. The middle solid line is 1:1 and the above and below

dashed lines are 0.5:1 and 2:1, respectively. So, the area between the two
dashed lines is the factor of two (FAC2) regions
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2011). In the scatter plot, it is much easier to see where the
data lie and to get a feeling about bias. Relatively, more points
lie below the 1:1 line (middle line in Fig. 6) in the case of
MLRM and there seems to be a slight negative bias (under
prediction), whereas more points lie above the 1:1 line in the
case of QRM, showing slight positive bias (over prediction).
Particularly, at high concentration of PM10, MLRM fails to
perform and under-predicts PM10 concentration. The dashed

lines show the within factor of two (FAC2) region, and it is
perhaps worth noting that majority of points lie well within
this region.

Table 3 shows various metrics calculated for each quantile
to show local performance of the model at each quantile using
testing dataset (10% independent random sample). The values
of FAC2 show that the model performance is acceptable at all
quantiles, except at both tails of the distribution, i.e. quantiles

Fig. 7 (continued)

Arab J Geosci (2016) 9: 64 Page 11 of 13 64



0.05, 0.1 and 0.95. At these quantiles, less than half of the
predicted values are within a FAC2 of the observed concentra-
tions (FAC2 < 0.50). The greatest FAC2 value is shown by
quantile 0.6 (FAC2 = 0.87), followed by quantiles 0.5 and 0.7
both having FAC2 value of 0.85. The values of NMB are
between +0.2 and −0.2 at quantiles 0.6, 0.7 and 0.8. Most of
the metrics show best performance either at quantile 0.6 or 0.7,
except R2 which shows the highest value at quantiles 0.9 and
0.95 (R2 = 0.40). The scatter plots (Fig. 7) compare the ob-
served and predicted PM10 concentrations at various quantiles
of PM10. It can be clearly observed in the scatter plots that the
model under-predicts PM10 concentrations at lower quantiles
(quantiles 0.05 to 0.4) where most of the points lie below the
1:1 line. On the other hand, the model over-predicts PM10

concentrations at the higher quantiles (0.8, 0.9 and 0.95), and
most of the points lie above the 1:1 line. When the predictions
of all quantiles are integrated away as described in BQuantile
regression model^ section, the performance of the model sig-
nificantly improves as shown in Fig. 6 and Table 2.

Conclusions

This study employs a QRM to characterise the effect of sev-
eral air pollutants and meteorological variables on PM10 con-
centrations in Makkah, Saudi Arabia. QRM characterises the
effect of covariates at various quantiles, in contrast to the
traditional approaches which analyse the effect of independent
variables on the mean of the dependent variable (here PM10).
The effect of the independent variables (pressure, relative hu-
midity, temperature, wind speed, wind direction, CO, SO2,
NO, NO2 and lag_PM10) was significant in at least one or
more quantiles of the PM10 concentrations. However, the ef-
fect of wind speed, CO, NO and lag_PM10 was significant at
all quantiles and hence seems to be controlling most of the
variations in PM10 concentrations. It is shown that the effect is
non-linear and changes with the levels of PM10 concentra-
tions. Scatter plots and polar plots were employed to provide
further insight into the association of these variables with
PM10 concentration. The model performance is assessed by
calculating several statistical metrics for both global and local
predictions. Global prediction shows much better perfor-
mance than prediction for each individual quantile. The mid-
dle quantiles (0.5, 0.6 and 0.7) showed better performance
than tails at both ends. Further investigations are required to
identify various sources of PM10 and quantify their contribu-
tions to the observed PM10 concentrations, including road
traffic in Makkah which is part of the ongoing project for
improving air quality in Makkah.
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