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Abstract Detailed geophysical and geochemical surveys
were carried out to determine Pb–Zn mineralization zones in
Chichakloo area, east of Takab, Iran. Resistivity and induced
polarization (IP) surveys were conducted along 10 parallel
profiles on the dolomite unit, and also 292 samples were col-
lected for lithogeochemical studies to assess the extents of Pb–
Zn ore deposits in the study area. All exploration data were
processed and modeled, and then the results were taken to a
geographic information system (GIS) environment to generate
a mineral potential map of the area to suggest more accurate or
less risky exploration drilling targets. A fuzzy logic approach
was used in this study to integrate exploration predictor maps.
A new approach was used for fuzzification of the geochemical
maps based on the geochemical mineralization probability
index (GMPI) calculation, and an approach was proposed to
infer a geophysical predictor map from three-dimensional
(3D) IP and resistivity maps. Furthermore, the weighted
Yager t-norm fuzzy operator was applied for the integration
of exploration predictor maps to consider the importance of
eachmap in the mineral potential map generation. Themineral
potential map indicates a remarkable overlapping of geophys-
ical and geochemical anomalies in the south of the study area

with a north–south trend. The results of drilling boreholes in
the area confirm the obtained mineral exploration results.
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Introduction

Physical and chemical properties of ore deposits are usually
complicated and the necessity of using different exploration
methods is unavoidable for mineral exploration. Therefore, an
exact interpretation of the results obtained using different ex-
ploration methods and quantitative integration of exploration
data play important roles in mineral potential mapping. A
geographic information system (GIS) as a powerful tool is
widely used in regional- and local-scale potential mapping to
integrate exploration data such as remote sensing and geolog-
ical, geophysical, and geochemical maps. Two general GIS
modeling approaches are used for mineral potential mapping
(Bonham-Carter 1994; Porwal and Kreuzer 2010); the first
method consists of data-driven methods. In this approach,
the model parameters are determined on the basis of available
evidences and the pattern of known mineral deposit(s) in the
study area. The methods like weight of evidence (Bonham-
Carter et al. 1988; Agterberg 1992: 2011; Tangestani and
Moore 2001; Carranza 2004; Ford and Blenkinsop 2008;
Fallon et al. 2010), logistic regression (Sinclair and
Woodsworth 1970; McCammon 1973; Chung and
Agterberg 1980; Harris et al. 2001, 2006), artificial neural
networks (Brown et al. 2000; Singer and Kouda 1996, 1997;
Porwal et al. 2003a; Harris et al. 2003; Fung et al. 2005;
Nykanen 2008), evidential belief functions (Carranza et al.
2005: 2008), and Bayesian classifiers (Porwal et al. 2006)
are among the data-driven methods.
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Insufficient known mineral occurrences or training sites
preclude the use of data-driven methods. However, the
knowledge-driven methods or conceptual approach can be
used in which the model parameters are specified by an expert
opinion considering the exploration target, the area under in-
vestigation, and other effective factors in the exploration of
mineral deposit(s) (Bonham-Carter 1994; Porwal and Kreuzer
2010). In the knowledge-driven approach, the geoscientist
identifies those criteria in the mineral deposit model that are
critical to the formation of a mineral deposit. Examples of the
knowledge-driven methods include Boolean logic (Bonham-
Carter 1994), index overlay (Bonham-Carter 1994), the
Dempster–Shafer belief theory (Moon 1990; 1993; An et al.
1994a, 1994b), fuzzy logic (An et al. 1991), and wildcat map-
ping (Carranza and Hale 2002; Carranza 2010).

Among the knowledge-driven methods, the fuzzy set the-
ory (Zadeh 1965) is extensively used in mineral potential
mapping. One of the first applications of fuzzy logic to min-
eral prospective modeling was described by An et al. (1991).
They have applied fuzzy systems for prospecting base metal
and iron deposits. The fuzzy logic was then used for
prospecting volcanogenic massive sulfide deposits by Eddy
et al. (1995), epithermal gold deposits by Carranza et al.
(1999), and porphyry copper deposits by Tangestani and
Moore (2003). Hybrid fuzzy methods such as neuro-fuzzy
modeling (Porwal et al. 2004) and fuzzy weights-of-
evidence modeling (Cheng and Agterberg 1999) have been
also proposed to optimize utilization of both conceptual
knowledge of mineral systems and empirical spatial associa-
tions between mineral deposits and evidential features in
geocomputational modeling of exploration targets (Carranza
2011). The fuzzy logic approach still remains one of the most
widely used mineral prospective models (e.g., Joly et al. 2012;
Lusty et al. 2012; Ford and Hart 2013; Yousefi et al. 2013,
2014; Porwal et al. 2014; Yousefi and Carranza 2015).

The main aim of our study is the integration of resistivity,
induced polarization (IP), and geochemical and geological
data to assess the extents of Pb–Zn ore deposits in
Chichakloo area and select the optimal exploration drilling
points. To achieve the aim of the study, we first inverted re-
sistivity and IP data to image resistivity and chargeability of
the structure in three dimensions. We then converted three-
dimensional (3D) resistivity and chargeability images to
two-dimensional (2D) maps using the fuzzy logic approach.
This approach allows integrating 3D geophysical data with
other sources of 2D exploration data. In addition, we proc-
essed geochemical data and plotted the geochemical fuzzy
coefficient (GFC) map to generate a geochemical predictor
map. Despite the traditional approach that categorizes geo-
chemical maps into some classes using arbitrary intervals,
the GFC assigns continuous fuzzy values to continuous-
value geochemical maps. As shown in several studies (e.g.,
Yousefi and Carranza 2014), such approaches aim to avoid the

problem of uncertainty due to simplification and discretization
of continuous-value spatial evidence into some proximity
classes. Afterward, geochemical, geophysical, and geological
predictor maps were integrated using the Yager t-norm oper-
ator (Kaymak and Sousa 2003) to generate a mineral potential
map. This operator is a weighted fuzzy operator which can
take into account the importance of each predictor map in
mineral potential mapping.

Mineral exploration investigations and data input

Study area

Chichakloo deposit is located in Takab-Zanjan, Iran, in the
geographical coordinates of longitude 48° 38′ 47″ to 48° 39′
48″ and latitude 36° 24′ 45″ to 36° 25′ 26″, and is situated
30 km from Takab to the east and 25 km far from the world-
class Angouran mine.

Geological investigation

Geologically, the study area is located at the contact of the
Sanadaj-Sirjan and Urumiyeh-Dokhtar magmatic arc, two
geological subdivisions of the Zagros belt (Fig. 1). The
Zagros belt formed as a consequence of Tertiary continental
collision between the Afro-Arabian plate and smaller
Gondwana-derived microplates, after subduction of the
Neotethys Ocean during the Cretaceous (Alavi 1994; Gilg
et al. 2005). The basement rocks in the Takab-Zanjan area
comprise a series of amphibolites, gneisses, micaschists,
serpentinites, and marbles affected by greenschist to amphib-
olite facies metamorphic conditions (Gilg et al. 2005). A
Neoproterozoic–Cambrian age of the basement rocks seems
highly probable based on the zircon U/Pb dating of a granitic
gneiss from the Maneshan area (Stockli et al. 2004) and fossil
reports on the occurrences of Early Cambrian fossils (e.g.,
Latouchella sp., Bemella sp., andHalkiera stenobasis) in mar-
bles near Amirabad (Hamdi 1995).

The study area is quite similar to Angouran deposit in geo-
logical units and host rock. The lithology units of the study
area consist of sericit, schist, quartzite, and amphibolite that
are covered by 40 m of gray dolomite layers. Upper units in
the Chichakloo area contain yellow sandy dolomite with a
thickness of 50 m. Similar to other regions in the Zanjan-
Takab area, the age of basement units is Neoproterozoic–
Cambrian. The basement units are covered as unconformity
by Eocene marl, sandstone, and shale.

Pb–Znmineralization can be seen in a boundary of sericitic
schist in the footwall and within crystalline gray dolomite.
Mineralization is observed to a great extent of the area with
a length of 1300 m in fractures and faults in upper yellow
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dolomite units. Pb–Zn mineralization has occurred in two
types at the Chichakloo area (Karam-Soltani 1997):

1) Stratiform mineralization in the form of breccia in crystal-
line gray dolomite with thickness of about 10–12 m oc-
curred in the border of footwall schist units. This unit is
considered as the main host rock of the Pb–Zn ore deposit
in the study area, and geophysical and geochemical studies
were conducted in this unit (Fig. 2). The ore breccia con-
tains the fragments of gray dolomite and various sulfides
such as pyrite, sphalerite, and galena. In addition to breccia

texture, a veinlet texture has spread in the southern part of
the study area which contains quartzitic veinlets along with
chalcopyrite, pyrite and sphalerite, and galena within foot-
wall gray dolomite and schist.

2) Vein mineralization with the width of 1–2 m consists
of quartz, barite, calcite, galena and also sphalerite,
pyrite, and chalcopyrite that has been formed by move-
ment of ore-mineralizing fluids into normal faults in
northeast–southwest faults in the upper yellow dolo-
mite. These veins do not form an economic deposit
in the study area.

Fig. 1 a The Chichakloo area shown by a black small rectangle in the northwest of Iran. bA simplified geological map of the Chichakloo area; the study
area is marked with a black rectangle in the central part (toward north) of the area
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The origin of the mineralization in Chichakloo deposit is
still under debate; however, the origin of Chichakloo deposit
is quite similar to that of Angouran deposit in the Takab-
Zanjan area due to its similarities in host rocks, structure,
texture , and mineralogy (Karam-Sol tani , 1997) .
Mineralization in Pb–Zn Angouran deposit has occurred be-
tweenmicaschist units in the footwall and also the main host is
marble units that are of Neoproterozoic–Cambrian age.
Although the mineralization type in Angouran deposit is also
under debate, a recent study of Gilg et al. (2005) shows that
the Angouran deposit is a new type of low-temperature min-
eralization in a carbonate host that differs with Mississippi
Valley-type (MVT) and sedimentary exhalative mineraliza-
tion. Based on the study by Leach et al. (2005), the
tectonostratigraphic setting of MVT deposits is a platform
carbonate sequence at flanks of basins or foreland thrust belts.
The host rock of mineralization is mainly dolostone and lime-
stone. The ore body morphology is highly variable, common-
ly strata bound, pipes, or tabular zones and locally stratiform.

The ore fluids are mostly low-temperature (90–150 °C) con-
nate bittern brines or evaporate dissolution brines. Timing of
mineralization is epigenetic, tens to hundreds of millions of
years after host rock deposition. These deposits are not asso-
ciated with igneous activity.

Geophysical investigation

Geophysical surveys using resistivity and IP methods were
carried out to assess the extents of Pb–Zn mineralization in
the area. The dipole–dipole electrode configuration with an
electrode separation of 25 m was employed along 10 parallel
lines with a distance of 100 m from each other on the dolomite
unit. Inverse modeling of the resistivity and IP data was made
using RES2DINV software package developed by Loke
(2001).

An example of the inverse modeling results of the resistiv-
ity and IP data for the P-4.5S line (see Fig. 2) is shown in
Fig. 3. The modeling results for this profile indicate the

Fig. 2 Geological map of the study area showing the parallel geophysical exploration survey lines P-4n to P-4.5S aligned in the northwest–southeast
direction and also the regular geochemical sampling survey grid with the nodes marked by crosses where geochemical samples are taken from
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presence of an anomaly with a chargeability of greater than
35 ms and a lateral extent from 0 to 225 m along the profile
and a depth extent of 10 to 60 m. The resistivity of this anom-
aly is varying, but at a lateral extent of 125 to 225 m along the
profile, it is reduced to 200Ω m. The resistivity variations of
the anomaly can imply varying mineralization texture of the
anomaly, which is located in the dolomite unit as the host rock.
Another anomaly with a chargeability of around 30 ms can be
observed at a lateral extent of 400 to 600 m along the profile
and a depth extent of 30 to 70 m. The resistivity of this anom-
aly is generally low but relatively varying since shale, sand-
stone, and clay accompany the anomaly.

To generate resistivity and IP maps in a GIS environment,
the numerical results obtained from the inverse modeling of
resistivity and IP data along the 10 profiles were extracted.
Based on the inverse modeling work, we obtained the resis-
tivity and IP horizontal maps in each of 10 depth levels of 9,
16, 24, 32, 41, 52, 63, 75, 85, and 105 m. Thus, 20 resistivity
and IPmaps related to 10 depth levels were generated in a GIS
environment. The resistivity and IPmaps for the depth of 52m
are shown in Fig. 4a, b, respectively. Two different and dis-
tinct resistivity zones can be easily distinguished in Fig. 4a.
One of the two zones, having a resistivity of greater than
700Ωm, is located in the west part of themap and is embedded
in the dolomite unit while the other zone, having a resistivity
of less than 150Ωm, is located in the east part of themap and is
embedded in the marl, sandstone, and shale units. A consider-
able note observed in the resistivity map is the low resistivity
values in the southwest of the map, which can indicate the
presence of mineralized zones in the southwest of the study
area. In the IP exploration map for the depth of 52 m (shown
in Fig. 4b), we can observe an extended IP anomaly with a

chargeability of greater than 15 ms in the south of the map.
An increase in the chargeability of this anomaly is evident as
progress in the anomaly from west to east so that chargeability
in the east of the anomaly exceeds 30 ms.

Geochemical investigation

Lithogeochemical studies have been carried out in the study
area. Two hundred ninety-two samples were collected and
analyzed for 44 elements. The location of samples is shown
in Fig. 2. After data processing, multi-element analyses were
carried out using principal component analysis (PCA) for the
recognition of chemical behavior of the paragenesis elements
accompanying the main elements (i.e., Pb and Zn). PCA is a
multivariate statistical method for geoinformation identifica-
tion of geodatasets (Cheng et al. 2011). In the PCA method,
correlated variables with high dimensionality are transformed
into several uncorrelated principal components (PCs) based
on a covariance or correlation matrix (Loughlin 1991). PCA
has been frequently used for the analysis of geochemical data
in order to identify the mineralization factor(s) and determine
the attributes of mineralization (e.g., Cheng et al. 2006; 2011;
Davis 2002; Zuo 2011; Shahi et al. 2014). The results of PCA
are shown in Table 1. The first four components represent
about 77.5 % of total variance. The first PC (PC1) in
Table 1 can be attributed to the decomposition of syngenetic
components. In PC1, the high negative amounts of the ele-
ments Ca and Mg are related to the dolomite host rock, while
the high positive values of other elements are related to the
marl, sandstone, and shale units since these elements are rel-
atively high in this unit background. The high coefficients of
Zn, Pb, Au, Ag, As, Cu, Mo, Sb, and Tl elements seen in the

Fig. 3 2D inverse model resistivity and IP sections for line P-4.5S
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second PC (PC2) indicate the paragenesis elements accompa-
nying Pb and Zn mineralization in the study area.

In order to generate a geochemical predictor map, we cal-
culated the geochemical mineralization probability index
(GMPI) of PC2 as proposed by Yousefi et al. (2012) using
the following logistic function:

GMPI ¼ eMFS

1þ eMFS
ð1Þ

whereMFS is the mineralization factor scores inferred from PC2
(Table 1). As shown by Yousefi et al. (2012), GMPI enhances

discrimination between background and anomaly and the predic-
tion rate of a GMPI map with respect to known mineral deposit
occurrences is generally higher than factor score maps. On the
other hand, the values of GMPI fall in the [0, 1] range, which can
be used as fuzzy weights for the integration of the geochemical
predictor map with other exploration predictor maps.

The GMPI distribution map inferred from PC2 was consid-
ered as a multi-element mineralization component and is plot-
ted in Fig. 5 to generate the geochemical predictor map. An
investigation of this map indicates an extended multi-element
anomaly having a strike of north–south in the east of the map.

Fig. 4 a IP map at a depth of
52 m. bResistivity map at a depth
of 52 m
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Table 1 Rotated component matrix inferred from the PCAmethod. The mineralization component (PC2) and its elements were highlighted (based on
the threshold of 0.6)

Component

1 2 3 4

Au -.131 .764 .018 .035

Cr .709 .139 .039 -.322

Mn .395 .044 .735 .222

Ni .760 .268 .308 .083

Pb -.364 .816 -.144 .137

Sr .062 -.302 .729 -.205

Ba .805 .135 .263 .029

Be .805 -.165 .087 -.298

Ti .968 -.147 .052 .051

Fe .822 .348 .177 .013

Al .928 -.142 .158 .125

Ca -.941 -.020 .065 .123

Li .850 .115 .128 .112

P .922 .006 .118 .074

V .975 -.054 .035 .026

Mg -.931 .083 -.135 .111

K .951 -.111 .024 .038

Na .825 -.202 .172 .044

S .246 .276 .019 .646

Zr .855 -.167 .141 .171

Ag .009 .850 -.107 -.039

As -.224 .875 -.116 .051

Bi .432 .496 .077 -.038

Co .825 .225 .343 .082

Cu .306 .733 .118 .106

Mo .259 .619 .116 -.435

Sb -.042 .905 -.084 .072

Zn -.337 .730 -.166 .087

Sn .897 .069 -.062 .056

W .715 .161 .101 -.230

Cs .919 -.078 .077 .043

Nb .952 -.141 .062 .009

U .738 .291 .064 -.022

Cd -.564 .553 -.194 .228

Rb .959 -.116 .064 .055

Th .961 -.131 .122 .078

Y .758 -.133 .298 -.089

Ce .915 -.091 .100 .074

Tl .419 .645 .199 -.045
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Materials and methods

Fuzzy logic

A fuzzy concept is a concept of which the boundaries of ap-
plication can vary considerably according to context or con-
dition. Whereas in the classical set theory an object either is or
is not a member of a given set, in the fuzzy set theory, mem-
bership is a matter of degree and is defined by Zadeh (1965) as

μA : X→ 0; 1½ � ð2Þ

where μA is the degree of membership of element x in the
fuzzy set A for each x Є X. [0 1] denotes the interval of real
numbers from 0 to 1, inclusive. Therefore, the value 0 is used
to represent complete non-membership and the value 1 is used
to represent full membership, and values in between are used
to represent intermediate membership degrees. The fuzzy set,
A, is usually denoted by a set of pairs:

A ¼ x; μA xð Þð Þ; x Є Uf g ð3Þ

where U is a finite set {x1,…, xn}.

Estimation of fuzzy membership values for individual
predictor maps

The fuzzification of predictor maps comprises the definition
of the fuzzy membership function and the assignment of
membership grades to all x in A (Robinson 2003). The

membership functions of fuzzy sets must be precisely defined
in respect of function type and function parameters to assign
possibilities of class occurrence to the map units. To fuzzify
the resistivity and IP maps and generate a geophysical predic-
tor map, we used the following fuzzy membership functions:

μRES Xð Þ ¼ 0:9 * ;

0 x > 500
500−xð Þ2

500−150ð Þ2 150 < x≤500

0:9 x≤150

8>><
>>:

ð4Þ

μIP Xð Þ ¼ 0:9 * ;

0 x < 10
x−10ð Þ2
20−10ð Þ2 10≤x < 20

0:9 x≥20

8>><
>>:

ð5Þ

where μRES and μIP are the degrees of fuzzy membership
corresponding to the resistivity and chargeability values of
related cells in resistivity and IP maps, respectively. These
functions were used based on the range of resistivity and IP
variations in dolomite host rock inferred from inverted data
and also the exploration target, i.e., Pb–Zn mineralization.
Chargeability is regarded as favorable for Pb–Zn mineraliza-
tion when it is over 20 ms. Higher values of chargeability
might be influenced by the presence of pyrite (confirmed from
drilling results) as a gangue mineral accompanying the Pb–Zn
mineralization, and therefore, the degree of favorability of the
IP map remains constant when chargeability values exceed
20 ms. The degree of favorability in the IP map decreases as
the chargeability decreases and is regarded as unfavorable

Fig. 5 GMPI distribution map
inferred from the mineralization
component (PC2)
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when it drops to less than 10ms. On the contrary, the degree of
favorability in resistivity maps increases as the resistivity de-
creases and is regarded as unfavorable when it is over
500Ωm. A resistivity less than 150Ωm is regarded as favor-
able for Pb–Zn mineralization. In this separation, the presence
of clay in the east of the study area has been considered and
therefore, the degree of favorability of the resistivity map re-
mains constant when resistivity drops 150Ω m. Considering
the fact that in analyzing exploration data nothing can be
regarded for sure as possible, the value of 1 was restrained
from predictor maps.

We have proposed a new approach in this study for the
fuzzification of the GMPI map to generate the geochemical
predictor map using the following fuzzy membership func-
tion:

GFC ¼ GMPI GMPI > 0:5
0 GMPI≤0:5

�
ð6Þ

where GFC is the geochemical fuzzy coefficient and GMPI is
the geochemical mineralization probability index of each pixel
inferred from Eq. (1). The pixels with the negative MFS in
PC2 result in GMPI values of less than 0.5 which are not
related to the mineralization phase. Consequently, the degree
of favorability in the geochemical predictor map is regarded as
unfavorable when the GMPI value drops to less than 0.5. On
the contrary, the degree of favorability in the geochemical
predictor map is equal to the GMPI value when the MFS is
positive.

The geological map of the study area (Fig. 2) shows that the
geochemical and geophysical data were collected along the
dolomite and sandstone units. As discussed in BGeological
investigation,^ the gray dolomite is considered as the main
host rock of stratiform mineralization which forms an eco-
nomic deposit in the study area and therefore, we assigned a
high fuzzy value of 0.8 for this unit. On the other hand, a fuzzy
value of 0.3 was assigned for marl, sandstone, and shale units,
since the report of geological investigation reveals that this
unit is much less important than the dolomite unit for econom-
ic mineralization.

Fuzzy operators

Numerous fuzzy operators have been suggested in literature
(e.g., Zadeh 1973; Dubois and Prade 1985; Yager 1980;
Zimmermann 1991). The final fuzzy decision depends on de-
cision criteria including decision goals, and selected decision
function should well reflect the goals of the decision.
Conjunctive, disjunctive, and compensatory aggregation of
criteria are widely used in fuzzy decision-making (Sousa and
Kaymak 2002).

The conjunctive aggregation simultaneously satisfies all
decision criteria but the second kind makes full compensation

amid the criteria. Finally, compensatory aggregation is used
for handling conflicting criteria or human aggregation behav-
ior (Sousa and Kaymak 2002). From the conjunctive aggre-
gation operators, the fuzzy AND and product operators are
widely used for the integration of exploration data when two
or more evidences should simultaneously be present
(Bonham-Carter 1994). From the disjunctive aggregation op-
erators, the fuzzy OR and sum operators are widely used for
the integration of exploration data when the presence of any
positive evidence is sufficient for having a favorability condi-
tion (Bonham-Carter 1994).

The compensatory aggregation operators are defined by
applying a combination of conjunctive aggregation and
disjunctive aggregation operators. From compensatory
operators, Zimmermann and Zysno (1980) defined a combi-
nation of algebraic sum and algebraic product operators as

Ez μ1;…μnð Þ ¼ ∏
n

i¼1 μið Þ
� �1−γ

1−∏
n

i¼1 1−μið Þ
� �γ

ð7Þ

Depending on the value of γ, the result of applying this
operator will always be a value between the resulting values
obtained from applying the algebraic sum and algebraic prod-
uct operators. This operator is extensively used in the integra-
tion of mineral exploration evidences. When γ=1, then the
combination is the same as the fuzzy algebraic sum combina-
tion, and when γ=0, then the combination is the same as the
fuzzy algebraic product combination.

The operators discussed above consider equal influence of
each criterion in the final result. However, in some problems,
some criteria may have more influences in the final result and
the degree of importance of each criterion should be defined
before the integration. Various fuzzy operators have been pro-
posed for weighted aggregation (see, e.g., Kaymak and Sousa
2003). Among weighted aggregation operators, we have se-
lected the weighted Yager t-norm fuzzy operator (Kaymak and
Sousa 2003) given by the following equation for the integra-
tion of exploration data due to its efficiency and flexible com-
patibility between the minimum and the maximum member-
ship functions.

Dw μ1;…μnð Þ ¼ max 0; 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

n

i¼1Wi 1−μið Þss

q� �
s > 0 ð8Þ

whereWi is the weight factors and are chosen between 0 and 1
and then normalized by the following mathematical expres-
sion (Kaymak 1998):

∑
n

i W i ¼ 1 ð9Þ

Applying this operator on the membership functions and
satisfying the condition expressed by Eq. (9), the results will
always be between the lowest and highest membership func-
tions and also will be influenced more by the criteria of
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functions which possess greater weights. The weight vector in
mineral potential map generation should be determined based
on several important exploration factors such as the explora-
tion target, types of exploration surveys carried out in the
study area, reliability, uncertainty, and noise level in the ex-
ploration data. In addition, variations of the parameter s in this
operator will make a flexible compatibility between the min-
imum and the maximum membership functions. Higher
values of the parameter s make the tendency of the results to
the minimum membership function, while lower values of the
parameter s make the tendency of the results to the maximum
membership function.

Results

Exploration predictor maps

Resistivity and IP modeling results for 10 different depths
were fuzzified using Eqs. (4) and (5), respectively. The obtain-
ed resistivity and IP maps in different depths must be now
integrated to generate the final resistivity and IP predictor
maps. The main aim in this stage is to convert all depth data
in three dimensions to a two-dimensional map that includes
information for different depths obtained from modeling re-
sistivity and IP data. For this purpose, we applied the operator
defined by Eq. (7) with high values of γ. As a result, the
anomalies, which have greater depth extensions, appear in
several depths and will be enhanced, and hence, these anom-
alies compared to the anomalies having less depth extensions
will have greater fuzzy values in the final map. The γ values
equal to 0.95 for the integration of IP maps and 0.9 for the
integration of resistivity maps were selected for integrations.
The predictor resistivity and IP maps are shown in Fig. 6a, b,
respectively.

An investigation of the IP predictor map implies the spread
of an anomaly with a fuzzy value of greater than 0.5 in the
south of the map. Considering the integration process of meth-
od, high fuzzy values in the IP predictor map indicate high
chargeability anomalies that have relatively extensive depth
spreads. This IP anomaly meets profiles P-2S, P-3S, P-4s, and
P-4.5S (Fig. 2). The increasing trend of the anomaly favor-
ability is from west to east quite evident. In the resistivity
predictor map shown in Fig. 6b, the high fuzzy values are seen
in the east of the study area.

For the integration of resistivity and IP maps and obtaining
the geophysical predictor map, we applied the weighted fuzzy
operator given by Eq. (8) using several values of s. To apply
the weight vector, the relative importance of resistivity and IP
maps, W= (WIP,WRes), should be first defined. In exploration
of sulfide deposits, the importance of the IP method is gener-
ally greater than resistivity data as there is more likely to have
disseminated mineralization in the zones with high

chargeability and resistivity. However the zones, which have
low chargeability and resistivity are not important in terms of
sulfide deposits in the area as low resistivity values in some
area are irrelevant to metallic mineralization and are due to the
presence of clay in the subsurface. Therefore, a value of 0.7
for weight of the IP map and consequently a value equal to 0.3
for the resistivity map were selected and the geophysical pre-
dictor map was then generated. Applying the weighted fuzzy
operator given by Eq. (8) with large values of s causes a
reduction in favorability of geophysical anomalies; on the
other hand, small values of s in the integration of IP and
resistivity data cause to have partial false anomalies.
Therefore, it appears that values about s=3 to s=8 present
the favorability of geophysical anomalies in the best manner.
After investigating the results of the operators in the integra-
tion of resistivity and IP maps, the parameter swas selected to
be 5 for the integration of resistivity and IP predictor maps.
The geophysical predictor map is shown in Fig. 7. As can be
seen from this map, a geophysical anomaly with fuzzy values
of greater than 0.5 is evident in the south of the study area. The
increasing trend of fuzzy values of this anomaly appears to be
from west toward east, so that the fuzzy value in the eastern
part of this anomaly exceeds 0.7.

To generate the geochemical predictor map, we used
Eq. (6) to plot the GFC map. The generated geochemical
predictor map is shown in Fig. 8. An investigation of this
map indicates the spread of the geochemical anomaly in east-
ern parts of the map that has a north–south strike and is located
in the dolomite unit. In some parts, the fuzzy value of this
anomaly increases to 0.7. Finally, the geological predictor
map was generated by assigning the fuzzy values of 0.8 for
the dolomite unit and 0.3 for the marl, sandstone, and shale
units.

Generation of the mineral potential map

Investigating and comparing the results of geophysical, geo-
chemical, and geological predictor maps, we can observe a
considerable overlapping between geophysical and geochem-
ical anomalies in the dolomite unit in the south of the study
area. However, for quantitative interpretation and presentation
of the mineral potential map, in this stage, we have integrated
geophysical, geochemical, and geological predictor maps
using the weighted fuzzy operators given by Eq. (8). The
weight vector was selected based on specialists’ opinions.
Majority of specialists gave more importance to geophysical
(particularly IP) anomalies rather than geochemical anomalies
due to their efficiency in Pb–Zn sulfide mineralization explo-
ration. Moreover, geophysical maps can better estimate the
extension of the anomalies which are very important in
selecting drilling points. On the other hand, geochemical maps
are influenced by a considerable number of censored data.
Therefore, the greatest weight was selected for the
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geophysical predictor map. The lowest weight was finally
considered for the geology map. The geology map was used
in order to emphasize geochemical and geophysical anomalies
coinciding with the dolomite host. Since a low fuzzy favor-
ability of 0.3 was selected for the sandstone host, therefore,
integration of the geology map with a lower weight still can
separate the anomalies coinciding with the dolomite host,
but a greater weight for the geology map can overestimate
exploration anomalies and cause misleading results for
selecting the best drilling point. Therefore, the weight

vector for the final exploration map, symbolized by
W= (Wgeophysical map, Wgeochemical map, Wgeology map), was
selected to be W= (0.40, 0.35, 0.25). We have used values
of 1, 2, 5, and 10 for parameter s in Eq. (8). The results are
plotted in Fig. 9. An investigation of Fig. 9 indicates a fuzzy
favorability of greater than 0.4 in the east of the study area with a
north–south trend. An important and highlighted presence of an
anomaly with a fuzzy favorability of more than 0.7 can be ob-
served in all maps shown in Fig. 9, which indicates a consider-
able overlapping of geophysical and geochemical anomalies in

Fig. 6 a Resistivity predictor
map obtained as a result of
applying the operator given by
Eq. (7) with γ= 0.9. b IP predictor
map obtained as a result of
applying the operator given by
Eq. (7) with γ= 0.95
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the dolomite unit. Comparing between maps in Fig. 9, we ob-
served an overestimation of the fuzzy favorability of anomalies
in Fig. 9a, b compared with maps that were produced before

integration. These maps were produced by applying s=1 and
s=2. Since the final purpose of this study is to suggest drilling
points, maps numbered 9c and 9d (obtained by applying s=5

Fig. 7 Geophysical predictor
map obtained as a result of
applying the operator given by
Eq. (8) with s= 5

Fig. 8 GFC map (geochemical
predictor map) inferred from the
mineralization component (PC2)
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and s=10, respectively) that present a more conservative esti-
mation of anomalies were taken into account. An investigation
of these maps indicates a fuzzy favorability of greater than 0.4 in
the east of the study area with a north–south trend. In the south
of the study area, we can see a fuzzy favorability of greater than
0.6, and thus, it is considered as the most suitable part of the area
for existence of mineralized zones and drilling exploration
boreholes.

Discussion and conclusions

In this study, mineral potential mapping was carried out by the
integration of the fuzzified geophysical, geochemical, and
geological predictor maps using the weighted fuzzy operators
in the GIS environment. The weighted fuzzy operator, sug-
gested in this study, aimed to take the importance of each
predictor map into account in the production of the mineral

Fig. 9 Mineral potential map using the operator given by Eq. (8) with a s= 1, b s= 2, c s = 5, and d s= 10

Arab J Geosci (2016) 9: 104 Page 13 of 17 104



potential map. Assigning the weight of each predictor map in
the mineral potential mapping is not a new idea; however, our
approach is slightly different from the previous studies. In the
previous studies (e.g., Lisitsin et al. 2013; González-Álvarez
et al. 2010; Porwal et al. 2003b), the weight of each predictor
map was considered during the fuzzy membership value as-
signment, while in this study, the weight of predictor maps
was assigned after predictor map fuzzification. In fact, the
weighted fuzzy operators allow experts to better assign the

weight of predictor maps in the last stage by comparing the
influence of each predictor map in the potential map genera-
tion. In this research work, we have selected one of the many
weighted fuzzy operators proposed for weighted aggregation
in various studies. This operator can be used as an efficient
operator for the integration of exploration maps with different
importance or weight values. Expert determination of the pa-
rameter s by the decision-maker can best reflect the goals of
the decision. Small variations of the parameter s in Eq. (8) will

Fig. 9 continued.
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make a flexible compatibility between the minimum and the
maximum membership functions. In addition, the results will
be influenced more by the criteria of functions which possess
greater weights.

The approach presented in this study, in order to con-
vert and map 3D geophysical data to a 2D geophysical
model of the study area that best reflects depth informa-
tion, can play an effective role in the appropriate integra-
tion of geophysical data. In addition, this 2D geophysical
map can be compared with 2D geochemical maps, and
thus, geophysical anomalies can be compared with geo-
logical anomalies in order to determine mineralized zones
in the study area.

Moreover, we have applied a logistic function to trans-
form a multi-element mineralization factor score map to a
GMPI map in order to generate the geochemical predictor
map. As demonstrated in several studies (e.g., Yousefi
et al. 2012; 2014), GMPI increases the geochemical
anomaly intensity based on mineralization elements and
consequently enhances the probability of success in min-
eral potential mapping in comparison with factor score
maps. In addition, by selecting a suitable logistic function,
continuous fuzzy scores can be assigned to every value in
a map of spatial data. This avoids the intermediate step of
classifying continuous spatial data based on arbitrarily
chosen threshold values and overcomes exploration bias
in data-driven and knowledge-driven approaches resulting
from simplification and discretization of evidential values
into some arbitrary classes (Yousefi and Carranza 2014;
2015). On the other hand, the GFC index proposed in this
study enhances discrimination between background and
anomaly by removing the effect of negative MFS which
are not related to the mineralization phase. The proposed
GFC can be used for effective weighting and fuzzification
of geochemical data to generate a reliable geochemical
predictor map for integration with other predictor maps
for mineral potential mapping.

A drilling borehole in the south of the area to this date
shows the existence of Pb and Zn minerals in depths of 40
to 70m that proves the validity of the study results. The results
of the suggested drilling points can be considered as evidence
in the next steps for optimizing future exploration maps based
on data-driven methods relying on existing proofs in this
region.
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