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Abstract The development in the emerging technologies of
information and communications requires more rare metals.
The existing resources, insufficient to assume this progress,
require further investigations to discover new rare metal
deposits. The traditional methods, based on manual overlay,
are unsuitable and expensive. Thus, mineral exploration
requires updated methods to easily, quickly, and cost effec-
tively delineate new promising exploration zones.
Geographical Information System (GIS) and applied
geomatics provide and perfect various modeling techniques
implemented in GIS software. In recent years, two spatial
modeling techniques were developed and widely applied in
mineral exploration, data-driven methods, and knowledge
methods. Weight of evidence (WofE) is a data-driven method
based on the Bayesian theorem and its fundamental concept of
prior and posterior probabilities. The method combines statis-
tically diverse geodata that represent ore-controlling factors by
weighting their evidence using “control points” to create a
“posterior probability map.” Our study area, located at the
southern part of Hoggar in the south of Algeria, is potential
for Sn, W, and rare metals and encloses several deposits relat-
ed to peraluminous post-orogenic rare metal granitoïds
(RMGs). In this work, “weights of evidence” modeling is
applied to map mineral potential of this style of

mineralization. Seventeen predictor maps, representing the
deposit recognition criterion model, were generated from
multi-source geodata (lithology, geochemistry, tectonic,
magmatism, and geophysics). These data were used as “input
data” and the known deposits (48 mineral occurrences) as
“training sites.” The WofE modeling gets the following re-
sults: (1) generate an output map called “mineral potential
map” (MPM), where potential zones are reduced to small
areas; (2) the MPM efficiently predicts the well-known de-
posits of Nahda, Sedis, Rechla, and Tit N’Enir; and (3) high-
lights some unrecognized areas such as Tedjrine, Monts de
Tessalit, and Gara Akeboum. (4) The control model demon-
strates the possibility to extend the WofE method to the adja-
cent regions enclosing a small number of known mineral
deposits.

Keywords Geomaticmodeling . GIS . Prospectivity
modeling .Weights of evidence .Mineral exploration .
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Introduction

Because of the limits of the conventional methods based on
traditional manual overlay processes, mineral exploration re-
quire nowadays the use of updated and innovative geomatic
approaches. In fact, these methods are focused on the integra-
tion and combination in a Geographical Information System
(GIS) environment of various geodatasets to identify efficient-
ly newmineral targeting zones. Recent years have witnessed a
great deal of interest for the application of GIS-based predic-
tive spatial analysis techniques in order to integrate several
exploration datasets in the framework of different deposit
models for mineral potential mapping.
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Based on a manner of weighting evidence, Bonham-Carter
(1994) described predictive analysis techniques as knowledge-
driven and data-driven models. Knowledge-driven models are
more suitable for underexplored or unexplored areas character-
ized by few number of deposits (Porwal et al. 2006a; Bonham-
Carter 1994; Carranza 2009). They use mathematical theories
(e.g., Boolean operators, fuzzy logic, andDumpster-Shafer belief
functions), centered on the knowledge of the geologist explorer,
where weighting evidence depends on experts’ opinions.
However, in data-drivenmodels, the weights are calculated using
statistical methods that quantify the spatial relationships between
the evidential layers and the training sites (control points). These
models, more appropriate formoderate towell-studied areaswith
a reasonably large number of known deposits (Porwal et al.
2006b; Carranza 2009), are based on several techniques such
as logistic regression, artificial neural network, and weights of
evidence (Harris et al. 2001).

The weights of evidence model is a Bayesian statistical meth-
od that uses the conditional probabilities to predict a hypothesis
about the occurrence of an event based on the combination of
known information in a study area where sufficient data are
available to estimate the relative importance of each the informa-
tion. In the recent years, it has been applied in several domains
such as archeology (Diggs and Brunswig 2010), landslide sus-
ceptibility analysis and hazard (Mathew et al. 2007; Barbieri and
Cambuli 2009; Hyun-Joo and Saro 2010), biology (Wildman
and Peters 2008), geothermal potential (Yousefi and Kamkar-
Rouhani 2004), and forests and fires (Romero-Calcerrada et al.
2008; Fagin and Hoagland Bruce 2010). It has also been used to
map mineral potential of a variety of mineral resources such as
Cu-Pb-Zn (Benomar and Fuling 2006), VMSCu-Au (Partington
2010), gold potential (Carranza 2009; Ziaii et al. 2009; Nykänen
and Salmirinne 2007; Nykänen et al. 2011), andmagmatic nickel
sulfide (Porwal 2010). In this work, it will be used to map
mineral potential of tin-wolfram (Sn-W) and rare metal mineral-
ization in the Laouni area (Hoggar shield, Algeria).

The Laouni region, also known as “Laouni rare metal
province,” is characterized by the abundance of rare metal min-
eralization associated with peraluminous rare metal granitoïds
(RMGs). Over the past decades, discoveries and prospecting
breakthroughs have received a significant attention. The study
area encloses several known mineral occurrences represented
by deposits and prospects. However, previous works are fo-
cused mainly on conducting intensive geochemical testing of
the surface by collecting a grid of samples over the areas which
are amenable to soil geochemistry testing. In addition, conven-
tional methods are based on personal experience and interpre-
tation of existing geological, geochemical, or geophysical data
(e.g., Lelubre 1952; Boissonnas 1973; Benazouz-Fezoui 1989;
Chalal 1989; Azzouni-Sekkal 1990; Djadoun 1993; Chillak et
al. 1986; Al 1990; Kesraoui 2006).

The main purpose of this study is the application of the
weights of evidence modeling by combining multi-source

geospatial data in a GIS environment for the assessment of Sn-
Wand rare metal potential. The aim is to increase the chances of
finding deposit sites within the Laouni region. This outcome has
a great number of advantages, including maximizing processing
efficiency, easy interpretability, and improved decision making.

The method encloses also some disadvantages such as the
use of binary maps which may result in loss or distortion of
valuable information. This is corrected by the introduction of
the “extended weight of evidence (WofE)” (Porwal et al.
2001) and fuzzy WofE (Porwal et al. 2006) and modified
fuzzy WofE (Zhang et al. 2014). In recent years, the uncer-
tainty of mineral potential map (MPM) due to missing evi-
dence was advantageously studied (Zuo et al. 2015).

This article goes through the following three crucial as-
pects: first, various types of geodatasets are selected carefully
and are processed for building the WofE model. Second,
quantitative analysis of spatial association between evidential
layers and the known Sn-W-rare metal (RM) mineralization is
exposed for better understanding of the ore-controlling fac-
tors. Last but not least, the resultant mineral prospectivity
map is validated using “test deposits.”

Geological background of the study area

The Laouni study region is located at the southern part of
Hoggar, in south Algeria. It is bounded by latitudes 20–21°N
and longitudes 5–6°E. Geologically speaking, it belongs to the
central part of Hoggar which constitutes the Air and theAdrar of
Iforas of the Tuareg shield interpreted as the result of a complete
Wilson cycle which occurred between 800 and 600 Ma (Black
et al. 1979; Caby et al. 1981). Previous studies (Black et al.
1994; Liegeois et al. 2003) show that the Hoggar shield is made
of 23 terranes limited by mega-shear zones and basal thrusts.
Four of them, namely, Laouni, Azrou-N’Fad, Tefedest, and
Egéré-Aleksod, grouped under the acronym “LATEA”
(Liegeois et al. 2003), are made principally of Proterozoic base-
ment with basic features (Bertrand et al. 1986). Our study region
is part of this large structural unit (Fig. 1).

The simplified geological map of the Laouni area (Fig. 2)
shows eight main geological units. Units (i) and (ii) correspond
to Paleoproterozoic metamorphic series made mainly of gneiss
and metasediments metamorphosed under amphibolite or gran-
ulite facies. Unit (iii) consists of Neoproterozoic rocks enclosing
volcano-clastic series bounded generally by tectonic contacts
(Bertrand and Caby 1978). Units (iv) and (v) are essentially
composed by Pan-Africanmigmatites and syn-kinematic granitic
batholiths (>70 % surface), intruded in metamorphic country
rocks with sub-horizontal foliation dated between 600 and
630 Ma (Bertrand et al. 1986). Unit (vi) consists of mafic-ultra-
mafic rocks, interpreted as ophiolitic remnants (Black et al. 1994)
intrusive into syn-kinematic granites and Neoproterozoic meta-
morphic rocks and emplaced between 600 and 520Ma (Cottin et
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al. 1998). Unit (vii) is post-orogenic albite-topaz bearing granitic
intrusions related to the “Taourirt magmatism” dated at 525 Ma
and all linked to late movements along mega-shear zones (Black
et al. 1994) that are relatively abundant in the Tuareg shield and
to which Sn-W and rare metal mineralization are strongly asso-
ciated. Unit (viii) is represented by Paleozoic sedimentary covers
of platform type.

Weights of evidence theory

TheWofE is a Bayesian statistical method that uses condition-
al probabilities to determine the relative importance of

occurrence “evidence.” An exhaustive explanation of the
mathematical formulation of the WofE modeling method is
revealed in Bonham-Carter (1989, 1994), Wang and Al
(2002), and Carranza (2009).

WofE calculations are based on prior and posterior
concept of probabilities. Prior probability, noted P (D),
is defined as the probability of a given number of unit
cells N (D), containing a mineral deposit D, in the study
area consisting of total cells N (T), without taking into
account any other information. It can be expressed as

P Dð Þ ¼ N Dð Þ
.
N Tð Þ ð1Þ

Fig. 1 Tuareg shield terrane map
(Black et al. 1994): Djanet (Dj),
Edembo (Ed), Aouzegueur (Ao),
Barghot (Ba), Assode-Issalane
(As-Is), Tchilit (Tch), Tazat (Ta),
Serouenout (Se), Egere-Aleksod
(Eg-Al), Azrou-n-Fad (Az),
Tefedest (Te), Laouni (La), Iskel
(Isk), In Teidini (It), Tin
Zaouatene (Za), Tirek (Tir),
Ahnet (Ah), In Ouzzal (Ou),
Iforas granulitic unit (Ugi),
Tassendjanet (Tas), Kidal (Ki),
Tilemsi (Til), and Timetrine (Tim)

Fig. 2 Simplified geological map
of Laouni region

Arab J Geosci (2016) 9: 373 Page 3 of 13 373



Posterior probability is a revised original probability (prior
probability) with the introduction of a new information called
evidence. According to Bayesian theorem, it is defined as the
probability of occurrence of mineral deposit “D” given the
presence of the condition B1 and noted P (D|B1).

P D
.
B1

� �
¼ P Dð Þ*

P B1
.
D

� �

P B1ð Þ Bayes theoremð Þ ð2Þ

For “n” variables (evidences), Bayesian theorem is
expressed in its general form as

P D
.
B

� �
¼ P Dð Þ*

P B1
.
D

� �

P B1ð Þ *
P B2

.
D

� �

P B2ð Þ *
P B3

.
D

� �

P B3ð Þ ⋅⋅⋅⋅⋅*
P Bn

.
D

� �

P Bnð Þ
ð3Þ

The WofE method generally uses a log-linear form of the
Bayesian probability to assess the importance of evidence by a
pair of weights; the positive weight (W+) expresses the pres-
ence of the evidence B, and the negative weight (W−) its ab-

sence denoted B.

Wþ ¼ Ln⋅
P B

.
D

� �

P B
.
D

� � ¼ Ln
N B∩Dð Þ

.
N Dð Þ

N B∩D
� �.

N D
� � ð4Þ

W − ¼ Ln⋅
P B

.
D

� �

P B
.
D

� � ¼ ⋅Ln
N B∩D
� �.

N Dð Þ
N B∩D
� �.

N D
� � ð5Þ

The pairwise of weights (W+ andW−) shows the character
of the relationship between the training points and the eviden-
tial theme B. They are calculated for each evidential theme.

The difference between the two weights, known as the
contrast, C, is also calculated.

C ¼ Wþ−W − ð6Þ

The contrast represents an overall measure of spatial asso-
ciation between the set of deposits D and the evidential theme
B, combining the effects of the two weights. For a positive
correlation, C is positive and C is negative in the case of
negative spatial correlation.

The studentized contrast or confidence (stud(C)) is also
necessary and expresses a useful measure of the significance
of the contrast C and provides an approximate test of the
spatial association, i.e., as an informal test that the contrast
C is likely to be “real” (Bonham-Carter 1994). It is defined as
the ratio of the contrast C to its standard deviation (σ).

Stud Cð Þ ¼ C
.
σ ð7Þ

The basic idea in the weight of evidence processing is to see
which predictor theme shows more deposits in order to

suggest that the selected evidential pattern is more predictive
and coherent.

Datasets and modeling methodology

Datasets and deposit recognition criterion selection

Datasets used in the current study were mainly extracted from
systematic research and geological mapping report (Chillak et
al. 1986; unpublished report) enclosing mineral occurrences
(deposits, prospects, and mineralized zones), geological map,
geochemical anomalies, and tectonic map, whereas airborne
radiometric and magnetic data are acquired from “Aéro
Service Corporation” (1974) works. All collected raster
datasets are georeferenced, digitized, and integrated in GIS
environment in order to extract required evidential
geoinformation for weights of evidence analysis.

Sn-W-RM mineral occurrences were integrated into the
prospectivity analysis as “training sites.” Forty-eight mineral
occurrences which fall within the study area (Appendix 1) are
collected from several bibliographic documents (Armines
1977; Syntchouk et al. 1984; Chillak et al. 1986).

The geochemical anomalies are used to create a “miner-
alization density map” in order to assess mineral fertility of
hosted rock. This map is produced from the distribution of
324 anomalies. The lithological units and tectonic and mag-
matic layers are derived from various geodatasets and maps.
The geophysical data are part of the nationwide airborne
magnetic and radiometric coverage of Algeria, flown with
line spacing of 2 km. The data were acquired at an elevation
of 150 m to provide information about the near-surface
geology.

The study area encloses several rare metal deposits such as
Nahda, Rechla, Sedis, Tit N’Enir, and Tamazaror. Spatially
and genetically, they are associated with the peraluminous
related to post-orogenic granitoid, so-called RMGs. The Sn-
W-RM mineralization (Appendix 2), enclosing Sn-W, Ta-Nb,
Be-Li, La-Ce, Zr, and Bi, are controlled by five ore-
controlling factors (deposit recognition criteria): (i) geology
(l i thological units) including gneiss, migmatites,
métasédiments, and volcano-clastic rocks; (ii) tectonic
structures, particularly NE and NW faults, as well as circular
structures (Chillak et al. EREM 1986; Al 1990); (iii) plutonic
rocks, in view of the fact that all Sn-W-RM mineral occur-
rences are spatially genetically related with “hyper aluminous
post-orogenic granites”; (iv) geochemistry, because Sn-W-
RM geochemical anomalies seem to be an important factor
in showing the link between geochemistry fertility and hosted
deposit rocks; and (v) geophysical parameters given that mag-
netic and spectrometric signatures (U, Th, and K) can be suc-
cessfully used to map RMG plutons and identify circular
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structures. Thus, the following features representing the basic
recognition criteria for our model are

& Location within the appropriate geological unit.
& Location within or around RMG plutons.
& Location near or at the intersection of NE and NW faults

and within circular structures.
& Location around or within geochemical Sn-W-RM anom-

aly zones
& Association with favorable geophysical parameters.

From the existing geodatasets, we have built a GIS data-
base including mineral occurrence layer that represents the
training sites and four thematic layers characterizing the geo-
logical ore-controlling factors (Fig. 3).

Evidential map generation and spatial analysis

The pixel size used in the present analysis is 1×1 km, which is
imposed by the scale and the resolution of available geospatial
data for the study area. However, the pixel size is considered

adequate to represent lateral extension of individual prospects
and ensures representation of only one prospect per pixel.

The study area measures 11,570 km2 or N{T} = 11,
570 pixels. Multi-class evidential maps were produced for each
exploration factor. Most of continuous data were classified into
equal-value classes, while to the categorical data, such as the
“geological units,” a unique attribute value was set to each class.

A proximity analysis (buffering) was performed on
faults, circular structures, and RMG plutons where the
weighting of a particular feature in the analysis decreases
with increasing distance from the feature. Features in each
of the evidential maps were buffered at variable intervals.
All the evidential maps used in this study that provide
information related to the deposit recognition criterion
model are given in Figs. 4 and 5.

The spatial association between the derived multi-class ev-
idential layers and the known mineral occurrence were quan-
titatively analyzed to determine thresholds for binary reclassi-
fication. Only classes showing the strongest values of weights
and characterized by good confidence were retained as pre-
dictor pattern.

Fig. 3 Geological evidential themes digitized from raster datasets
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The following table shows an example of the calculated
weights related to the spatial association between the “litho-
logical units” and training sites (Table 1).

As expected, the strongest positive values of W+, contrast
and confidence, correspond to RMG class (class 2). Thus,
RMG can be taken as the best predictive geological unit, in
addition to the “migmatite PR1” unit (class 4) which seems
also to be a suitable lithological predictor unit as expressed by
a positive contrast (0.6335) and a good value of confidence
(2.1193). In the reclassified lithological evidential binary
theme, these two units were assembled together to form a
single predictive class, and the weights of evidence parameters
were recalculated (Table 2).

In the same way, all of the themes were treated, and after
analyzing their weights of evidence statistical parameters, the
other binary predictor themes have been weighted, analyzed,
and reclassified into binary maps.

Weights of evidence modeling results

TheWofE modeling requires the combination of all generated
binary predictor maps. Modeling without checking with sta-
tistical test of conditional independence (CI), a preliminary
generated MPM causes an overestimation or underestimation

Fig. 4 Binary predictor maps
derived from geological data

Fig. 5 Binary predictor maps derived from airborne geophysical data
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of posterior probability induced by conditional dependence
between maps.

In practice, the combined maps are not completely inde-
pendent and always present some degree of dependence to one
another (Bonham-Carter 1994; Mihalasky 1999; Porwal and
Halle 2003). Thus, CI is always violated to some degree.
Therefore, the geomodeler must assess the severity of the
violation and try to identify the maps that are causing CI
problems so they can be rejected from the final analysis. To
overcome such a problem, various tests for CI were suggested;
the first one is pairwise test for CI that calculates χ2 (chi-
squared) statistic value where for 1df and 95 % of probability
level χ2 =3.8 rejects the CI test (Bonham-Carter 1994). The
second one is the original overall test (OT). If 95>OT>0.85,
CI is not violated seriously. The last one is the new omnibus
test (NOT) that is more effective, not subject to limitation, and
is applied even in areas with large or small number of training
points (Bonham-Carter et al. 1989; Paganelli et al. 2002;
Agterberg et al. 1993; Wright and Bonham-Carter 1996;
Carranza and Hale 2000, 2002; Thiart et al. 2007). In this case,
the CI hypothesis is accepted if 85<NOT<95 %.

CI test results, obtained for the preliminary model, cannot
be represented here because of its voluminous contingency
table which indicates a number of CI problems between some
layers. To overcome this difficulty, we separate the predictor
maps into two intermediate models, geological and geophys-
ical predictor maps.

Geological predictor patterns and CI tests

The geological model consists of seven binary predictor maps
which have been checked with the CI test. The contingency
table results, given in Table 3, illustrate clearly some degree of

dependence between predictor maps 1 and 2 (“intersection
fault point density pattern” and “fault density pattern”) and
other maps as shown by the calculated high values of χ2 and
low values of its corresponding probability. Then, the final
modeling requires the rejection of these two maps.

Geophysical predictor patterns and CI tests

The geophysical predictor patterns consist of ten predictor pat-
terns including uranium (U), thorium (Th), potassium (K), U/Th,
U/K, and Th/K, all well expressed by their respective binary
predictor maps (Fig. 5). These patterns were also assessed using
the CI test. The CI contingency table results (Table 4) show
clearly that “circular structure density” (map 9) causes a serious
CI problem as well as the U/K theme (map 6) as shown by the
high values ofχ2 and their low corresponding probability values.
Their rejection from the final model seems to be necessary.

WofE modeling and cross validation

Modeling without CI problematic layers, we obtain a more
coherent model enclosing only 11 evidences. The CI test con-
tingency table indicates acceptable values of probabilities and
chi-squared (Table 5). TheMPM, obtained from this model and
represented in Fig. 6, was reclassified into the following three
classes: prospective, less prospective, and not prospective areas.

Control of the modeling results using “deposit tests”

In order to test the predictive accuracy of our exploration model-
ing pattern, a control model was generated using only 40 of the
48 training sites previously used. Eight mineral occurrences (no.
28, 29, 30, 31, 32, and 34; bold in Table 6), representing the best

Table 1 Summary of Blithological units^ of WofE calculation parameters

Class Unité_geol Area Points W+ s (W+) W− s (W−) Contrast s (C) Stud(C)

1 Gneiss PR1 1376 0

2 Granite PO 244 9 2.2192 0.3397 −0.1870 0.1604 2.4063 0.3756 6.4060

3 Gr_migm 4415 14 −0.2689 0.2677 0.1359 0.1719 −0.4048 0.3181 −1.2725
4 MigmPR1 2803 18 0.4400 0.2365 −0.1936 0.1829 0.6335 0.2989 2.1193

5 MétasedPR1 221 0

6 Paleozoic 1838 5 −0.4227 0.4478 0.0631 0.1528 −0.4858 0.4732 −1.0267
7 R_basique 162 0

8 Volc-Terr 515 2 −0.0655 0.7085 0.0029 0.1477 −0.0685 0.7237 −0.0946

Table 2 Weights of the binary reclassified lithological theme

Class_By_Wt Description Area Points W+ s (W+) W− s (W−) Contrast s (C) Stud(C)

Inside 1 Predictive 3048 27 0.7641 0.1933 −0.5229 0.2185 1.2870 0.2917 4.4116

Outside 2 Not predictive 8531 21 −0.5229 0.2185 0.7641 0.1933 −1.2870 0.2917 −4.4116
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deposits of Nahda region, were retired from training sites in this
analysis. The posterior probabilitymap, obtained from thismodel

(Fig. 7), shows comparable results as the previous MPM, and
efficiently predicts the locations of the well-known deposits of

Table 3 Contingency table for
CI test for the geological model 1 2 3 4 5 6

Probability

Buf_Fa_CrossNE_NW_Class 7 0,92116 0,69526 0,27422 0,65804 0,84308 0,5255

Fa_IntersPt_Dens_Class 1 0,00598 0,55861 0,8827 0 0,00285

Fault_Density_Class 2 0,01915 0,0228 0,00598 0,57841

GMR_RBuf_Clas 3 0,03882 0,80402 0,68014

Geo_Class 4 0,8827 0,74321

MinDensity_Class 5 0,06606

RMG_Density_Class 6

Probabilities >0.05 indicate pairwise CI

Probability values depend on chi-squared and degrees of freedom

Chi-squared

Buf_Fa_CrossNE_NW_Class 7 0,01 0,153 1,196 0,196 0,039 0,403

Fa_IntersPt_Dens_Class 1 7,519 0,342 0,022 23,52 8,875

Fault_Density_Class 2 5,429 5,121 7,519 0,309

GMR_RBuf_Clas 3 4,186 0,062 0,17

Geo_Class 4 0,022 0,107

MinDensity_Class 5 3,265

RMG_Density_Class 6

Degrees of freedom = 1 for all pairwise predictor maps

New overall test of CI = 0.00 Probability of 0.5000

The underlined numbers indicate conditional dependance between combined layers

Table 4 Contingency table for CI test for the geophysical model

1 2 3 4 5 6 7 8 9

Probability

K_Class1 10 0,19771 0,40095 0,70766 0,05895 0,5048 0,0295 0,32876 0,93622 0,19543

Mag_Der_Class1 1 0,23778 0,35474 0,91927 0,8686 0,77245 0,06773 0,626 0,13652

Mag_Susc_Clas 2 0,654 0,02802 0,85732 0,72367 0,73065 0,46334 0,85732

Str_CircBuf_CalsCum3 0,17874 0,74223 0,00555 0,88123 0,35391 0

ThK_Class1 4 0,12648 0,02035 0,79023 0,59253 0,15114

Th_Class3 5 0,74118 0,4693 0,44086 0,58516

UK_Class1 6 0,0544 0,21683 0,00291

UTh_Lao_Class 7 0,86974 0,57356

U_Class 8 0,14544

Str_Circ_Density 9

Chi-squared

K_Class1 10 1,659 0,705 0,141 3,461 0,445 4,667 0,954 0,006 1,676

Mag_Der_Class1 1 1,394 0,856 0,01 0,027 0,084 3,222 0,238 2,217

Mag_Susc_Clas 2 0,201 4,757 0,032 0,125 0,119 0,538 0,032

Str_CircBuf_CalsCum 3 1,808 0,108 7,656 0,022 0,859 26,428

ThK_Class1 4 2,335 5,322 0,071 0,286 2,061

Th_Class3 5 0,109 0,524 0,594 0,298

UK_Class1 6 3,6 1,525 8,836

UTh_Lao_Class 7 0,027 0,317

U_Class 8 2,119

Str_Circ_Density 9

The underlined numbers indicate conditional dependance between layers

Degrees of freedom= 1 for all pairwise layers, original overall test of CI = 0.77 CI may not hold if value < 0.85, and new overall test of CI = 0.00
probability of 0.4984
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Nahda, validating the consistency and effectiveness of the used
exploration model. This reveals a large success of the weights of
evidence modeling applied for Sn-W-RM prediction in this
region.

Conclusions and perspectives

The GIS-based “weights of evidence” approach, carried out
step by step using MapInfo-SDM, was successfully applied in
the Laouni area. The existing deposits are used as training sites
and geodatasets as predictor patterns describing the deposit
recognition criterion model of Sn-W-RM of RMG deposit-
type sought.

According to the WofE modeling: (1) we have built a digital
database including a training site layer including 48 mineral
occurrences and five thematic layers representing the RMG de-
posit recognition criterion model (lithology, faulting,
magmatism, geochemistry, and geophysics), all collected from
diverse geodata, digitized, and integrated into a GIS environ-
ment. (2) Seventeen binary predictor maps were derived from
the thematic layers, weighted to select the best of them, and are
combined to generate a preliminary posterior probability map.

(3) The obtained model was checked for the CI test, and six
problematic layers were deleted from the final modeling. (4)
The retained coherent evidential layers were combined in the
final model to generate a valid posterior probability map
representing the “mineral prospectivity map” for Laouni, show-
ing the following three main areas: predictive, less predictive,
and not predictive areas. (5) The permissive areas, reduced to a
small surface, include more than 30/48 mineral occurrences and
represent the most predictive zones for Sn-W-RM in our region.
(6) The MPM generated shows several underexplored areas
(Zazir S, Zazir N, Fort Laouni, North Rechla, South Ouenni,
Akeboum, and Tedjerine region) and unrecognized favorable
areas such as the Mounts of Tessalit.

In order to assess the accuracy of the WofE modeling, we
have produced a controlling model where eight of the top
deposits of Nahda region were excluded from this model.
The MPM reveals similar results: (1) the location of the per-
missive area is globally comparable with the previous model,
(2) the permissive area includes several known deposits (more
than 20 deposits) and strongly predicts the known mineralized
zone of Nahda region, and (3) the control WofE model can be
extended to the adjacent regions of the study area which en-
close a small number of deposits.

Table 5 Contingency table for CI test without problematic predictor maps

1 2 3 4 5 6 7 8 9 10

Probability

K_Class1 11 0,19771 0,40095 0,1046 0,13176 0,74321 0,7077 0,05895 0,5048 0,32876 0,93622

Mag_Der_Class1 1 0,23778 0,72962 0,1289 0,07333 0,3547 0,91927 0,8686 0,06773 0,6261

Mag_Susc_Clas 2 0,31049 0,85675 0,86752 0,654 0,02802 0,85732 0,73065 0,46334

MinDensity_Class 3 0,79573 0,06606 0,7076 0,45047 0,269 0,13057 0,28303

RBuf_Fa_NE_NW_Class 4 0,13999 0,8134 0,10238 0,90012 0,60324 0,60588

RMG_Density_Class 5 0,8226 0,87482 0,84555 0,2047 0,44244

Str_CircBuf_CalsCum 6 0,17874 0,74223 0,88123 0,35391

ThK_Class1 7 0,12648 0,7902 0,59253

Th_Class3 8 0,4693 0,44086

UTh_Lao_Class 9 0,86974

U_Class 01

Chi-squared

K_Class1 11 1,659 0,705 2,634 2,272 0,107 0,141 3,461 0,445 0,954 0,006

Mag_Der_Class1 1 1,394 0,119 2,306 3,086 0,856 0,015 0,027 3,222 0,238

Mag_Susc_Clas 2 1,029 0,033 0,028 0,201 4,757 0,032 0,119 0,538

MinDensity_Class 3 0,067 3,265 0,141 0,569 1,222 2,286 1,152

RBuf_Fa_NE_NW_Class 4 2,178 0,056 2,668 0,016 0,271 0,266

RMG_Density_Class 5 0,052 0,025 0,038 1,608 0,590

Str_CircBuf_CalsCum 6 1,808 0,108 0,022 0,859

ThK_Class1 7 2,335 0,071 0,286

Th_Class3 8 0,524 0,594

UTh_Lao_Class 9 0,027

U_Class 10

Degrees of freedom=1 for all pairwise layers, original overall test of CI=0.86CImay not hold if value<0.85, and newoverall test of CI=0.01 probability of 0.5
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In the light of these evident results, the GIS-based WofE
modeling, combining known mineral deposits and geodatasets,
provides an improved tool for mineral potential mapping of Sn-
Wand rare metals of the Laouni region. This modeling allowed
the demonstration of the capability of the multi-source spatial
analysis and the accuracy of the data-driven methods applied to
a region where deposit recognition criteria are well known. The
suitability of the results is equally supported by the location of
the well-known deposits of Nahda, Sedis, Rechla, and Tit
N’Enir and by the prediction of underexplored areas such as
Ouenni, Akeboum, and Tessalit Mount regions.

On the other hand, the WofE modeling led to confirm the
use of some adequate ore-controlling factors by the quanti-
tative analysis of their spatial association with the known
deposits. A number of them (e.g., association with RMG
plutons and NE-NW faults) are well known and previously
used by mineral explorers as main ore-controlling factors,
whereas other new possible features are recognized (associ-
ation with migmatitic rocks and association with specific
values of magnetic susceptibility). Therefore, the WofE ap-
proach is highly recommended in the future for mineral
exploration projects of Sn-W and rare metal mineralization
in the Hoggar area, especially where airborne geophysical
data exists.

Fig. 7 MPMcontrol indicating the prediction of the well-known deposits
of Nahda

Fig. 6 Mineral prospectivity map for Sn-W-RM of Laouni study area
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Appendix 1

Table 6 Training site table

Deposit Name X Y Prim Elt Sec Elts Host rock Genetic type

1 Dep Rechla 5.1125 20.375 Ta, Nb, Sn – PO granite Magmatic

2 Show – 5.1525 20.4778 Ta, Li Sn, Be Pegmatite-greisen Hydrothermal

3 Show – 5.11944 20.3292 W Sn Filon de Qz Hydrothermal

4 Dep – 5.12 20.4722 W, Sn Be, Li Greisen Hydrothermal

5 Adv prosp Rechla 5.12083 20.4708 W, Sn Be, Li PO granite Magmatic

6 Dep Antar 5.13611 20.4917 Be, Sn, W – Granite métasom Magmatic

7 Show – 5.13889 20.3278 Be Nb, Ta, Sn, Li Granite gréisen Pneumatic-hydrothermal

8 Dep Sedis N 5.13944 20.3106 Ta – PO granite Magmatic

9 Dep Tessalit 5.14583 20.8111 Be – PO granite Magmatic

10 Adv prosp Sedis 5.15278 20.3236 W, Sn Be, Li Greisen Magmatic

11 Show Brigitte 5.15278 20.625 Be – PO granite Magmatic

12 Dep – 5.158 20.497 Sn Li, Be, W Greisen Hydrothermal

13 Show Brigitte 5.15833 20.8833 Ag, W Sn Filon de Qz Hydrothermal

14 Show Colline noire 5.1625 20.375 W – Pegmatite-Qzvein Hydrothermal

15 Dep Tessalit 5.16389 20.5583 Be Sn, Li, Bi Skarn + pegmatite Hydrothermal

16 Show – 5.16389 20.9111 Sn Li, Ag Greisen Hydrothermal

17 Dep Tit N’EnirE 5.27222 20.5847 Sn, W – PO granite Magmatic

18 Show – 5.27222 20.2528 Zr – Schiste silicifié Hydrothermal

19 Show – 5.29167 20.2225 Be Sn, Li, Nb, Y, Yb Granite greisenisé Pneumatic-hydrothermal

20 Show – 5.29583 20.2639 Nb Y, Yb, Zr Filon de pegmatite Pégmatitique

21 Dep Tit N’EnirN 5.30556 20.5875 Be – PO granite Magmatic

22 Show – 5.30972 20.8028 Sn – Granite-pégmatite Magmatic

23 Adv prosp Tamazaror 5.31667 20.4333 Ta, Nb Sn, Li, Be, Ge PO granite Magmatic

24 Adv prosp Tit N’Enir 5.32361 20.5667 Sn, W Li, Bi Filon de Qz Hydrothermal

25 Show – 5.40417 20.6292 Sn Li Grésen Hydrothermal

26 Show – 5.40833 20.3222 Zr Mo, V Zone silicifiée Hydrothermal

27 Show – 5.41944 20.3139 Zr Y, Yb, La, Tr Zone silicifiée Hydrothermal

28 Show – 5.45 20.7958 W – Stockwerk Hydrothermal

29 Dep Monticule 5.46111 20.8125 W – Greisen + Qzvein Hydrothermal

30 Show – 5.4625 20.7958 Be Sn, Li Filon de pegmatite Hydrothermal

31 Dep – 5.47639 20.8222 W – Filons de Qz Hydrothermal

32 Dep Nahda S 5.47639 20.8033 Be Ta, Nb, Sn Filon de pegmatite Pégmatitique

33 Dep – 5.48056 20.3361 Nb Y, Yb, Zr Granite gréisenisé Magmatic

34 Dep – 5.48333 20.8292 W – Stockwerk Hydrothermal

35 Show – 5.4875 20.2958 Zr Y, Nb, Sn Zone silicifiée Hydrothermal

36 Dep Filon doux 5.49306 20.8222 W – Filon de pegmatite Magmatic

37 Adv prosp Nahda 5.49583 20.8292 Sn, W Mo, Cu, Au, Li Qzvein-greisen Hydrothermal

38 Show – 5.51111 20.1611 La, Zr Ce, Nb, Be, Au Zone silicifiée Téléthermal

39 Show – 5.54611 20.3375 Sn Li Granite gréisenisé Hydrothermal

40 Show – 5.56944 20.3458 Sn Y, Yb, Nb, Zr Granite gréisenisé Magmatic

41 Show – 5.5875 20.025 La, Ce Th, U, Y, Yb, Zr Zone silicifié Téléthermal

42 Show – 5.61389 20.0833 Nb Y, Yb Filon de pegmatite Pégmatitique

43 Show – 5.71389 20.0944 Zr, La Y, Nb, Sn Zone silicifiée Téléthermal

44 Show – 5.72222 20.0028 La, Ce Y, Yb, Zr Zone silicifiée Téléthermal

45 Dep – 5.85139 20.2306 W – Granite greisenisé Hydrothermal

46 Show – 5.90417 20.1875 La, Zr Sm, Y, Yb, Th Zone silicifiée Hydrothermal

47 Show – 5.92167 20.1778 Nb, Zr Y, Ce, Sn Zone silicifiée Hydrothermal

48 Show – 5.97778 20.1222 Bi Ag, Cu Zone silicifiée Hydrothermal

The bold lines represent a control set of deposits that were not used in processing but that are used to validate the results

Show showing, Dep deposit, Ad prosp advanced prospect
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