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Abstract The aim of this study is to generate reliable suscep-
tibility maps using frequency ratio (FR), statistical index (SI),
and weights-of-evidence (WoE) models based on geographic
information system (GIS) for the Qianyang County of Baoji
City, China. At first, landslide locations were identified by
earlier reports, aerial photographs, and field surveys, and a
total of 81 landslides were mapped from various sources.
Then, the landslide inventory was randomly split into a train-
ing dataset 70 % (56 landslides) for training the models, and
the remaining 30 % (25 landslides) was used for validation
purpose. In this case study, 13 landslide-conditioning factors
were exploited to detect the most susceptible areas. These
factors are slope angle, slope aspect, curvature, plan curvature,
profile curvature, altitude, distance to faults, distance to rivers,
distance to roads, Sediment Transport Index (STI), Stream
Power Index (SPI), Topographic Wetness Index (TWI), and
lithology. Subsequently, landslide-susceptible areas were
mapped using the FR, SI, and WoE models based on
landslide-conditioning factors. Finally, the accuracy of the
landslide susceptibility maps produced from the three models
was verified by using areas under the curve (AUC). The AUC
plot estimation results showed that the susceptibility map

using FR model has the highest training accuracy of
83.62 %, followed by the SI model (83.45 %), and the WoE
model (82.51 %). Similarly, the AUC plot showed that the
prediction accuracy of the three models was 79.40 % for FR
model, 79.35 % for SI model, and 78.53 % for WoE model,
respectively. According to the validation results of the AUC
evaluation, the map produced by FR model exhibits the most
satisfactory properties.

Keywords Landslide . Statistical model . Areas under the
curve (AUC) . Qianyang county . China

Introduction

Landslides, resulting in significant damage to people and prop-
erty, are one of the most costly and damaging geological haz-
ards in many areas of the world. The frequency of landslide
occurrences increases with growing human population.
Globally, landslides cause hundreds of billions of dollars in
damage, thousands of casualties and fatalities, and environmen-
tal losses each year (Aleotti and Chowdhury 1999). In China,
more than 10,000 hazards associated with landslides occurred
in 2014, which caused a total of 400 people dead or missing,
218 people injured, and a direct economic loss of 5.41 billion
CNY (C.H. of China geological environment information sit
(CIGEM) 2014). Currently, tens of millions of people still live
under the high-risk threat of landslides (Liu et al. 2013).

In general, landslide susceptibility mapping, defined as
qualitative methods which are direct hazard mapping tech-
niques or quantitative methods which are indirect mapping
techniques (Fell et al. 2008; Grozavu et al. 2013; Kayastha
et al. 2013; Youssef et al. 2014a, b; Jaupaj et al. 2014), relies
on a rather complex knowledge of slope movements and their
controlling factors. The reliability of landslide susceptibility
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maps mainly depends on the amount and quality of available
data, the working scale, and the selection of the appropriate
methodology of analysis and modeling (Baeza and
Corominas. 2001). Over the last decades, there have been
studies on landslide susceptibility evaluation using GIS, and
many of these studies have applied probabilistic models (Lee
and Min 2001; Baeza and Corominas 2001; Dahal et al. 2008;
Pradhan et al. 2006, 2011; Youssef et al. 2009, 2012; Cevik
and Topal 2003; Pradhan and Youssef 2010; Vijith andMadhu
2008; Clerici et al. 2002, 2006; Donati and Turrini 2002; Luzi
et al. 2000; Jibson et al. 2000; Zhou et al. 2002; Parise and
Jibson 2000; Lee and Choi 2003; Lee et al. 2004a, b; Akgun
et al. 2012a; Pareek et al. 2013; Kayastha 2015; Youssef et al.
2015a, b). The statistical models available, such as the logistic
regression models (Bathrellos et al. 2009; Akgun 2012;
Tunusluoglu et al. 2007; Xu et al. 2012b; Devkota et al.
2013; Ozdemir and Altural 2013; Kundu et al. 2013; Park
et al. 2013; Grozavu et al. 2013) and bivariate models
(Pradhan and Youssef 2010; Pareek et al. 2010; Pradhan and
Lee 2010; Pourghasemi et al. 2013a), has also been applied to
landslide susceptibility mapping. As other different methods
such as certainty factor (CF) (Devkota et al. 2013;
Pourghasemi et al. 2013b), analytical hierarchy process
(AHP) (Rozos et al. 2011; Bathrellos et al. 2012, 2013;
Pourghasemi et al. 2012, 2013a; Park et al. 2013; Youssef et
al. 2014a, b), spatial multicriteria decision analysis (MCDA)
(Akgun and Turk 2010; Akgun 2012), weights of evidence
(WoE) (Ozdemir and Altural 2013; Pourghasemi et al. 2013b,
c; Regmi et al. 2014), statistical index (SI) (Bui et al. 2011;
Regmi et al. 2014), index of entropy (IoE) model (Mihaela
et al. 2011; Devkota et al. 2013), artificial neural network
(ANN) (Nefeslioglu et al. 2008; Poudyal et al. 2010; Yilmaz
2009a, b, 2010a, b), fuzzy logic (Akgun et al. 2012b;
Pourghasemi et al. 2012; Sharma et al. 2013; Guettouche
2013), support vector machine (SVM) (Yilmaz 2010b;
Marjanović et al. 2011; Xu et al. 2012a; Pradhan 2013), and
decision tree (Pradhan 2013) have also been applied for land-
slide susceptibility evaluation. All these models provide solu-
tions for integrating information levels andmapping the outputs.

The aim of the present study was to produce landslide
susceptibility maps of Qianyang County in Baoji, China
(Fig. 1). For this purpose, landslide-related data have been
collected and constructed to spatial database; landslide-
related factors have been extracted and overlaid using three
statistical models: frequency ratio (FR), statistical index (SI),
and weights-of-evidence (WoE) models in order to find the
best model that is more accurate in landslide susceptibility
mapping in the study area. These models exploit information
obtained from an inventory map to offer a guide of landslide
inventory or of landslide-prone area, in order to efficiently
mitigate the hazard and even avoid the hazard in future. To
evaluate the accuracy of three models, the landslide suscepti-
bility analysis results were validated by comparing with the

existing landslide locations according to the area under the
curve (AUC). The models’ prediction capabilities were tested.

The main difference between the present study and the
approaches described in the aforementioned publications is
that the frequency ratio (FR), statistical index (SI), and
weights-of-evidence (WoE) models were applied, and their
results were compared for landslide susceptibility at the study
area for the first time.

Study area

The study area is located in Qianyang County of Baoji City,
China, between latitudes 34°34′34 ″ to 34°56′56″N and lon-
gitudes 106°56′15" to 107°22′31″E (Fig. 1). It covers roughly
a surface area of 996.46 km2. The altitude of the area ranges
from 752 to 1560 m a.s.l and decreases from the north to the
south. The landform can be classified into mountain, hill, and
plain. The slope angles of the area range from 0° to as much as
38°. The rivers of the study area are belonging toWei and Jing
river basins. The mean annual rainfall according to local sta-
tion in a period of 40 years is around 627.4 mm. Also, based
on the records from China’s meteorological department (C.H.
of China Meteorological Administration (CMA) 2014), the
minimum and maximum rainfall occurs in January and
September, respectively. The average mean annual tempera-
ture is 11.8 °C. The stratigraphic column of the study area is
shown in Fig. 2. The study area is mainly distributed by loess
and 81 landslides distributed in the study area. Figure 3 shows
significant photographs of landslides occurred in the study
area.

Methodology

Frequency ratio model

The frequency ratio (FR) approach, a variant of the
probabilistic method, is based on the observed relation-
ships between the distribution of landslides and each
landslide conditioning factor (Tay et al. 2014). The fre-
quency ratios for the class or type of each conditioning
factor were calculated by dividing the landslide occur-
rence ratio by the area ratio. The landslide susceptibility
index (LSI) was calculated by summation of each fac-
tor’s ratio value using Eq. (1) (Lee and Talib 2005):

LSI ¼
X

FR ð1Þ

where, LSI is the landslide susceptibility index. FR is
the frequency ratio of each factor type or class.
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Statistical index model

The statistical index approach, a bivariate statistical
analysis, is considered as the simplest and quantitatively
suitable method in landslide susceptibility mapping. In
this method, the weighting value for each categorical
unit is defined as the natural logarithm of the landslide
density in a class divided by the landslide density in the
whole studied area (Bourenane et al. 2015; Pourghasemi
et al. 2013a). This method is based on the following
equation:

Wij ¼ ln
Di j

D

� �
¼ ln

Ni j

Si j
=
N

S

� �� �
ð2Þ

where Wij is the weight given to a certain class i of
parameter j, Dij is the landslide density within class i
of parameter j, D is the total landslide density within
the entire map, Nij is the number of landslides in a
certain class i of parameter j, Sij is the number of pixels
in a certain class i of parameter j, N is the total number
of landslides in the entire map, and S is the total pixels
of the entire map.

Weights-of-evidence model

Weights-of-evidence (WoE), based on Bayesian Bayes’
theorem and assessing the relation between the spatial
distribution of the areas affected by landslides and the spatial
distribution of the conditioning factors causing landslides, is
one of the bivariate models (Sujatha et al. 2014; Dahal et al.
2008). The WoE model is fundamentally based on the
calculation of positive and negative weights W+ and W−, The
positive and negative weights (Wi

+ and Wi
−) are assigned to

each of the different classes of causative factor (Van Westen
et al. 2003), and positive and negative weights are defined as:

Wþ
i ¼ ln

P B
���Dn o

P B
���Dn o ð3Þ

W −
i ¼ ln

P B
���Dn o

P B
���Dn o ð4Þ

where P is the probability and ln is the natural log, B is the
presence of potential landslide causative factor, D is the
absence of a potential landslide causative factor, D is the
presence of landslide, and D is the absence of a landslide.
Wi

+ andWi
−are the weights-of-evidence when the causative

variable is present and absent at the landslide locations,

respectively (Dahal et al. 2008; Oh and Lee 2011). The
standard deviation of W is calculated as:

S Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Wþ þ S2W −

p
ð5Þ

where S2(W+) and S2(W−) are variances of W+ and W−,
respectively. The difference between the two weights is
known as the weight contrast, C(C =Wi

+ −Wi
−). C/S(C)

provides a measure of the strength of the correlation
between the analyzed variable and landslides (Dahal et al.
2008; Kouli et al. 2014).

Conditioning factors database

Landslide inventory

Historic information on landslide occurrences, giving
shrewdness into the frequency, volumes, damages, and
types of the landslide phenomena, is the backbone of land-
slide susceptibility studies (Youssef et al. 2015a, b; van
Westen et al. 2006). Landslide inventories are the ones that
collect the data including information related to topics such
as the regional landslide locations, types, activities, and
physical properties, usually mapped with an associated da-
tabase (Fell et al. 2008; Demir et al. 2015). A landslide
inventory map provides the basic information for evaluating
landslide hazards or risks. Accurate collection of the data
related to landslides is very important for landslide suscep-
tibility analysis. In order to produce a detailed and reliable
landslide inventory map, extensive field surveys and obser-
vations were performed in the study area. A total of 81
landslides (71 earth slide and 10 earth fall) were identified
and mapped by evaluating aerial photos in 1:50,000 scale
with well supported by field surveys and subsequently dig-
itized for further analysis. The DEM of the study was gen-
erated from topographic maps in 1:10,000 scale with a con-
tour interval of 10 m. The locations (centroid) of 81 land-
slides are mapped in Fig. 1. From these landslides, 56
(70 %) randomly selected were taken for making landslide
susceptibility models, and 25 (30 %) were used for validat-
ing the models. The study area was divided into a grid with
50 × 50-m cell, occupying 984 rows and 1146 columns.

Landslide-conditioning factors

In the study, 13 landslide-conditioning factors (slope angle,
slope aspect, curvature, plan curvature, profile curvature, alti-
tude, distance to faults, distance to rivers, distance to roads,
STI, SPI, TWI, and lithology) were considered during the
landslide susceptibility mapping of the study area. All the data
used in the current study were georeferenced to Gauss_Kruger
coordinate system, D_Beijing_1954 datum, and zone 18 N.
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Fig. 1 Location map of the study
area
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Fig. 2 The stratigraphic column
of the study area
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These factors fall under the category of preparatory factors,
responsible for the occurrence of landslides in the region for
which pertinent data can be collected from available resources
as well as from the field surveys.

Slope angle

Slope angle is an important factor in the assessment of slope
stability, and it is frequently used in preparing landslide suscep-
tibility maps (Lee and Min 2001; Saha et al. 2005). The slope
anglemap of the study area is prepared from the digital elevation
model (DEM) and was reclassified into five equal classes as 0–
7, 7–14, 14–21, 21–28, and 28–38° (Fig. 4a).

Slope aspect

Slope aspect, accepted as a landslide-conditioning factor, de-
scribes the direction of slope (Ercanoglu et al. 2004;
Pourghasemi et al. 2012). The slope aspect of the study area
(Fig. 4b) is divided into eight directional classes as flat (−1),
north (337.5–360°, 0–22.5°), northeast (22.5–67.5°), east
(67.5–112.5°), southeast (112.5–157.5°), south (157.5–
202.5°), southwest (202.5–247.5°), west (247.5–292.5°), and
northwest (292.5–337.5°).

Curvature

Generally, curvature is defined as the rate of change of
slope angle or aspect, and the characterization of slope
morphology and flow can be analyzed with the help of
the curvature map (Nefeslioglu et al. 2008; Catani et al.
2013). In this study, the curvature which is the combi-
nation of plane and profile curvature is taken into con-
sideration (Fig. 4c). The curvature was derived from the
DEM in Geographic information system software of
ArcGIS 10.0 and divided into three classes: <−0.05,
−0.05–0.05, and >0.05, respectively.

Plan curvature

Plan curvature is the curvature of a contour line formed by
intersecting a horizontal plane with the surface. Plan curvature

influences the convergence or divergence of water during
downhill flow (Yilmaz et al. 2012). In this study, the plan
curvature was derived from the DEM in Geographic informa-
tion system software of ArcGIS 10.0 and divided into three
classes: <−0.05, −0.05–0.05, and >0.05, respectively (Fig. 4d).

Profile curvature

Profile curvature is the curvature in the vertical plane parallel to
the slope direction. It measures the rate of change of slope.
Therefore, it influences the flow velocity of water draining the
surface and thus erosion and the resulting down slope movement
of sediment (Yilmaz and Topal 2012). In this study, the profile
curvature was also derived from the DEM in Geographic infor-
mation system software of ArcGIS 10.0 and divided into three
classes: <−0.05, −0.05–0.05, and >0.05, respectively (Fig. 4e).

Altitude

Altitude or elevation is another frequently used conditioning
factor for landslide susceptibility analysis. In the present
study, the DEM of the study was generated from topographic
maps in 1:10,000 scale with a contour interval of 10 m. The
elevation of the study area ranged from 720 to 1560 m. The
elevation values were divided into five categories using an
interval of 150 m (Fig. 4f).

Distance to faults

Geological faults are responsible for triggering a large number
of landslides due to the tectonic breaks that usually decrease
the rock strength. In the study area, the faults of the study area
were digitized from the geological map with 1:250,000 scale.
The distance to faults is calculated at 2000-m intervals using
the geological map (Fig. 4g).

Distance to rivers

Runoff plays an important role as a triggering factor for land-
slides due to rivers are the main mechanisms that contribute to
the occurrence of landslides in mountainous regions (Park
et al. 2013). For the current study, six different buffer

Fig. 3 Field photographies of the
study area

204 Page 6 of 16 Arab J Geosci (2016) 9: 204



categories were created within the study area to determine the
degree to which the streams affected the slopes (Fig. 4h).

Distance to roads

The distance to roads has been considered as one of the most
important anthropogenic factors influencing landslides occur-
rence that can be the cause of cut slope creations through
construction of roads that disturbs the natural topology and

affects the stability of the slope. The study area was divided
into five different buffer zones to designate the influence of
the road on slope stability (Fig. 4i): 0–1,000 m, 1000–2000,
2000–3000, 3000–4000 and >4000 m.

STI

The sediment transport index (STI) is characterized by the
process of erosion and deposition (Devkota et al. 2013). In

Fig. 4 Landslide-conditioning factors of the study area. a slope angle, b slope aspect, c curvature, d plan curvature, e profile curvature, f altitude, g
distance to faults, h distance to rivers, i distance to roads, j STI, k SPI, l TWI, m lithology
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the present study, STI is divided into four classes <3, 3–9, 9–
15, >15 (Fig. 4j).

SPI

The stream power index (SPI), a measure of the erosive power
of water flow based on the assumption that discharge is
proportional to the specific catchment area, is a compound
topographic attribute (Conforti et al. 2011). The SPI map of

the study area was classified into four classes: <5, 5–10, 10–
40, and >40 (Fig. 4k).

TWI

The topographic wetness index (TWI) is another topographic
factor within the runoff model (Pourghasemi et al. 2013d). In
the present study, the TWI values, derived from the DEM,

Fig. 4 (continued)
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Fig. 4 (continued)
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were arranged in four classes: <7, 7–10, 10–13, and >13
(Fig. 4l).

Lithology

Lithology is one of the most common determinant factors in
most landslide stability studies. Since different lithological
units have different landslide susceptibility values, they are
very important in providing data for susceptibility studies.
The lithology map of the study area is derived from existing
geological maps in 1:250,000 scale. The study area is covered
with various types of lithological units. Their names, litholog-
ic characteristics, and ages of the geological units are provided
in Table 1. As shown in Fig. 4m.

Results and discussion

Frequency ratio model

Using the frequency ratio model, frequency ratios for the class
or type of each factor were calculated by dividing the landslide
occurrence ratio by the area ratio. A frequency ratio value of 1
is an average value for the area landslides occurring in the total
area. A frequency ratio value less than 1 indicates a lower
correlation which indicates a high probability of landslide oc-
currence, and a weight value greater than 1 indicates a higher
probability of landslide occurrence. The FR of all the thematic
layers used in the present study was calculated in ArcGIS 10.0
and Microsoft Excel, and the result is given in Table 2.

A landslide susceptibility map (Fig. 5) was constructed
using the LSI value by the software of ArcGIS 10.0. The
calculated LSI values for FR model of the study area range
from about 6.59 to 25.32. Obviously, larger LSI values indi-
cate a higher susceptibility for landsliding. The index values
were classified into five zones (very low, low, moderate, high,

and very high) using the natural break method. The suscepti-
ble area distributed in landslide susceptibility map is 7.57% of
the area under very high, 14.28 % of the area comes under
high, and 23.99, 30.75, and 23.41 of the area occupies as
moderate, low, very low, respectively.

Statistical index

To perform the statistical index modeling, the resultant
weights for each thematic map for the SI model were calcu-
lated in ArcGIS 10.0 and Microsoft Excel, and the results are
shown in Table 2. The higher resultant weight, the higher is
the possibility that a mass movement occurs within the area
covered by the considered class. These weights were analyzed
by using the weighted sum option in the spatial analyst tools
of ArcGIS 10.0 to get the final Landslide susceptibility map
(Fig. 6). In this study, Landslide susceptibility map was clas-
sified into five categories by using the natural break method of
ArcGIS. These categories include five classes of very low
(−9.42–−5.06), low (−5.06–−2.69), moderate (−2.69–−0.38),
high (−0.38–−1.93), and very high (1.93–−6.93). The area
percentages in the very low, low, moderate, high, and very
high landslide susceptibility classes are 20.49, 26.80, 21.66,
18.84, and 12.21 %, respectively.

Weights-of-evidence model

Every parameter map is crossed with the landslide inventory
map based on the weights-of-evidence model using the
ArcGIS 10.0 software, and the density of the landslide in each
class is calculated. The resultant weights for each thematic
map for the WoE model are given in Table 2. For getting the
final LSI map (Fig. 7), these weights were analyzed by using
the weighted sum option in the spatial analyst tools of ArcGIS
10.0. The final calculated LSI values of the study area for
WoE model range from about −25.40 to 34.67. In this study,

Table 1 Description of
geological units of the study area No. Code Formation Lithology Geological age

1 Q4 – Sand, gravel, silty clay Quaternary

2 Q3 – Loess Quaternary

3 Q2 – Loess Quaternary

4 Q1 – Loess Quaternary

5 N2 – Glutenite, sandstone, siltstone Neogene

6 K1Lh Luohandong Sandstone, siltstone, mudstone Early Cretaceous

K1h Huanhehuachi Sandstone, siltstone, mudstone Early Cretaceous

K1L Luohe Glutenite, sandstone Early Cretaceous

K1y Yijun Glutenite Early Cretaceous

7 J3f Fenfanghe Glutenite, sandstone, siltstone Late Jurassic

J2z Zhiluo Glutenite, siltstone Middle Jurassic

8 P1 – Sandstone, shale Early Permian

9 O1–2 – Limestone, dolomite Early- Middle Ordovician
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Table 2 Spatial relationship between each landslide conditioning factor and landslide by FR, SI and WoE models

Factors Classes Percentage of
landslide (%)

Percentage of
domain (%)

FR SI W− C S2(W+) S2(W−) S(C) S/S(C)

Slope angle (°) 0–7 30.36 32.51 0.93 −0.07 0.03 −0.10 0.06 0.03 0.29 −0.34
7–14 33.93 35.59 0.95 −0.05 0.03 −0.07 0.05 0.03 0.28 −0.26
14–21 30.36 26.18 1.16 0.15 −0.06 0.21 0.06 0.03 0.29 0.71

21–28 5.36 5.42 0.99 −0.01 0.00 −0.01 0.33 0.02 0.59 −0.02
28–38 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

Slope aspect Flat 0.00 6.16 0.00 0.00 0.06 0.00 0.00 0.02 0.00 0.00

North 16.07 9.62 1.67 0.51 −0.07 0.59 0.11 0.02 0.36 1.61

Northeast 12.50 10.23 1.22 0.20 −0.03 0.23 0.14 0.02 0.40 0.56

East 14.29 11.21 1.27 0.24 −0.04 0.28 0.13 0.02 0.38 0.73

Southeast 10.71 13.37 0.80 −0.22 0.03 −0.25 0.17 0.02 0.43 −0.58
South 7.14 9.77 0.73 −0.31 0.03 −0.34 0.25 0.02 0.52 −0.66
Southwest 16.07 13.16 1.22 0.20 −0.03 0.23 0.11 0.02 0.36 0.64

West 5.36 13.30 0.40 −0.91 0.09 −1.00 0.33 0.02 0.59 −1.68
Northwest 17.86 13.19 1.35 0.30 −0.06 0.36 0.10 0.02 0.35 1.03

Curvature <−0.05 46.43 36.59 1.27 0.24 −0.17 0.41 0.04 0.03 0.27 1.52

−0.05–0.05 23.21 26.92 0.86 −0.15 0.05 −0.20 0.08 0.02 0.32 −0.62
>0.05 30.36 36.48 0.83 −0.18 0.09 −0.28 0.06 0.03 0.29 −0.95

Plan curvature <−0.05 28.57 27.19 1.05 0.05 −0.02 0.07 0.06 0.03 0.30 0.23

−0.05–0.05 50.00 43.00 1.16 0.15 −0.13 0.28 0.04 0.04 0.27 1.06

>0.05 21.43 29.81 0.72 −0.33 0.11 −0.44 0.08 0.02 0.33 −1.36
Profile curvature <−0.05 26.79 30.49 0.88 −0.13 0.05 −0.18 0.07 0.02 0.30 −0.60

−0.05–0.05 26.79 37.24 0.72 −0.33 0.15 −0.48 0.07 0.02 0.30 −1.60
>0.05 46.43 32.27 1.44 0.36 −0.23 0.60 0.04 0.03 0.27 2.23

Altitude (m) 720–850 41.07 11.95 3.44 1.23 −0.40 1.64 0.04 0.03 0.27 6.02

850–1000 46.43 24.96 1.86 0.62 −0.34 0.96 0.04 0.03 0.27 3.57

1000–1150 7.14 22.91 0.31 −1.17 0.19 −1.35 0.25 0.02 0.52 −2.60
1150–1300 3.57 25.48 0.14 −1.97 0.26 −2.22 0.50 0.02 0.72 −3.09
1300–1560 1.79 14.69 0.12 −2.11 0.14 −2.25 1.00 0.02 1.01 −2.23

Distance to faults (m) 0–2000 51.79 26.72 1.94 0.66 −0.42 1.08 0.03 0.04 0.27 4.04

2000–4000 16.07 14.09 1.14 0.13 −0.02 0.16 0.11 0.02 0.36 0.43

4000–6000 14.29 10.78 1.33 0.28 −0.04 0.32 0.13 0.02 0.38 0.84

6000–8000 8.93 7.89 1.13 0.12 −0.01 0.14 0.20 0.02 0.47 0.29

>8000 8.93 40.52 0.22 −1.51 0.43 −1.94 0.20 0.02 0.47 −4.14
Distance to rivers (m) 0–200 46.43 22.26 2.09 0.73 −0.37 1.11 0.04 0.03 0.27 4.13

200–400 14.29 18.01 0.79 −0.23 0.04 −0.28 0.13 0.02 0.38 −0.72
400–600 8.93 14.14 0.63 −0.46 0.06 −0.52 0.20 0.02 0.47 −1.11
600–800 7.14 11.30 0.63 −0.46 0.05 −0.50 0.25 0.02 0.52 −0.97
>800 23.21 34.29 0.68 −0.39 0.16 −0.55 0.08 0.02 0.32 −1.72

Distance to roads (m) 0–1000 53.57 36.73 1.46 0.38 −0.31 0.69 0.03 0.04 0.27 2.56

1000–2000 14.29 23.90 0.60 −0.51 0.12 −0.63 0.13 0.02 0.38 −1.66
2000–3000 23.21 17.75 1.31 0.27 −0.07 0.34 0.08 0.02 0.32 1.06

3000–4000 8.93 11.81 0.76 −0.28 0.03 −0.31 0.20 0.02 0.47 −0.67
>4000 0.00 9.81 0.00 0.00 0.10 0.00 0.00 0.02 0.00 0.00

STI <3 12.50 24.60 0.51 −0.68 0.15 −0.83 0.14 0.02 0.40 −2.04
3–9 28.57 26.81 1.07 0.06 −0.02 0.09 0.06 0.03 0.30 0.30

9–15 16.07 19.98 0.80 −0.22 0.05 −0.27 0.11 0.02 0.36 −0.73
>15 42.86 28.60 1.50 0.40 −0.22 0.63 0.04 0.03 0.27 2.32

SPI <5 5.36 14.80 0.36 −1.02 0.11 −1.12 0.33 0.02 0.59 −1.89
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the LSI on the produced maps was grouped into five classes
(very low, low, moderate, high, and very high) using the nat-
ural break method. According to this model, 8.94 % of the
area is exposed to a very high susceptibility, and 17.14, 24.98,
25.87, and 23.07% occupy high, moderate, low, and very low,
respectively.

Validation of the models used

Validation of landslide susceptibility models is an essential
requirement to check the predictive capabilities of the land-
slide susceptibility map produced (Chung and Fabbri 2003).
The landslide susceptibility maps derived by three models

Table 2 (continued)

Factors Classes Percentage of
landslide (%)

Percentage of
domain (%)

FR SI W− C S2(W+) S2(W−) S(C) S/S(C)

5–10 5.36 10.85 0.49 −0.71 0.06 −0.77 0.33 0.02 0.59 −1.29
10–40 32.14 34.55 0.93 −0.07 0.04 −0.11 0.06 0.03 0.29 −0.38
>40 57.14 39.81 1.44 0.36 −0.34 0.70 0.03 0.04 0.27 2.60

TWI <7 55.36 55.01 1.01 0.01 −0.01 0.01 0.03 0.04 0.27 0.05

7–10 26.79 30.12 0.89 −0.12 0.05 −0.16 0.07 0.02 0.30 −0.54
10–13 10.71 6.28 1.71 0.53 −0.05 0.58 0.17 0.02 0.43 1.35

>13 7.14 8.59 0.83 −0.18 0.02 −0.20 0.25 0.02 0.52 −0.39
Lithology 1 3.57 4.41 0.81 −0.21 0.01 −0.22 0.50 0.02 0.72 −0.31

2 30.36 17.11 1.77 0.57 −0.17 0.75 0.06 0.03 0.29 2.57

3 39.29 10.99 3.58 1.27 −0.38 1.66 0.05 0.03 0.27 6.06

4 3.57 14.29 0.25 −1.39 0.12 −1.50 0.50 0.02 0.72 −2.09
5 1.79 0.31 5.68 1.74 −0.01 1.75 1.00 0.02 1.01 1.74

6 12.50 45.68 0.27 −1.30 0.48 −1.77 0.14 0.02 0.40 −4.39
7 3.57 2.13 1.68 0.52 −0.01 0.53 0.50 0.02 0.72 0.74

8 1.79 0.71 2.51 0.92 −0.01 0.93 1.00 0.02 1.01 0.92

9 3.57 4.37 0.82 −0.20 0.01 −0.21 0.50 0.02 0.72 −0.29

Fig. 5 Landslide susceptibility map derived from the FR model Fig. 6 Landslide susceptibility map derived from the SI model
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were tested by comparison of existing landslide data and land-
slide susceptibility analysis results for the study area. For this,
the total landslides observed in the study area were split into
two groups, 56 (70 %) landslides were randomly selected
from the total 81 landslides as the training data, and the re-
maining 25 (30 %) landslides were kept for validation pro-
pose. In this study, the prediction capability of a landslide
susceptibility model is usually estimated using area under
the curve (AUC) methods. The rate curves were created, and
their areas under the curve (AUC) used to qualitatively assess
the prediction accuracy, were calculated (Fig. 8). The rate

explains how well the model and controlling factors predict
the landslide. The model with the highest AUC is considered
to be the best.

The success rate curve was obtained by comparing the
landslide training data with the susceptibility maps (Fig. 8a).
The AUC plot assessment results showed that the AUC values
were 0.8362, 0.8345, and 0.8251 for FR, SI, andWoEmodels,
and the training accuracy were 83.62, 83.45, and 82.51 %,
respectively. The prediction-rate curve, obtained by compar-
ing the landslide validation data with the susceptibility map
(Fig. 8b), showed that the AUC values were 0.7940, 0.7935,
and 0.7853 for FR, SI, and WoE models, and the prediction
accuracy was 79.40, 79.35, and 78.53 %, respectively. The
results of the AUC evaluation show that both the success rate
and prediction rate curve have almost similar result. All the
models employed in this study showed reasonably high pre-
diction accuracy and can be used for the spatial prediction of
landslide hazard analysis of the study area. On the other hand,
the map produced by FR model exhibited the best result for
landslide susceptibility mapping in the study area.

Conclusions

Generally, landslides are unpredictable; however, the suscep-
tibility assessment of landslide occurrence can be determined
using different GIS-based methods. In this study, we used
three statistical models, such as frequency ratio (FR), statisti-
cal index (SI), and index of entropy (WoE) models, to produce
landslide susceptibility maps for the Qianyang County of
Baoji City, China. Their performances were compared by
using area under the curve (AUC) methods. For generating
landslide susceptibility maps in the study region, 13
landslide-conditioning factors were considered as slope angle,
slope aspect, curvature, plan curvature, profile curvature,

Fig. 7 Landslide susceptibility map derived from the WoE model

Fig. 8 AUC representing quality of the model
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altitude, distance to faults, distance to rivers, distance to roads,
STI, SPI, TWI, and lithology, for which maps were derived
using various GIS tools. The selection of these factors was
based on consideration of relevance, availability, and scale
of data that was available for the study area. In this process,
a total of 81 landslides were identified and mapped. Out of
which, 56 (70 %) were randomly selected for generating a
model, and the remaining 25 (30 %) were used for validation
proposes. In this study, five landslide susceptibility classes,
i.e., very low, low, moderate, high, and very high susceptibil-
ity for landsliding, were derived with natural break method.
The verification results showed that the landslide susceptibil-
ity map generated by the FR model has the highest prediction
accuracy (79.40 %), followed by the SI model (79.35 %), and
the WoE model (78.53 %). Success rate curve gives similar
result, with FR model the highest AUC value (83.62 %),
followed by the SI model (83.45 %), and the WoE model
(82.51%). This shows that the three models have been applied
successfully to the production of landslide susceptibility
maps. The landslide susceptibility maps provide valuable in-
formation on the slope stability in study area, which may be
used for infrastructure planning, land use, engineering, and
hazard mitigation design. Also, it is helpful that the similar
method can be used elsewhere where the similar landslide
occurrence conditions.
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