
ORIGINAL PAPER

Predicting rock mass deformation modulus by artificial
intelligence approach based on dilatometer tests

Mostafa Asadizadeh1
& Mohammad Farouq Hossaini1

Received: 14 January 2014 /Accepted: 15 October 2015 /Published online: 22 February 2016
# Saudi Society for Geosciences 2016

Abstract Accurately assessing the mechanical behavior of
jointed rock mass is one of the most important requirements
in the geotechnical and mining engineering projects, including
site selection, design, and successful execution. The mechan-
ical behavior of rock mass is significantly affected by the
deformation modulus which can be influenced by several pa-
rameters. In this paper, a new radial basis function neural
network (RBFNN) model was developed to predict deforma-
tion modulus based on dilatometer tests at the Bakhtiary dam
site, Iran. The model inputs, mostly acquired from geotechni-
cal bore holes, are overburden height (H), rock quality desig-
nation (RQD), unconfined compressive strength (UCS),
bedding/joint inclination to core axis, joint roughness coeffi-
cient (JRC), and filling thickness of joints. High accuracy of
prediction was examined by calculating indices such as the
variance accounted for, root-mean-square error, mean abso-
lute error, and the coefficient of efficiency. Sensitivity analysis
has been conducted on the RBFNN results of Bakhtiary dam
site. Based on the obtained results, UCS and RQD are the
most effective parameters and inclination of rock joint/
bedding to core axis is the least effective parameter in the
deformation modulus of rock mass.

Keywords Rockmass deformability . In situ tests . Bakhtiary
dam site . RBFNN

Introduction

The mechanical behavior of jointed rock masses should be
fairly assessed for designing the foundations, slopes, under-
ground openings, and anchoring systems. Rockmass response
is governed by intact rock as well as the properties of joints
(Hoek 1983). Rock mass is a discontinuous medium with
fissures, fractures, joints, bedding planes, and faults. The
deformability of rock mass behavior is controlled by the be-
havior of the mentioned discontinuities or planes of weakness.
Reliable characterization of mechanical behavior of
jointed\thin bedded rocks is very crucial for safe design of
civil structures such as arch dams, bridge piers, and tunnels.
The deformability is one of the most important characteriza-
tions of rockmass, representing its mechanical behavior. It has
been carefully investigated in various rock engineering pro-
jects including underground and surface structures (Sridevi
and Sitharam 2003). Civil or mining activities in low depth
of rock mass occur under low confining pressure. The influ-
ence of joints on such cases is completely predominant. In
order to investigate the effect of joint pattern of rock mass
on its deformability and strength, several researchers have
correlated the strength and deformation modulus of the rock
mass with several geomechanical indices (Bieniawski 1974,
1979; Serafim and Pereira 1983; Boyd 1993; Hoek 1994;
Mitri et al. 1994; Hoek et al. 1995, 2002; Hoek and Brown
1997; Hoek and Diederichs 2006; Verman et al. 1997;
Sonmez and Ulusay 1999; Palmström and Singh 2001;
Barton 2002; Gokceoglu et al. 2003; Kayabasi et al. 2003;
Cai et al. 2004; Zhang and Einstein 2004; Sonmez et al.
2004, 2006). Various methods have been used by the re-
searchers and scientific societies for determining the deforma-
tion modulus. These methods are direct measurement through
in situ tests, indirect estimations based on rock mass classifi-
cation methods, laboratorial result generalization for rock
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mass, numerical analysis, and soft computing. The conven-
tional methods for determining the deformation modulus are
performing in situ tests, for instance dilatometer tests, plate
loading tests, flat jack tests, and block tests (Franklin and
Dusseault 1989; Yow 1993). As in situ technics can include
all obscure in situ parameters of rock mass, they are ranked as
the most reliable and comprehensive methods for describing
in situ behavior of bedded/jointed rock mass (Goodman 1989;
Fahimifar and Soroush 2003). Although the dilatometer test is
more preferred for soil, its advantages such as portability and
easy to do the test in each depth below the surface have made
it appropriate in rock structures as well. The volume of rock
affected during dilatometer test is 0.33 m3 which is much
lower than that of plate load test. The numerical simulation
of geotechnical problems has been developed rapidly by the
advent of high-speed computers. However, not considering all
unknown in situ parameters is the most important shortage of
numerical methods. The empirical relations (e.g., Bieniawski
1974, 1979; Serafim and Pereira 1983) are well founded
enough to predict the properties fairly well. However, they
are confined by the degree of non-linearity they can model.
Furthermore, statistical relations compel the data along a
choosey geometry, which may not always be approbatory, to
capture the non-linear relations existed between various
parameters.

Soft computing approaches have been found to be very
efficacious in the governance non-linear relationships and
intelligence prediction of the required parameters. ANN
has been one of the most ordinary methods, applied to
solve many geotechnical problems, in the last few years
(Moosavi et al. 2006, Majdi and Beiki 2010, Ghasemi
et al. 2014). Different types of artificial neural networks
(ANNs) have been used by the researchers. Radial basis
function (RBF) neural network seems to have high poten-
tial in presenting non-linear relationships between input
and output parameters. This network was basically sug-
gested as a substitution of multilayer perceptron (MLP)
neural network for solving complex modeling problems
(Luo and Unbehauen, 1999). The architecture of RBF
neural network is rather similar comparing to that of
MLP neural network. However, the difference between
these two neural networks lies in the computational pro-
cedure used in input–output alteration. Recently, RBF
neural network has been increasingly applied for
predicting various geotechnical parameters. For example,
it has been used for predicting unconfined compressive
strength of soft grounds (Narendra et al. 2006) and elastic
modulus of jointed rock mass (Bhushan and Sitharam
2008), fitting creep curve of sandstone (Tan and Zhang
2011), sizing rock fragmentation modeling due to bench
blasting (Karami and Afiuni-Zadeh 2012), and identifying
instability and risk of underground spaces (Zhouquan
et al. 2013; Ding and Zhou 2013). These studies on using

RBF-type neural network in the geotechnical problems
also demonstrate its superior generalization capability to
capture complex natural non-linear behavior.

So far, RBF neural network has not been used to
predict deformation modulus obtained from dilatometer
test data. Considering the complexity and highly non-
linear behavior of jointed rock mass, RBF neural net-
work seems to be an ideal soft computing tool for
predicting the deformation modulus variation in
Bakhtiary dam site, Iran. In this research, a new radial
basis function neural network (RBFNN) model was de-
veloped to predict the deformation modulus based on
dilatometer tests at the Bakhtiary dam site. Several pa-
rameters have been used to develop the RBFNN model,
mostly obtained from geotechnical bore hole log sheets
and core samples. These parameters are overburden
height (H), rock quality designation (RQD), unconfined
compressive strength (UCS), bedding/joint inclination to
core axis, joint roughness coefficient (JRC), and filling
thickness of joints. Therefore, the objective of this re-
search is to predict deformation modulus based on geo-
technical borehole data of jointed rock mass by develop-
ing and using RBF neural network.

Basic concept of RBFNN

RBF network is originally a feed forward neural network with
a multilayer perceptron. It consists of three layers, input layer,
hidden layer (or radial basis layer), and output layer. The net-
work structure is shown in Fig. 1 (Ham and Kostanic 2001).
RBFNN is also good at non-linear mapping (Guo et al. 2006;
Ham and Kostanic 2001).

The layers are composed of nodes or neurons. The
input nodes consist of input variables and hidden nodes
of radial basis functions. The nodes of hidden layer are
connected to those of output by linear weights, and output
nodes produce only the expected number of output vari-
ables. The number of input nodes in the input layer and
the basis function nodes in the hidden layer are represent-
ed in Fig. 1 by x1,x2,…,xN and ϕ1,ϕ2,…,ϕM, respectively.
In this figure, w0 denotes the weight of bias node; w1,w2,
…,wM are connection weights between hidden and output
nodes; and y is the output corresponding to the input data
set. The mapping between input and output for jth hidden
node of RBFNN is defined as follows:

y xð Þ ¼
XM
j¼1

wjϕ j xð Þ þ w0 ð1Þ

where, y(x) is the output corresponding to the multidimen-
sional input vector x, having xi elements; ϕj is the basis
function; wj is the linear weight between hidden and
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output nodes; M is the number of nodes in the hidden
layer; and w0 is the bias. The bias can participate in the
summation as a weight by including an additional basis
function ϕ0 with the value set equal to 1 (Bishop 1995)
which then reduces to the form

y xð Þ ¼
XM
j¼1

wjϕ j xð Þ ð2Þ

Normalized Gaussian function, the most ordinary func-
tion used in the geotechnical engineering, is applied in this
study (Narendra et al. 2006; Yilmaz and Kaynar 2011) and
defined as

ϕ j xð Þ ¼ exp −
x−μ j

�� ��2
2σ2

j

 !
ð3Þ

where μj and σj are the center and width parameters of the
basis function ϕj, respectively, and ||.|| is the norm of
Euclidean distance. Equation (2) in matrix form can be writ-
ten as follows:

y xð Þ ¼ wϕ ð4Þ

where w is the weight vector. The training of RBFNN is
performed by minimizing the error function E. It is the

squared difference between network outputs (yj(xi)) and tar-
gets tij and is presented as

E ¼ 1

2

XN
i¼1

XM
j¼1

y j xið Þ−ti j
h i2

ð5Þ

The training of RBFNN is done in two stages: (1) The
center μ and spread σ of the basis function are
established from the input data, and (2) the connection
weights w are modified to minimize the error function. In
this research, the center of hidden neurons was attained
by random sampling (Broomhead and Lowe 1988) of
input data. Once the center μ for the basis function
was established, the spread σ of basis function was com-
puted by normalization method of spread determination.
In this method, σ is expressed as twice the average dif-
ference between successive centers (Bishop 1995):

σ j ¼ 2�
Xp
i¼1

μi−1−μij j
P

ð6Þ

where μi−1 and μi are the successive centers of radial
basis functions, and P is the number of RBF centers.
Once the center and spread of basis function were
established, the network weights were calculated
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Input layer Hidden layer Output layerFig. 1 Schematic representation
of a radial basis function neural
network (after Ham and Kostanic
2001)
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through pseudo-inverse equation (Bishop 1995) as fol-
lows:

wT ¼ ϕTϕ
� �−1

ϕT
t ð7Þ

where

w ¼ wi j

� �
; t ¼ ti j

� �
; andϕ ¼ ϕ j xið Þ ð8Þ

Case study

Bakhtiary dam site is located in the southwest of Iran,
70 km from the northeast of Andimeshk City
(Khuzestan Province) and 65 km from the southwest
of Dorud City in Lorestan Province, Iran (Fig. 2). The
dam body was designed with maximum height of
325 m and crest length of 509 m at elevation of
840 m asl. It is proposed to construct a dam at this
location on the Bakhtiary River in order to provide wa-
ter for electrical, drinking, and agricultural purposes,
increase the volume of regulated water in Dez catch-
ment, decrease the amount of sediment in Dez dam

reservoir, and receive the benefits associated with flood
control (BJVC 2009a).

Geological characterization of the Bakhtiary dam site

Bakhtiary dam site and its reservoir are located in the
northwestern part of the folded Zagros, at the boundary
of Lorestan and Dezful embayment zones. Folded Zagros
is a part of Zagros tectono-sedimentary region, confined
by thrusted Zagros in the northeast and Khuzestan plain
in the southwest. The thick sediments of this zone have
been deposited from Triassic to Pliocene era and subse-
quently folded and deformed during the Plio-Pleistocene
by the last Alpine orogenic phase (Motiei 1993). These
tectonisms have generated sets of anticlines and syn-
clines which are mostly characterized by vertical axial
planes associated with many thrusted faults in Zagros
area. Siliceous limestone of Sarvak Formation forms the
most important rock of the Bakhtiary dam site and its
reservoir. This formation belongs to the Bangestan
Group in the Middle Cretaceous Period. Based on the
thickness of bedding planes and the existence of sili-
ceous components, this formation is locally divided into
seven units, Sv1 to Sv7. The properties of rock units are
presented in Table 1.

Fig. 2 The location of Bakhtiary Dam and Hydropower Project area on map of Iran and a close view of the dam site on Karun–Dez catchment area map
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Tectonic and structural features of dam site

Several key features of geological structure of the dam site are
as follows: folded and duplex structure of Giriveh-Siah Kuh
duplex-anticline, fault complex (F1, F2, and F3 fault system),
chevron folds and kink band zones, and joint systems. Siah
Kuh anticline, and F1 and F3 structures are presented in Fig. 3
(BJVC 2009b).

The evaluation of tectonic history shows that Giriveh-
Siah Kuh duplex-anticline and F1–F3 fault system are
first-order structures. However, chevron folds are
second-order structures, and kink bands and joint sets

are the third-order structures. Normal and chevron fold
zones are shown in Fig. 4 (BJVC 2009b).

Site investigations

The site has been investigated to provide the geotechnical
parameters needed for analyzing the appropriateness of the
location and obtaining the required design parameters. The
field investigations, conducted in this study, are discontinu-
ities and rock mechanics in situ tests.

Discontinuities

The detailed joint survey includes six exploratory galler-
ies, GR1–GR3 and GL1–GL3 (located on the right bank)
and GL1–GL3 (located on the left bank), respectively.
Based on these galleries, the rock mass of dam site is
intersected by four main discontinuities including lime-
stone beddings in the upstream and downstream, J1A
and J1B major joint sets, and J2 and J3 join sets
(BJVC 2009a). The geometric properties of discontinu-
ities are presented in Table 2 and Fig. 5.

Table 1 The description of rock
units at Bakhtiary dam site
(BJVC 2009b)

Rock units Description

Sv1 Medium to thickly interbedded dark gray marly limestone with black laminated marlstone to shale

Sv2 Thinly to medium bedded dark gray limestone to marly limestone with thin black laminated
marlstone to shale interbeds

Sv3 Thinly to medium thick interbedded dark gray marly limestone and siliceous limestone

Sv4 Medium to thickly bedded dark gray limestone with small siliceous nodules

Sv5 Thickly to very thickly bedded dark gray limestone with big siliceous nodules

Sv6 Medium to thickly bedded dark gray limestone and marly limestone with thin interbeds of
marlstone

Sv7 Thinly to medium bedded dark gray limestone and marly limestone with thin shale interbeds

Fig. 3 Right bank, Siah Kuh Anticline, and F1 and F3 faults (BJVC
2009b) Fig. 4 Normal and chevron fold zone of Sv3, left bank (BJVC 2009b)
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Rock mechanics in situ tests

The in situ rock mechanics tests have been conducted with the
aim of defining the deformation modulus of rock mass, orig-
inal state of in situ stress, and shear resistance along major
discontinuities. From 2004 to 2009, 36 plate load tests
(PLTs), 84 dilatometer tests (DLTs), and 9 extra large flat jack
tests (FLJTs) were performed at Bakhtiary dam site to deter-
mine the characteristics of rockmass deformability. Moreover,
the original state of stress was measured by two series of
borehole slotter tests and 17 hydraulic fracturing tests.
Eighty-six dilatometer tests were carried out in 23 boreholes
drilled down in eight exploration galleries (BJVC 2009a). The
used dilatometer was IF096 model made up of Interfels with
1-m length and 96-mm diameter, capable of applying up to
10-MPa pressure to the borehole walls. The expansion of
borehole diameter is measured by three linear variable differ-
ential transformers (LVDTs) built inside the sleeve. The mea-
suring devices are arranged at the angle of 120° relative to
each other (Interfels 2002).

Data sets

Dilatometer test is widely known as a versatile and eco-
nomical in situ test for measuring the deformation mod-
ulus of rock mass. It has been extensively utilized in
numerous engineering projects and for measuring rock
mass deformation modulus in the boreholes. The main
advantages of this test are its affordability, repeatability
in several depths of borehole with nearest distance from
intact condition, and capability of anisotropy assess-
ment. The data used for training and testing RBFNN
model were obtained from a field in situ test program
at Bakhtiary dam site. In this study, several parameters
have been assessed and collected from core boxes

Table 2 Geometric properties of discontinuities (BJVC 2009a)

Type of
discontinues

Part Dip (°) Dip
direction(°)

Spacing
(cm)

Bedding 1 75 215 2-600

2 50 030 0-10

joint set J1 A 70 310 0-10

B 40 310 0-10

Joint set J2 A 35 125 0-5

B 75 125 0-5

Joint set J3 15 045 0-5

Fig. 5 Schematic 3D
presentation of discontinuities in
the project area (BJVC 2009a)

Fig. 6 Overburden (H), rock quality designation (RQD), unconfined
compressive strength (UCS), bedding/joint inclination to core axis (I),
joint roughness coefficient (JRC), and filling thickness of joints (FT)
(BJVC 2009a)
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(Fig. 6). These parameters are overburden height (H), rock
quality designation (RQD), unconfined compressive strength
(UCS), bedding/joint inclination to core axis (I), joint rough-
ness coefficient (JRC), and filling thickness of joints (FT).
Moreover, geotechnical investigations have been conducted
according to International Society for Rock Mechanics

(ISRM) suggested method (Barton 1978) to develop a
RBFNNmodel for predicting rockmass deformation modulus
at Bakhtiary dam site.

All data have been statistically analyzed carefully, and the
histograms of input and output data are presented in Figs. 7
and 8, respectively.

Fig. 7 The histogram of input parameters including: overburden (H), rock quality designation (RQD), unconfined compressive strength (UCS),
bedding/joint inclination to core axis (I), joint roughness coefficient (JRC), and filling thickness of joints (FT) (BJVC 2009a)
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Calculation procedure of deformation modulus

In general, dilatometer tests were performed according to
ISRM suggested method for deformability determination
using a flexible dilatometer with radial displacement measure-
ments (Ladanyi 1987). Figure 9 shows a typical pressure–
displacement curve along with graphical definitions of peak-
to-peak modulus of deformation DPP as well as modulus of
elasticity E. Based on this figure, DPP reflects both elastic and
inelastic behavior of the tested rock mass between the first and
third cycle. Accordingly, E represents elastic properties of the

rock mass during loading of the third cycle in the stress range
between setup pressure and maximum pressure of the second
cycle (6 MPa).

The values of moduli have been calculated based on the
formulas proposed by Ladanyi (1987). Equation (8) is the
standard formula for calculating moduli values using flexible
dilatometer with radial displacement measuring system in
competent and/or widely jointed rock masses:

Ed ¼ 1þ νRð ÞD Δpi
ΔD

ð9Þ

where Ed is the modulus of deformation (MPa), νR is the
Poisson’s ratio of rock mass (taken as 0.3), D is diameter of
borehole (mm), Δpi is the pressure increment within the con-
sidered segment (MPa), and ΔD is the corresponding average
change in drill hole diameter (D, mm).

Equation (9) has been developed in 1980s for calculating
above mentioned parameters in closely jointed rock masses
when the applied pressure exceeds about twice the average
ground pressure around the drill holes, and is defined as fol-
lows:

Ed ¼ D
Pi

ΔD
1þ νRð Þ 1−νRð Þln pi

2p0

� �
þ 1

	 

ð10Þ

where Pi is the applied pressure (MPa), and p0 is the average
ground pressure (MPa).

Poisson’s ratio of rock mass has been measured from petite
seismic tests in exploratory galleries. The average ground
pressure was obtained through hydraulic fracturing tests.
Table 3 presents the general estimations of horizontal principal
stresses in the vicinity of the dam site.

Fig. 8 The histogram of deformation modulus (BJVC 2009a)

Fig. 9 Typical pressure–
displacement curve, peak-to-peak
modulus of deformation (Dpp)
and modulus of elasticity (E) of
rock mass in a dilatometer test
(BJVC 2009a)
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Applying RBFNN to predict rock mass deformation
modulus

The main steps to develop RBFNN model are selecting
input data, raw data normalization process, number of
input and hidden neurons, and the distribution of RBF
function. These stages are described briefly in the
following.

Partitioning of input data

It is necessary to select an appropriate division of input
data for training and testing of the network. In the present
research, 84 data sets were prepared for RBFNN model-
ing, about 76 % of which for developing and the rest for
testing the model. Sorting method was utilized in
selecting testing data sets. The parameters and data sets
applied in the modeling are shown in Tables 4 and 5,
respectively.

Raw data normalization process

Normalization of data concerns about fast processing and con-
vergence during training and minimizing the prediction error
(Rojas 1996). The data are prepared by different methods such
as cleaning, integration, transformation, and reduction. The
main purpose is to guarantee their qualities prior to entering
any learning algorithm.

One of the of data preparation methods is data trans-
formation methods, especially normalization. Data nor-
malization is a fundamental preprocessing step for

mining and learning from data. In this research, all input
and output data were normalized using Eq. (10):

Z ¼ X−μ
σ

ð11Þ

where Z is the normalized data, X is the raw data, μ is
the mean, and σ is the standard deviation.

Input variables, and number of input and hidden neurons

The architecture of RBFNN is determined by choosing
the number of neurons in the input layer. On the other
hand, in a RBF model, choosing the input variables gov-
erns the number of neurons in the input layer. Therefore,
selecting the appropriate type and number of input vari-
ables is an important factor in a RBFNN model for
obtaining satisfactory prediction results. The data enter
the network through input layer. The number of input
layer completely depends on the problem. In this study,
the parameters overburden height (H), rock quality des-
ignation (RQD), unconfined compressive strength (UCS),
bedding/joint inclination to core axis (I), joint roughness
coefficient (JRC), and filling thickness of joints (FT)
have been considered for the deformation modulus and
are presented in Fig. 10.

The number of neurons in the hidden layer was deter-
mined using self-learning method, a default learning proce-
dure in Matlab neural network toolbox (nntool). This is an
automatic method for obtaining the optimum number of
hidden neurons. Determining the maximum number of hid-
den neuron is predefined in the self-learning method of
network architecture. Accordingly, the training is started
with a single neuron in the hidden layer. In training phase,
while the desired network error minimization is not
achieved, new neurons are added successively to the hidden
layer and new connection weights are generated. Then,
immediately, the training phase is repeated allowing the
new connection weights to acquire the portion of knowl-
edge base not stored in the old connection weights. The
above steps are repeated and new hidden nodes are added

Table 3 In situ stress measured by hydraulic fracturing test at
Bakhtiary dam site (BJVC 2009a)

Minimum
horizontal
stress (MPa)

Maximum
horizontal
stress (MPa)

The orientation
of maximum
horizontal stress
(degree)

1.62±0.91 2.70±1.34 N57±36°

Table 4 Input and output
parameters used in RBFNN
model (BJVC 2009a)

Type of data Parameter Unit Symbol Minimum Maximum

Input Overburden height m H 6 459.4

Rock quality designation % RQD 42 100

Unconfined compressive strength MPa UCS 24 160

Bedding/joint inclination to core axis Degrees I 2.5 85

Joint roughness coefficient – JRC 3 20

Filling thickness mm FT 0 4

Output Deformation modulus GPa M 1.49 30.6
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successively, needed for the highest network error reduc-
tion. The appropriate network architecture is automatically
determined in such process. In the self-learning method of
network architecture determination, the spread σ of input
data was not estimated using Eq. (6) during training.
However, the spread σ of network is manipulated to find
its value at which the least error occurs in the network.

The neural network structure after learning

Radial basis function (RBF) network typically has three
layers: an input layer, a hidden layer with a non-linear RBF
activation function, and a linear output layer. Radial basis
networks can be used to approximate functions. RBF adds
neurons to the hidden layer of a radial basis network until it
meets the specified mean squared error goal. The spread σ of
RBF was pre-established by random sampling of input data
through trial and error method of establishing the number of
hidden neurons (Broomhead and Lowe 1988); therefore, it
remained constant. The characteristic of hidden layer is pre-
sented as follows:

Goal: Mean squared error goal (default = 0.0)
Spread: Spread of radial basis functions (σ =1.28)
MN: Maximum number of neurons in hidden layer
(MN = 60)
DF: Number of neurons added between displays (DF = 4)

Prediction performance

In order to evaluate the prediction performances, model ex-
traction has been performed for ARBFNNmodel by data test-
ing of database. Data testing includes about 20 data sets, ran-
domly selected from database and not used in the model de-
velopment. Ten samples of testing data are presented in
Table 6.

Performance index

The performance of RBF neural network was evaluated using
variance accounted for (VAF), root-mean-square error
(RMSE), mean absolute error (MAE), and the coefficient of
efficiency (CE), defined as follows:

VAF ¼ 100 1−
var uk−ûk
� �
var ukð Þ

0
@

1
A ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn
i¼1

ûk−uk
� �2vuut ð13Þ

MAE ¼ 1

N

XN
k¼1

ûk−uk
��� ��� ð14Þ

Table 5 The data used in
learning phase of RBFNN
model (BJVC 2009a)

No H (m) RQD (%) UCS (MPa) I (degrees) JRC FT (mm) M (Gpa)

1 20.40 93.00 125.00 52.00 4.00 1.50 30.60

2 45.50 100.00 69.00 75.00 5.00 1.50 3.47

3 169.25 100.00 106.50 20.00 7.00 1.50 11.90

4 431.90 100.00 94.00 45.00 7.00 0.50 15.38

5 138.60 80.00 94.00 85.00 19.00 0.50 2.35

6 174.30 73.00 25.00 55.00 17.00 3.00 3.73

7 459.40 100.00 87.50 40.00 9.00 0.50 22.38

8 192.25 100.00 106.50 80.00 11.50 1.00 20.30

9 174.30 42.00 96.50 42.00 13.00 1.00 2.02

10 121.50 57.00 19.00 36.25 10.50 1.00 13.47

H overburden height, RQD rock quality designation, UCS unconfined compressive strength, I bedding/joint
inclination to core axis, JRC joint roughness coefficient, FT filling thickness, M deformation modulus

H (m)

RQD (%)

UCS (MPa)

I (degree)

FT (mm)

Deformation Modulus (Gpa)RBFNN

Fig. 10 Architecture of RBFNN
model for predicting deformation
modulus

96 Page 10 of 15 Arab J Geosci (2016) 9: 96



CE ¼ 1−

X N

k¼1
ûk−uk
� �2

X N

k¼1
ûk−û
� �2 ð15Þ

where var is the variance; ûk and uk are the kth predicted
and observed values of target, respectively; û is the mean
of predicted target values; and N is the number of obser-
vations for which the error has been computed. VAF
index displays the degree of difference between the var-
iances of measured and predicted data sets. The values of
VAF closer to 100 % indicate low variability and conse-
quently better prediction capabilities. RMSE index is the
measure of bias between measured and predicted data.
The lower the RMSE, the better the model performs
(Habibagahi and Katebi 1996; Den Hartog et al. 1997).
Ideally, the value of RMSE and MAE should be zero and
that of CE should be one. The suggested model has been
validated using threefold cross-validation method. The
relevant outputs were controlled with performance indi-
ces. For the purpose of cross-validation, 84 data were
divided into two sets of 64 and 20 for training and test-
ing data, respectively. The process was applied in three
different arrangements. Testing data were completely dif-
ferent in each arrangement. The results obtained from
applying three data sets to the models are presented in
Table 7. Cross-validation indicated that the models
worked very well with different input data. Therefore,
overfitting cannot be a problem and the models could
be comprehensive.

Modeling results

Figure 11 presents the average results obtained from simulat-
ing RBFNNmodels. Figure 12 shows measured and predicted

deformation modulus of these models for 20 series of testing
data. According to these figures, the average coefficient of
correlation (R2) of RBFNN model is 0.89. This high coeffi-
cient of correlation shows the accordance between the results
of RBFNN model and measured data.

Sensitivity analysis

Sensitivity analysis was performed on the model outputs using
cosine amplitude method (CAM) (Grima 2000; Jang et al.
1997; Ross 1995) to determine the most effective input pa-
rameters in the average output parameter. In this method, the
data pairs are expressed in a common X-space and used to
construct a data array X which is defined as

X ¼ X 1;X 2;X 3;…Xmf g ð16Þ

Each element (Xi) in the data array X is a vector of lengths
and expressed as follows

X i ¼ xi1; xi2; xi3;…; ximf g1 ð17Þ

Thus, each data pair can be considered as a point in
m-dimensional space, where each point requires m-

Table 6 Sample of data used in
testing phase of RBFNN model
(BJVC 2009a)

No H (m) RQD (%) UCS (MPa) I (degrees) JRC FT (mm) M (GPa)

1 330.30 100.00 120.00 35.00 20.00 2.50 11.37

2 108.65 88.00 112.00 35.00 3.00 1.50 7.42

3 439.20 88.00 120.00 50.00 7.00 0.50 10.16

4 33.00 75.00 112.00 15.00 11.00 0.50 6.09

5 24.60 95.00 160.00 30.00 7.00 1.50 22.46

6 166.00 100.00 32.00 65.00 5.00 0.00 4.61

7 49.70 100.00 112.00 70.00 20.00 2.50 6.92

8 144.30 100.00 40.00 45.00 13.00 0.50 3.10

9 148.00 87.00 40.00 52.50 5.00 0.50 10.31

10 124.60 66.00 40.00 32.50 18.00 1.50 3.15

H overburden height, RQD rock quality designation, UCS unconfined compressive strength, I bedding/joint
inclination to core axis, JRC joint roughness coefficient, FT filling thickness, M deformation modulus

Table 7 Average model performance indices (BJVC 2009a)

Data sets Testing data R2 VAF (%) RMSE MAE CE

1 20 0.89 83.77 2.57 2.14 0.88

2 20 0.91 84.67 2.49 2.03 0.88

3 20 0.88 82.03 2.72 2.34 0.87

Average 20 0.89 83.49 2.59 2.17 0.88

R2 coefficient of correlation, VAF variance accounted for, RMSE root-
mean-square error,MAEmean absolute error,CE coefficient of efficiency
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coordinates for a full description. Each element of the
(rij) relation results a pairwise comparison of two data
pairs. The strengths of relations (rij) between output
and input parameters can be calculated as follows:

ri j ¼
Xm
k¼1

xikx jk
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1

x2ik
Xm
k¼1

x2jk

vuut ð18Þ

Equation (13) reveals that this method is related to dot
product for cosine function. Dot product is unity when
two vectors are collinear (most similarity) and is zero
when the vectors are at the right angles to each other
(most dissimilarity). Figure 13 shows the strength values
of relat ions (r i j) between input parameters and

deformation modulus for RBFNN model. According to
this figure, the most effective parameters in the deforma-
tion modulus are descendingly UCS, weathering, and
RQD. Furthermore, bedding/joint inclination to core axis
is the least effective parameter in the deformation
modulus.

Discussion

The results obtained from statistical analysis of input
data have been presented in Fig. 7. The average overbur-
den height of dilatometer test locations is 165 m, based
on the above mentioned analyses. According to the re-
sults obtained from in situ test (Table 2), there is a con-
fining stress field in the anticline structure. The statistical
analyses have shown that the filling thickness is very

R² = 0.89
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low and JRC has average value. It should be noticed that
in practice, to avoid jamming the dilatometer apparatus,
RQD of test locations is usually high. Accordingly, the
average RQD of dilatometer test locations is 90 %
(Fig. 7). The results obtained from RBFNN model
showed its capability in generalizing complex non-
linear relationships between data. The sensitivity analy-
ses showed that UCS and RQD are very influential pa-
rameters in deformation behavior of rock mass. As the
field stress in dam site completely depends on the tec-
tonic structures, the effect of overburden height is not as
important as that of UCS and RQD. Based on the sensi-
tivity analyses, the strengths of relations (rij) are almost
the same between deformation modulus and JRC, and
deformation modulus and filling thickness data.
Bedding/joint inclination to core axis has the least effect
on the deformation modulus at dam site. The horizontal
movement of discontinuities is confined by high overbur-
den as well as the presence of horizontal stress field,
presented in Table 2. In the high confining stress field,
discontinuities may not as much affect the rock mass,
compar ing to the effect of uniaxial condi t ion.
Therefore, with increasing the depth of boreholes and
confining stress, bedding/joint inclination to core axis
may have lower effect on the deformation modulus of
jointed rock mass, in comparison with other parameters.

Conclusion

In this paper, a new RBFNN model has been developed
to predict the deformation modulus in geoscience opera-
tions based on dilatometer tests. The model is developed
on the basis of data sets obtained from in situ dilatometer

tests at Bakhtiary dam site. It is observed that the simu-
lation results of RBFNN models are close to the real
measured values. Moreover, the threefold cross-
validation indicated that the models worked very well
with different input data. These findings confirm the
comprehensiveness of the model; i.e., the overfitting can-
not be a problem. The average performance of proposed
model was evaluated by the indices: variance account for
(VAF), root-mean-square error (RMSE), mean absolute
error (MAE), coefficient of efficiency (CE), and coeffi-
cient of correlation (R2). Optimum average performance
of the model was approved by the calculated values of
VAF, RMSE, MAE, CE, and R2 as 83.49%, 2.59, 2.17,
0.88, and 0.89, respectively. The results obtained from
this study indicate that the developed RBFNN model
can generalize complex non-linear relationships between
deformation modulus and other geomechanical properties
of rock such as rock quality index, UCS, and JRC. It has
been proved that RBFNN model can properly predict
rock mass deformation modulus using geomechanical
properties of rocks. Finally, sensitivity analyses have
been conducted on the model inputs. According to the
sensitivity analysis results, performed and obtained from
cosine amplitude method (CAM), UCS and RQD are the
most effective parameters and bedding/joint inclination to
core axis is the least one on the deformation modulus at
Bakhtiary dam site.
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