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Abstract As demands for groundwater in the arid and semi-
arid areas increase, delineation of groundwater potential zone
becomes an increasingly valuable technique for implementing
a successful groundwater potential analysis. The capability of
using weights-of-evidence (WOE) and evidential belief func-
tion (EBF) models for groundwater potential mapping is test-
ed and compared in the Ilam Plain, Iran. In the present study,
multiple geo-environmental factors including lithology, land
use, distance from river, soil texture, drainage density, altitude,
curvature, topographic wetness index (TWI), slope percent,
lineament density, and rainfall were used as inputs for both
models. Subsequently, a well inventory map was produced
using documentary sources of Iranian Water Resources
Department (IWRD) and extensive field surveys. About 145
groundwater productivity data (with high potential yield
values of ≥11 m3/h) were separated from well locations. Out
of these, 101 (70%) cases were randomly selected for ground-
water potential modeling, and the remaining 44 (30 %) cases
were applied for the validation purpose. In the next step,
groundwater potential maps were produced using WOE and

EBFmodels in GIS environment. The receiver operating char-
acteristic (ROC) curves for the produced maps were drawn
and the areas under the curves (AUC) were determined.
From the analysis, predictive performance of EBF model
(AUC=83.7 %) was better than of WOE model (AUC=
78.2 %). The results also show the capability of EBF model
in managing uncertainty associated in groundwater potential
mapping. Therefore, WOE and EBF models are shown to be
an effective prediction models for groundwater potential map-
ping. The groundwater potential map can be helpful for plan-
ners in groundwater management and land use planning.

Keywords Groundwater potential modelling . GIS&RS .

Weights-of-evidence . Evidential belief function . Iran

Introduction

Water scarcity is the most important environmental challenge
facing the arid and semi-arid regions. The demand on ground-
water as one of the most valuable natural resources is increas-
ing over the years, and the overexploitation of this water re-
source is threatening future generations (Todd and Mays
2005; Rekha and Thomas 2007). Therefore, proper assess-
ment and planning of groundwater resource are key elements
in the sustainable development of arid and semi-arid regions.
The groundwater occurrence at any place on the given plain is
not an issue of accidental but a result of the interrelationships
among several factors such as hydrology, physiography, li-
thology, geological structures, drainage pattern, climatic con-
ditions, landuse, and soil properties (Banks and Robins 2002;
Jha et al. 2007; Ganapuram et al. 2009; Magesh et al. 2012;
Nampak et al. 2014; Rahmati et al. 2014b). Spatial prediction
of groundwater potential using a standard method is important
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for groundwater management, especially under data-scarce
and arid areas.

In recent years, research on groundwater resources poten-
tiality has got international spotlight (Awawdeh et al. 2013;
Manap et al. 2014; Mogaji et al. 2014; Fenta et al. 2015).
Groundwater potential can be assessed using a variety of in-
vestigation methods (Madrucci et al. 2008; Prasad et al. 2008;
Dar et al. 2010; Gupta and Srivastava 2010; Elewa and
Qaddah 2011; Nag et al. 2012; Nag and Ghosh 2013; Nag
and Saha 2014; Adji and Sejati 2014). The traditional methods
of groundwater exploration through drilling, hydro-geologi-
cal, geological, and geophysical techniques are extremely
costly, and time-consuming (Todd and Mays 1980; Singh
and Prakash 2002; Bevan et al. 2005; Israil et al. 2006; Jha
et al. 2010). More recently, numerous studies have applied
index-based models such as frequency ratio (FR) (Oh et al.
2011; Davoodi Moghaddam et al. 2015; Manap et al. 2014),
certainty factor (Razandi et al. 2015), weights-of-evidence
(WOE) (Corsini et al. 2009; Lee et al. 2012b), analytical hier-
archy process (AHP) (Pradhan 2009; Manap et al. 2013;
Kaliraj et al. 2014; Rahmati et al. 2014a; Shekhar and
Pandey 2014; Fenta et al. 2015). information entropy (Chen
et al. 2014), and logistic regression (LR) (Ozdemir 2011;
Pourtaghi and Pourghasemi 2014) for assessing groundwater
potentiality. Many researchers have also used soft computing
techniques such as decision tree (DT) (Chenini and Mammou
2010), fuzzy logic (Shahid et al. 2002; Ghayoumian et al.
2007), boosted regression tree (BRT) (Naghibi and
Pourghasemi 2015). Random forest (RF) (Rahmati et al.
2016), and artificial neural networks (ANN) (Corsini et al.
2009; Lee et al. 2012c) for groundwater potential mapping.

In a recent paper, Nampak et al. (2014) applied GIS-based
data-driven evidential belief function (EBF) and logistic re-
gression (LR) models in spatial prediction of groundwater
potentiality of Malaysia. Their result indicated that EBF and
LR models can be successfully applied in groundwater poten-
tial mapping. The EBF, based on the Dempster–Shafer (DS)
theory of belief, was successfully applied as an effective mod-
el for landslide susceptibility mapping (Park 2011;
Althuwaynee et al. 2012, 2014; Mohammady et al. 2012;
Tien Bui et al. 2012) and mineral potential mapping
(Carranza 2009). The DS theory of belief makes the frame-
work for the determination of EBFs, which are integrated
using combination rule of Dempster (1968) as a bivariate sta-
tistical analysis method. Tangestani and Moore (2002) stated
that EBF model has robust theoretical basis (i.e., DS theory)
which can manage uncertainties in multiresources spatial data
integration. The EBF is a renowned spatial predictivemodel, a
flexible approach useful in formalizing and addressing the
problems of inappropriate management of uncertainty (Lee
et al. 2012a, c) that allows analysis on both systemic and
stochastic uncertainty (Mogaji et al. 2014). In contrast, the
prior mentioned data mining models (e.g., FR, WOE) are

capable of only handling stochastic uncertainty; hence, the
systemic uncertainty is ignored.

The principal objective of this paper was to produce
groundwater potential maps (GPM) and their comparison
using the GIS-based WOE and EBF models in the Ilam
Plain, Iran. The important difference between current research
and the approaches described in the aforementioned publica-
tions is that WOE and EBF models are mostly applied in
landslide mapping (Park 2011; Mohammady et al. 2012;
Pourghasemi et al. 2013b; Althuwaynee et al. 2014) and it is
relatively new in groundwater potential mapping. In addition,
current research is the pioneer work in identify the groundwa-
ter potentiality in the study area.

Study area

The Ilam Plain is located in the northern part of Ilam Province,
Iran, between latitudes 33° 2′ to 33° 8′ N, and longitudes 46°
03′ to 46° 23′ E (Fig. 1). It covers an area about 225.94 km2

and its elevation ranges from 91 to 271 m above sea level,
with an average of 105m. The study area is considered to have
a Mediterranean-type climate with an average annual rainfall
of 320 mm (WRCI 2013). The study area receives approxi-
mately 85 % of its annual rainfall from December to April. In
winter, temperature ranges from −8 to 10.5 °C, while in sum-
mer, it varies from 25 to 39 °C. From a geological viewpoint,
the study area is located in Zagros structural zone of Iran. The
Zagros is identified as a region of polyphase deformation,
fracture systems, and the latest reflecting the collision of
Arabia and Eurasia (Alavi 1994). The Ilam aquifer is consid-
ered as an unconfined in nature and is recharged across its
entire surface by infiltrating rainfall and streams leaking into
the subterranean system. According to geological survey of
Iran (GSI 1997), the lithology of the study area is various
(Table 1), and it is covered by conglomerate marly and sandy
conglomerate with calcareous and clay matrix (Bk), conglom-
erate locally with sandstone (Plbk), and high level pediment
fan and valley terrace deposits (Qft).

Data

Data construction and collection of a spatial database of effec-
tive factors are essential part of any study (Chenini et al. 2010;
Pourghasemi et al. 2013a). The groundwater information such
as number of wells, yield, and depth were obtained from
Iranian Department of Water Resources Management
(IDWRM 2013), and extensive field surveys. Based on actual
pumping test analysis of groundwater well, e.g., m3/h, the
groundwater yield is specified. Because of limited accessibil-
ity of the groundwater data, indirect indicator of yield mea-
surement was used in this investigation instead of hydraulic
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constants of specific capacity as considered by Oh et al.
(2011). The 145 groundwater productivity data with high

potential yield values of ≥11 m3/h were selected from ground-
water wells. The available groundwater wells data randomly

Fig. 1 Well locations with digital
elevation model (DEM) map of
the study area

Table 1 Lithology of the Ilam
Plain, Iran Code Lithology Formation Geological age

Bk Conglomerate marly and sandy conglomerate with calcareous
and clay matrix

Bakhtyari Pliocene

Plbk Compacted conglomerate locally with sandstone Bakhtyari Pliocene

Qft High level pediment fan and valley terrace deposits – Quaternary
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were divided into two subsets. For preparing groundwater
potential maps, 101 (70 %) cases of the groundwater wells
were used, and the remaining 44 (30 %) were selected for
validation. Figure 1 shows the groundwater well locations
(training and validation datasets) in the study area.

Generally, the productivity and occurrence of groundwater
in a given aquifer is affected by different effective parameters.
The number of conditioning factors applied depends on the
data accessibility in the study area. In current study, in order to
assess groundwater potential zones, 11 groundwater condi-
tioning factors were considered. These factors are lithology,
landuse, distance from river, soil texture, drainage density,
altitude, curvature, topographic wetness index (TWI), slope
percent, lineament density, and rainfall. These conditioning
factors provide a reliable database for an effective groundwa-
ter potential prediction of the study area in GIS framework
(Fig. 2).

The lithology plays very important role in both the perme-
ability and porosity of aquifer materials (Chowdhury et al.
2010; Adiat et al. 2012). The analogue geological map of
the study area obtained from Iranian Department of
Geological Survey (GSI 1997) with scale 1:100,000 was
georeferenced and digitized in ArcGIS 10.2 software.
Finally, the lithology map was classified into three groups as
shown in Fig. 2a and Table 1.

In addition, landuse has an important role in the occurrence
of groundwater and recharge process (Al Saud 2010; Fashae
et al. 2014; Fenta et al. 2015). The landuse map for the study
was extracted from Landsat ETM+ image (May 27, 2013)
through supervised classification of the false color composite
(FCC) technique to produce the landuse category in ENVI 4.2
software. The landuse map of the area is shown in Fig. 2b.
Four landuse types are present in the area and these are the
agriculture, urban, range, and forest areas.

Rivers are the major sources of recharge, and then distance
from rivers affect the groundwater potentiality in a given area.
Euclidean distance tool in ArcGIS 10.2 software was used to
generate distance from river categories, and then the prepared
map was classified based on quantile classification scheme
(Nampak et al. 2014) (Fig. 2c).

Soil texture is one of the most important factors in the
surface runoff generation and infiltration process (Awawdeh
et al. 2013; Mogaji et al. 2014). In this study, the soil texture is
obtained from the digitized soil texture map of Ilam Plain,
Iran. There are four classes of soil texture that exist in the
study area: clay, sandy clay loam, clay loam, and sandy loam.
The distribution of the soil texture can be seen in Fig. 2d.

The drainage system of an area is determined by the struc-
ture and type of the geological formation, the nature and atti-
tude of the bedrock, and also by the slope degree (Adiat et al.
2012; Tehrany et al. 2013; Manap et al. 2014). From recharge
process viewpoint, the characteristics of the drainage system
govern the rate of surface water recharge into groundwater (Al

Saud 2010; Elmahdy and Mostafa Mohamed 2014). In order
to determine the drainage density, the Line Density tool in
ArcGIS 10.2 software was applied. Figure 2e shows the
resulting map classified into four classes with the use of
quantile classification method in the GIS environment
(Nampak et al. 2014; Razandi et al. 2015).

A digital elevation model (DEM) with 30-m resolution was
utilized (extracted from the 1:50,000-scale topographic map)
to derive altitude layer. Altitude in the study area (91–271 m)
were classified based on the quantile classification scheme
(Razandi et al. 2015) which are <138, 138–162, 162–188,
188–217, and >271 m representing classes 1–5, respectively
(Fig. 2f).

The useful geomorphological information can be obtained
through the curvature analysis (Davoodi Moghaddam et al.
2015; Tehrany et al. 2014). In the case of curvature, negative
curvature exhibits concave, zero curvature represents flat, and
positive curvature depicts convex. Using ArcGIS 10.2, the
curvature map of the area was produced and classified
(Fig. 2g).

The TWI is a secondary topographic factor within the run-
off model which has been widely utilized to express the im-
pact of topography conditions on the location and size of
saturated source zones of surface runoff generation (Davoodi
Moghaddam et al. 2015). Also, the TWI of the study area has
its own importance in affecting accumulation and movement
of surface runoff over the land surface (Elmahdy and Mostafa
Mohamed 2014). It is defined based on Eq. (1) (Moore et al.
1991):

TWI ¼ ln
Ac

tanβ

� �
ð1Þ

where Ac is the cumulative upslope area draining through a
point (per unit contour length) and tanβ is the slope angle at
the point. In this study, TWI map was grouped into four clas-
ses using quantile classification method (Manap et al. 2014;
Tehrany et al. 2014) (Fig. 2h).

The groundwater recharge processes (i.e., infiltration con-
ditions) largely control by slope degree which always has an
important role in groundwater potential mapping (Ettazarizini
and ElMahmouhi 2004; Ettazarini 2007; Al Saud 2010; Adiat
et al. 2012). In the gentle slope area, the overland flow is slow
allowing more time for rainwater to infiltrate and vice versa
(i.e., infiltration rate is inversely related to slope angle) (Prasad
et al. 2008). Therefore, the slope degree can be considered as
surface indicator for assessing the groundwater potentiality.
The slope percent map was produced from prepared DEM
of the area using ArcGIS 10.2 software and was classified
based on Natural Resources Management Agency of Iran
(NRMAI 2005) (Fig. 2i).

Lineaments reflect rock structures and effect on the infil-
tration of surface runoff into subsurface (i.e., percolation
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Fig. 2 Input thematic layers. a Lithology. b Landuse. c Distance from river. d Soil texture. e Drainage density. f Altitude. g Curvature. h TWI. i Slope
percent. j Lineament density. k Rainfall
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Fig. 2 (continued)
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process) (Lee et al. 2012c; Fenta et al. 2015). To produce a
lineaments map of the study area, edge enhancement and fil-
tering (e.g., Sobel directional and high-pass directional) are
done on the Landsat TM image. Subsequently, the lineament
density was generated in ArcGIS by Line Density tool and
classified into five classes based on equal interval
classification method following Sener et al. (2005) and
Hammouri et al. (2012) (Fig. 2j).

The rainfall availability was considered direct recharge
source of groundwater (Adiat et al. 2012; Rahmati et al.
2014a). Mean annual rainfall data of five rain-gauge stations
within the study area for a period of 25 years (i.e., 1990–2014)
were obtained from the Meteorological Organization of Iran.
The rainfall map is produced using inverse distance weight
(IDW) interpolation technique and classified into three classes
according to on Equal Interval classification scheme
(Machiwal et al. 2011) (Fig. 2k).

Methodology

The groundwater potential mapping contains of three phases:
(1) geo-spatial database production (causal factors related to
groundwater potential), (2) analysis of relationship between
groundwater well locations (with high productivity) and
groundwater causal factors, and (3) validation and comparison
of prepared maps.

Weights-of-evidence model

Weights-of-evidence (WOE) is a quantitative Bdata-driven^
model based on Bayes rule used to predict probability of
events. This model has been applied for groundwater spring
potential mapping (Corsini et al. 2009; Ozdemir 2011; Lee et
al. 2012a; Pourtaghi and Pourghasemi 2014). landslide sus-
ceptibility mapping (Pradhan et al. 2010; Pourghasemi et al.
2013b), debris flow prediction (Liu et al. 2006; Chang and
Chien 2007), and flood susceptibility mapping (Tehrany et
al. 2014). A detailed description of the mathematical of
WOE model is expressed in Bonham-Carter (1991, 1994).

The method computes the weight for the presence or ab-
sence of each groundwater conditioning factor’s class (M or
M*) based on the presence or absence of the well (N or N*)
within the study area, as described in Bonham-Carter (1994)
as follow:

Wþ ¼ Ln
P M

�
N

� �
P M

�
N*

� � ð2Þ

W – ¼ Ln
P M*

.
N

� �
P M*

.
N*

� � ð3Þ

where P is probability, M is the presence of the groundwater
conditioning factors, M* is the absence of the groundwater
conditioning factors, N is the presence of a well, and N* is
the absence of a well.

Positive weight (W+) and negative weight (W−) are the
weights of evidence when a factor is present and absent, re-
spectively (Corsini et al. 2009).

The difference between theW+ andW− weights is noted as
the weight contrast (C) that in groundwater potential mapping
reflects the spatial association between the conditioning fac-
tors and groundwater occurrences. A contrast value equal to
zero reflects that the considered class of conditioning factors is
not significant for the analysis, a negative contrast indicates a
negative spatial correlation, and vice versa for a positive con-
trast (Corsini et al. 2009).

Moreover, the standard deviation S(C) of W can be calcu-
lated as follows (Eq. 4):

S Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 Wþð Þ þ S2 W −ð Þ

q
ð4Þ

where S2(W +) and S2(W −) are the variance of the W+ and the
variance of theW −, respectively. The S2(W+) and S2(W −) can
be determined as follows (Bonham-Carter 1994):

S2 Wþð Þ ¼ 1

N F∩Ef g þ 1

F∩E
ð5Þ

S2 W −ð Þ ¼ 1

F∩E
n o þ 1

F∩E
n o ð6Þ

The studentized contrast (noted as τ) is a measure of con-
fidence and can be determined using the following equation:

τ ¼ C

S Cð Þ
� �

ð7Þ

In the application ofWOEmodel, groundwater-related the-
matic maps were overlapped with the training well map. On
the basis of these intersections,W+,W−, C, S(C), and τ values
were determined for each geo-environmental factor using Eqs.
(4), (5), (6), and (7). After determination of τ values, ground-
water potential index (GWPI) was calculated for each pixel in
the study area by the following expressions:

GWPI ¼
XR¼n

R¼1

τ ð8Þ

Evidential belief function model

The evidential belief function (EBF) model is based on
the Dempster–Shafer theory (DST) in generalization of
Bayesian lower and upper probabilities (Dempster 1968;
Shafer 1976).

Arab J Geosci (2016) 9: 79 Page 7 of 18 79



The EBF model contains degree of belief (Bel), degree of
disbelief (Dis), degree of uncertainty (Unc), and degree of
plausibility (Pls) (Carranza and Hale 2003; Carranza et al.
2008; Althuwaynee et al. 2012). As characteristics of the
EBF model, the values of Dis, Bel, and Unc each fall in the
range [0, 1], and the sum of Dis, Bel, and Unc is 1 (Carranza et
al. 2005; Lee et al. 2012a). Figure 3 illustrates the schematic
relationships of Bel, Pls, Unc, and Dis.

In groundwater potential mapping based on the EBF mod-
el, a structure of discernment can be considered as follows
(Mogaji et al. 2014; Nampak et al. 2014; Pourghasemi and
Beheshtirad 2014):

m ¼ 2Θ ¼ ϕ; TP; Tp;Θ
n o

With Θ ¼ TP; Tp

n o
ð9Þ

where

TP Class pixels affected by groundwater well.
Tp Class pixels not influenced by groundwater well
ϕ Empty set

Based on Eq. (9), the belief function (Bel) can be calculated
as (Park 2011):

λ TPð ÞAi j

h i
¼

N W
\

Ai j

� �
N Wð Þ

2
4

3
5. N Ai j−N W

\
Ai j

� �� �� �.
N Pð Þ−N Wð Þ½ �

h i

ð10Þ

Belð Þ ¼
λ TPð ÞAi j

h i
Σ λ TPð ÞAi j

h i
0
@

1
A ð11Þ

where N(W∩Aij) is the density of groundwater well pixels that
occurred in Aij,N(W) is the total density of whole groundwater
well that have presented in the study area, N(Aij) is the density
of pixels in Aij, and N(P) is the density of pixels in the whole
study area P.

On the other hand, the disbelief function (Dis) can be cal-
culated according to Eqs. (11) and (12) (Pourghasemi and
Beheshtirad 2014):

λ Tp

� �
Ai j

� 	
¼

N Wð Þ−N W
\

Ai j

� �
N Wð Þ

2
4

3
5,

N Pð Þ−N Wð Þ−N Ai jð ÞþN W

\
Ai j

� �.
N Pð Þ−N Wð Þ

� �h i
ð12Þ

Disð Þ ¼ λ Tp

� �
Ai j

� 	,
Σ λ Tp

� �
Ai j

� 	 ð13Þ

Uncertainty (Unc) and plausibility (Pls) functions can be
determined as follows (Eqs. 13 and 14):

Uncð Þ ¼ 1− Belð Þ− Disð Þ½ � ð14Þ

Plsð Þ ¼ 1− Disð Þ½ � ð15Þ

Finally, the groundwater potential map (GPM) using EBF
model was produced using the following equation:

GPM ¼ LithologyBel½ � þ LanduseBel½ � þ Distance from riverBel½ �
þ Soil textureBel½ � þ Drainage dendityBel½ �
þ AltitudeBel½ � þ CurvatureBel½ � þ TWIBel½ �
þ Slope percentBel½ �

ð16Þ

Comparison and validation of the groundwater potential
maps

According to Chung and Fabbri (2003), model validation is
considered as the most important process of modeling. From
scientific significance viewpoint, it is very essential to evalu-
ate the resultant GPM accuracy. The receiver operating char-
acteristics (ROC) curve was used to calculate the accuracy of
the GPMs (Frattini et al. 2010; Naghibi et al. 2014; Rahmati et
al. 2014a). The GPMs were verified using the groundwater
well locations in the validation datasets.

According to Pourtaghi and Pourghasemi (2014), the
ROC curves were plotted by considering cumulative
percentage of potential maps (on the X axis) and the
cumulative percentage of groundwater occurrence (on
the Y axis). According to Yesilnacar (2005), the quanti-
tative–qualitative relationship between the prediction ac-
curacy and AUC value can be classified as follows:
poor (0.5–0.6), average (0.6–0.7), good (0.7–0.8), very
good (0.8–0.9), and excellent (0.9–1).

Fig. 3 Schematic relationships of evidential belief functions (Carranza et
al. 2005)
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Sensitivity analysis

In the current study, a map-removal sensitivity analysis was
conducted for the EBFmodel to examine the effects of remov-
ing any of the conditioning factors on the GPMs (Fenta et al.
2015). The relative decrease (RD) of AUC values as a per-
centage was calculated to examining the model output with
and without each factor (i.e., related to dependency of GPMs
on the influence of groundwater conditioning factors) using
the following equation (Eq. 15) (Oh et al. 2011; Park et al.
2014):

RDi ¼ AUCall−AUCið Þ
AUCi

� 100 ð16Þ

where AUCall indicates the AUC value obtained from the
groundwater potential mapping using all conditioning factors
and AUCi is the prediction accuracy when the ith conditioning
factor has been excluded.

Results and discussion

Application of WOE model for groundwater potential
mapping

In the current study, all parameters of WOE model were cal-
culated for each groundwater conditioning factors (Table 2).
Table 2 shows relevant factor’s weight (τ) and the spatial
relationship between classes of each conditioning factor and
the groundwater occurrence. The contrast value for the WOE
model is positive and negative for a positive and negative
spatial association, respectively (Lee and Choi 2004).

The analysis of WOE for the relationship between well
locations and lithology units indicate that high level pediment
fan and valley terrace deposits class (Qft) has the highest τ
value (2.37) followed by conglomerate marly and sandy con-
glomerate with calcareous and clay matrix (Bk) class (0.54).
Quaternary deposits which are very permeable and cover a
significant part of the study area are also positively correlated
with groundwater occurrence. On the other hand, conglomer-
ate locally with sandstone (Plbk) class is not positively corre-
lated with groundwater occurrence (τ=−2.48). The compacted
conglomerate rocks locally with sandstone are assumed as
relatively poor groundwater potential because of difficulty in
terms of groundwater storage and movement. Among the dif-
ferent landuse types, agriculture category had the highest τ
values, showing maximum groundwater probability. This
may be due to the back infiltration of irrigation water to the
groundwater system which it can increase the aquifer re-
charge. This finding is consistent with Kumar et al. (2007)
who demonstrated that landuse factor controls the infiltration
a nd r uno f f p r o c e s s a nd s ub s e qu en t l y a f f e c t sT
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evapotranspiration and recharge of the groundwater resource.
In particular, Nampak et al. (2014) stated that cropland is an
excellent site form groundwater potentiality point of view. The
distance from the river from 438.4 to 1048.5 m indicated
positive influence in groundwater occurrence, while the areas
more than 1048.5 m represented the negative correlation. In
soil texture type, the highest weight of 6.85 was achieved for
the sandy clay loam texture. The drainage density 1.22–
2.16 km/km2 has the highest final weight (τ=2.98), which
means that the attributes of this class have the strongest rela-
tionship with groundwater occurrence. The drainage density
result matches with the findings of Nampak et al. (2014) that
included drainage density factor in the groundwater potential
analysis for the Langat River catchment, Malaysia. Razandi et
al. (2015) demonstrate that low drainage density of a given
plain is indicative of low groundwater recharge. In the case of
altitude, the highest weight (3.32) was for the range of 138–
163 m that has a positive effect in groundwater probability.
However, groundwater potential decreased in the highest
areas with few deposits (i.e., related to percolation and storage
processes). The analysis of WOE for the relationship between
well locations and curvature layer indicated that flat area had
positive influences in groundwater occurrence. Also, τ values
decreases by increasing of TWI. The previous study by
Razandi et al. (2015) confirmed that there is a negative corre-
lation between TWI and groundwater occurrence which
shows a higher groundwater potential over a decreasing the
TWI value. Analysis of the WOE results shows that the τ is

2.02 for slope percent class of 2–5, indicating a high proba-
bility of groundwater occurrence within this slope percent
range. This finding is in agreement with the result obtained
in different studies of groundwater potential mapping (Adiat
et al. 2012; Manap et al. 2014; Nampak et al. 2014).
Chowdhury et al. (2009) explained that gentle slope areas
facilitate infiltration and consequently promote groundwater
recharge. In the case of lineament density, the classes of 0–
0.47, 0.47–0.94, 0.94–1.41, 1.41–1.88, and >1.88 km/km2

have weights (τ) of −3.76, 0.5, 2.41, 3.40, and 4.41,
respectively. This indicates that the groundwater potential
increases with the increase in lineament density. Chowdhury
et al. (2010) stated that the lineaments often act as good con-
duits for groundwater recharge especially when them coupled
with relatively permeable stream beds (i.e., crossing of the
streams and lineaments). Rainfall has been applied because
it is supposed that this variable influences the amount of water
that would be available to soak/percolate into the under-
ground. The rainfall class 310–320 mm has the highest value
of τ (2.96) followed by 300–310 mm class (1.02). The lowest
value of τ (−3.79) is for rainfall class 320–330 mm. From this,
it is clear that the groundwater potential increases by the in-
crease in rainfall, and then, it decreases because of other geo-
environmental factors. According to Adiat et al. (2012), even
if the study area is characterized by almost uniform annual
rainfall distribution, this factor plays an important role in
groundwater potential mapping. Finally, based on Eq. 8, the
final GPM produced by the WOE model is shown in Fig. 4.

Fig. 4 Groundwater potential map based on WOE model
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In the GPM, the highly groundwater potential zones are
found in the central and northwest parts of the study area,
where the landuse and soil texture types mainly are agriculture
and sandy clay loam, respectively. Areas with high lineament
density fall under high groundwater potential zone, where this
finding is agree with Nampak et al. (2014). Figure 4 illustrates
that the northern and western portions and some small patches
in the eastern of study area are generally medium potential
class. The eastern part and a few patches in the study area
are dominated by low groundwater potential zone in which
these areas are attributed to combinations of landuse (forest
and range lands), lithology (Plbk), lineament features (low
lineament density), soil texture (clay loam), and slope (mod-
erate to steep slope).

Application of EBF model for groundwater potential
mapping

To produce GPM and determine the level of correlation be-
tween groundwater well locations and conditioning factors,
the EBF model was applied. Table 2 indicates the belief

(Bel), disbelief (Dis), uncertainty (Unc), and plausibility
(Pls) that was calculated for each class of each conditioning
factor. A comparatively high Bel value indicates a higher
probability of groundwater occurrence, while a low Bel value
implies a lower probability of groundwater occurrence.

As shown in Table 2, lithology has a specific impact on the
hydrogeologic condition of the study area. In details, Bk class
has the highest Bel value (0.561) followed by Qft class
(0.351); thus, these lithological units have the most ground-
water probability. In the case of landuse, it can be seen that the
agriculture and urban landuse types have belief values of
0.449 and 0.417, respectively, showing that the groundwater
probability in these landuse types is very high. As stated in
previous section, the agriculture landuse type is assumed as
good groundwater potential due to back infiltration into
groundwater system. For distance from rivers, it can be seen
that as the distance from the river increases, the groundwater
occurrence generally decreases. The distance range of 438.4–
1048.5 m (0.317) has the highest Bel value, followed by
<438.4 m (0.258). In the case of soil texture, sandy clay loam
class has the highest Bel value (0.932); thus, this soil texture

Fig. 5 Integrated results of EBF model. a Belief. b Disbelief. c Uncertainty. d Plausibility
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type has the most groundwater probability in study area. In the
case of drainage density, the results represented the positive
relationship with degree of Bel between the denser drainage
and the higher groundwater probability. The Bel value analy-
sis indicated the highest value belonged to the drainage den-
sity of 1.22–2.16 km/km2. This result is in line with the results
of Nampak et al. (2014) that applied drainage density layer in
the EBF model to groundwater potential mapping for the
Langat River catchment, Malaysia. Furthermore, assess-
ment of altitude showed that the class of 138–163 m
has the highest Bel value (0.345). According to study of
Manap et al. (2013) as the altitude increased, the ground-
water occurrence generally decreased, since topographic
conditions of the areas with low altitude are not suitable
for groundwater recharge and storage. For curvature, the
highest Bel value belongs to the classes of flat (0.465) and
convex (0.396), while the lowest Bel values are observed
for the concave class (0.138). In the case of TWI, it can
be seen that as the TWI increased, the groundwater occur-
rence generally decreased. For TWI less than 6.86, the Bel
value, indicated a high groundwater probability. A similar
trend was also reported by Razandi et al. (2015). The
analysis of EBF for the relationship between groundwater
well and slope percent indicate that slope percent class 0–
2 has the highest value of Bel (0.309) followed by 10–20
class (0.263). This result reflects the inverse relationship

of slope percent with groundwater occurrence. Nampak et
al. (2014) stated that as the slope percent decreases, the
infiltration rate increases and consequently percolation and
groundwater recharge increases. According to Adiat et al.
(2012) and Kumar et al. (2014) in the gentle slope area,
the overland flow is slow allowing more time for rainwa-
ter to soak into subsurface (i.e., infiltration process),
whereas steep slope area promote the runoff generation
(i.e., less residence time for infiltration of rainwater).

For the lineament density, groundwater potential is highest
at the lineament density of >1.88 km/km2 followed by 1.41–
1.88 km/km2. Meanwhile, lineament density 0.94–1.41, 0.47–
0.94, and 0–0.47 km/km2 show lowBel value, 0.13, 0.073 and
0.051, respectively. These findings agree with Lee et al.
(2012a, 2012b, 2012c). Kumar et al. (2014), and Fenta et al.
(2015), which indicated that high lineament density areas are
favorable for groundwater potential because they facilitate
percolation process and consequently promote groundwater
recharge. In the case of rainfall, it is seen that the groundwater
potential increases from 300 to 310 mm, and it gradually de-
creases from 310 mm upward. This may be due to the de-
crease in infiltration rate of impermeable surfaces in the up-
land area, as well as due to geomorphological and topograph-
ical attributes which contribute high runoff (Pradhan 2009).

The EBF results are shown in Fig. 5. The belief map
(Fig. 5a) was compared to the disbelief map (Fig. 5b) which

Fig. 6 Groundwater potential map based on EBF model
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indicated that Bel values were low for areas where Dis values
are high and vice versa. Analysis of these maps demonstrates
that high groundwater probability is for the areas where there
is high degree of Bel and low degree of Dis for the ground-
water well occurrence. The uncertainty map (Fig. 5c) indicates
lack of information to provide a real prove for groundwater
occurrences. According to EBF analysis, the high uncertainty
values are belonging to the areas where belief values are low.

Moreover, the plausibility map (Fig. 5d) shows high values for
the areas where uncertainty value relatively is low.

The GPM was conducted based on the belief function and
was classified into four classes using quantile classification
scheme (Tehrany et al. 2014) as presented in Fig. 6. The
Bhigh^ and Bvery high^ groundwater potential zones mainly
encompass agriculture areas with sandy clay loam soil texture
around the lineament systems (i.e., high lineament density

Fig. 7 ROC curves for the groundwater potential maps produced by a WOE and b EBF models
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areas). The northwest and central portions of the study area
fall under these zones. The south portion and some small
patches in the northeast, northwest central, and west portions
of the study area almost fall under Bmedium^ groundwater
potential zone. Moreover, the eastern parts and some small
sites in the southern of the study area because of high slope,
high altitude, low lineament density, and lithology with low
permeability as well as the existence of rock-outcrops cover
fall under low groundwater potential zones.

Validation of the groundwater potential maps

The final step is to validate the constructed maps and compare
the predictive performance of the WOE model with the EBF
model. Therefore, the validation was conducted using the re-
ceiver operating characteristic (ROC) curve and the area under
curve (AUC) was prepared (Davoodi Moghaddam et al. 2015;
Pourtaghi and Pourghasemi 2014). In the ROC curve, the
sensitivity of the groundwater potential model is plotted
against 1-specificity (Mohammady et al. 2012; Regmi et al.
2014; Rahmati et al. 2015). Figure 7a, b indicates the ROC
curve of the GPMs obtained using WOE and EBF models.
These ROC curves indicate that the EBF model (AUC=
83.7 %) performs better than WOE model (AUC=78.2 %).
Therefore, it can be seen that the EBF and WOE models ap-
plied in the current study indicated reasonably good accuracy
in spatial predicting the groundwater potentiality. As it can be
seen in the current study, the groundwater potential map can
be produced using WOE and EBF models which are easily
performable and hence are widely can be utilized, especially
in developing and low-income countries. These findings agree
withMogaji et al. (2014). Nampak et al. (2014), and Park et al.
(2014), which indicated that EBF can be used as an efficient
bivariate model in groundwater potential mapping. In addi-
tion, according to Corsini et al. (2009). WOE showed good
estimator for groundwater potential mapping.

Sensitivity analysis of the groundwater potential map

The result of the sensitivity analysis—for the EBF model—as
a decrease of AUC values (i.e., loss of performance) is sum-
marized in Table 3. The most influential factors were land use
(RD=3.563 %), soil texture (RD=about 3.2 %), lineament
density (RD=about 3 %), and TWI (RD=about 2 %), which
afforded the largest decrease of AUC values when excluded in
the groundwater potential modeling. The GPM is moderately
sensitive to rainfall, slope percent, altitude, distance from riv-
er, and drainage density with RD of 1.344, 1.166, 0.89, 0.611,
and 0.585 %, respectively; however, it is less sensitive to
lithology (RD=0.115 %) and curvature (RD=0.074 %). In
this study, lithology was not so important factor sinceQft class
occupies most of the study area. However, it is widely ac-
knowledged that the importance of variables in groundwater

potential mapping is noticeably affected by properties of study
area and method used in a research (Naghibi and Pourghasemi
2015).

Conclusion

The study assesses the application of GIS-based WOE and
EBF models and remote sensing techniques as spatial predic-
tion tools for groundwater potential mapping. In order to
achieve the set objectives, a total of 11 geo-environmental
factors (i.e., lithology, land use, distance from river, soil tex-
ture, drainage density, altitude, curvature, TWI, slope percent,
lineament density, rainfall) believed to be influencing ground-
water potential in the area were selected. The Ilam Plain, Iran,
was selected as the study area for assessing groundwater po-
tential zones. As a first step, using database of Iranian
Department of Water Resources Management (IDWRM
2013) and extensive field surveys a well inventory map was
created. The groundwater conditioning factors were then inte-
grated in a geo-spatial database using WOE and EBF models,
which analyzed the relationship between groundwater yield
values and the geo-environmental factors. Finally, for testing
the accuracy of the both models, the ROC curves were pre-
pared. The produced groundwater potential maps using WOE
and EBF models were validated to give 75.66 and 79.43 %
accuracy, respectively. In addition, based on the results of
sensitivity analyses, the GPM of study area is most sensitive
to land use, soil texture, lineament density, and TWI with a
relative decrease (RD) of AUC of about 3.5, 3.2, 3, and 2 %,
respectively.

It has been established in the study that GIS-based WOE
and EBF models are capable of producing accurate and reli-
able prediction. These models have provided a quick and

Table 3 Sensitivity analysis results in terms of the relative decrease
(RD) of AUC values when each groundwater conditioning factor is
excluded in the EBF model

Excepted factor Relative decrease (RD)
of AUC (%)

Lithology 0.115

Land use 3.563

Distance from river 0.611

Soil texture 3.197

Drainage density 0.585

Altitude 0.890

Curvature 0.074

TWI 1.982

Slope percent 1.166

Lineament density 3.040

Rainfall 1.344
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comprehensive prediction of groundwater potential map and
also the efficiency of the predicted potential map has been
quantified for applying in any other studies particularly for
groundwater potential assessment. The advantage of EBF
model is that it can manage uncertainties in multi resources
spatial data integration and allows analysis both systemic and
stochastic uncertainty. The advantage of using WOE model
rather than EBF model is its simplicity (i.e., both the model
implementation and interpretation of the results). However,
the WOE and EBF models have three major disadvantages:
(1) because the weight value is dependent on the number of
groundwater well pixels used on the groundwater potential
mapping, the models underestimates or overestimates weight
values if the area of a factor class is very small and the ground-
water wells are not evenly distributed. (2) The weight values
computed for different areas are not comparable in terms of
the degree of groundwater potentiality. (3) The spatial data
always have not independence condition.

The result of groundwater potential map is useful for plan-
ners in the groundwater resource management and compre-
hensive investigation of groundwater exploration develop-
ment for future planning. For consequent research work, the
use of EBF model as a cost and time effective means is sug-
gested for managing uncertainty associated in groundwater
potential mapping in the field of hydrogeological study.
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