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Abstract The fresh water lack in Central Asian countries
with fast-growing population is one of the most critical prob-
lems in this region, where runoff of most rivers closely de-
pends on supply of glaciers melting water. However, the im-
pact of glacier shrinkage on the river runoff remains poorly
understood. In this paper, we took the Karatal river basin, Tien
Shan, as a model for investigation interrelation between dra-
matic decreasing of glaciers (−1 % annually) and river runoff.
We investigated long-term observed climatic and runoff data
for different sub-basins of the river, having various glaciated
area and used non-parametric Mann-Kendall test for our anal-
yses. Analyzing weather station climatic data, we found a
significant increase in temperature and quite stable trends for
precipitation during study period. Positive trends in annual
discharge were detected in almost all glacierized tributaries
of Karatal river. This obvious upward trend in river runoff is
likely connected with a general trend of increasing tempera-
tures and intensive melting of glaciers in Tien Shan.
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Introduction

Global climate has changed on both regional and global
scales, with a mean increase in annual temperature of 0.74
from 1906 to 2005 and a predicted increase of 1.1 °C−6.4
by °C 2100 (Solomon et al. 2007). This increase in surface
temperature has important consequences for the hydrological
cycle, particularly in regions where water supply is provided
mostly by melting ice or snow (Barnett et al. 2005). Even a
low fraction of glacier covered within a basin has tremendous
impact on hydrology (Jansson et al. 2003).

Glaciers play a crucial role in Central Asia’s hydrological
cycle (Viviroli et al. 2003; Kaser et al. 2010; Sorg et al. 2012).
It has been demonstrated that even a basin whose glacier frac-
tion is less than 5 % can provide a significant contribution
from ice melt to summer runoff (Hagg et al. 2007). when
water is most needed for irrigation (Sorg et al. 2012). The
cryosphere is widely acknowledged to be an important water
storage component in Central Asia contributing substantially
to river runoff (e.g., Armstrong 2010). While the seasonal
snow pack stores water mainly on the intra-annual timescale,
glaciers store water for decades and centuries, thus partly com-
pensating inter-annual fluctuations of precipitation and snow-
melt contribution to river runoff (Unger-Shayesteh et al. 2013)

The difference between the glacierized and non-glacierized
catchments is that the runoff derived from the non-glacierized
catchment is precipitation-dominated while the glacierized
catchment is energy-dominated (Chen and Ohmura 1990;
Jansson et al. 2003; Chen 2014).

Only a limited number of studies currently address the
timing and evolution of expected glacier shrinkage and related
changes in runoff (Sorg et al. 2012). Although glacier changes
of Mt Zhetysu Alatau (Eastern Tien Shan) in this region have
been investigated (e.g., Cherkasov 2004; Severskiy et al.
2012; Vilesov et al. 2013), little is known about the whole
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variation characteristics of glaciers and glacier runoff in the
KRB basin during recent decades. Runoff in a warmer climate
will, at first, increase owing to higher temperatures and more
meltwater. However, this effect is gradually reduced when the
glacier area begins to decline as a result of continued glacier
mass loss (Ye et al. 2003; Rango et al. 2007; Huss 2011).
Runoff responses of glacierized catchments to glacier shrink-
age show different results. For instance, the Small and Big
Naryn basins showed contrasting flow trends in summer
half-year (April-September) despite a comparable absolute
glacier area loss since the 1970s (Kriegel et al. 2013). The
trends of runoff of the rivers in Northwestern China have
strong negative correlations with glacier coverage and the
proportion of glacier water in runoff (Wang et al. 2013). In
Switzerland, most basins with more than 10 % glacier cover
have tended to exhibit increasing summer streamflow, while
basins with less than 10 % glacier cover have exhibited neg-
ative trends (Birsan et al. 2005). Fleming and Clarke (2003)
found similar contrasting trends in glacierized and
unglacierized catchments in the western subarctic of Canada.

In this study, the glacier area shrinkage and the effects of
dramatically decreasing glaciers on runoff for the sub-basins
of Karatal river with different glaciation area are assessed. The
three main parts of this study include detection of long-term
trends of runoff, precipitation, and air temperature; estimation
of glacier change; and assessment of the effects of glacier and
climate changes on runoff.

Study area

The Karatal river basin (Fig. 1), which is the largest basin in
Zhetysu Alatau, covers an area of 19,100 km2, with a catch-
ment area of 5300 km2 (Kudekov 2002). The Karatal river
originates on the northwestern slopes of the Zhetysu Alatau
central ridge. It is formed by the confluence of the Kora,
Chizhin, and Tekeli rivers (Vilesov et al. 2013). while further
on the plain, it meets with its largest tributary, the Koksu river,
to form a united stream (‘GI’ USSR 1980).

The Karatal river basin is located on the outer ranges of
Zhetysu Alatau, where the elevations of the highest mountain
ridges fluctuate between 3800 and 3850 m above sea level
(‘GI’ USSR 1980). Most glaciers found here are small in size
(less than 1 km2). In addition, the Karatal basin is close to
urban areas, which are located approximately 60 km from
the lowest glaciers (Vilesov et al. 2013).

The climate of Zhetysu Alatau is formed by exchanges of
air masses from arctic, temperate, and tropical areas. The arc-
tic air masses flow from the north and northwest during win-
ter, decreasing air temperature in this region. The temperate air
masses are formed over western Siberia, Kazakhstan, and the
Turanian Plateau, as well as over the Atlantic Ocean, which
has the greatest impact on the Zhetysu Alatau climate during

the entire year. The tropic air masses are formed in the air from
the intensely heated Turanian Plateau; however, their incur-
sions into the region during the summer season are very rare.

The mean annual air temperature is −5–7 °C in the high-
altitude zone of Zhetysu Alatau; January is the coldest month,
with −13–14 °C. The spatial distribution of precipitation is
controlled by altitude and varies from 1000 to 1600 mm a−1,
with maximum amounts occurring at elevations of 1800–
2200 m a.s.l. (‘GI’ USSR 1980).

Data and methods

Remotely sensed data and glacier delineation

Landsat TM and ETM+ images were used in glacier delinea-
tion. We applied a well-established semi-automated approach
using the TM3/TM5 band ratio to produce glacier outlines
(Paul et al. 2013). Misclassified areas, such as snow patches,
cast shadows, and lakes, were corrected manually using false-
color composite (TM bands 5, 4, and 3) on the Landsat imag-
ery. All of the images were obtained for cloud-free conditions
and for the ablation period when the extent of snow cover was
minimal to reduce potential uncertainly in glacier boundary
delineation due to seasonal snow cover. Changes in the extent
of glaciers were assessed with regard to images from 1989,
2001, and 2012 and analyzed according to the surface area.

The repeated mapping of glacier samples with different
surface areas using different types of imagery has shown that
the error of estimation of individual glacier area was below
5 %. An assessment by Paul et al. (2003) shows that this
accuracy allows one to achieve an error of less than 3 % for
large (over 100) samples of glaciers. We mapped only glaciers
that were larger than 0.01 km2, as a smaller threshold would
include many features that were, most likely, snow patches.
Where a glacier had split into several fragments, the net area
change in a studied period was based on the total area of the
individual fragments.

For more detailed analyses of the glacier changes and their
impact on river runoff, we subdivided the Karatal river basin
into four sub-regions (Koktal, Koksu, Chizhin, and Kora) ac-
cording to landscape differences and river basins (Fig. 1).
Results of glacier areas obtained for each sub-basin were com-
pared with the same glacierized areas defined in the first gla-
cier inventory for 1956. Information about the glacier charac-
teristics from the first glacier inventory was available only as
tables and schematic maps. Glaciers smaller than 0.1 km2

were treated as bulk samples in the Catalogue of Glaciers,
without information about their locations. We did not in-
clude these small-sized glaciers for our calculation of
the total glacierized area and showed them separately
for all study regions.
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Hydrometeorological data and trend analysis

In order to determine and analyze the potential drivers of
glacier changes and investigate the changes in river runoff
over the past decades, a trend analysis using the Mann-
Kendall test (Kendall 1975) was carried out for the time series
of air temperature, precipitation, and runoff at selected climate
and hydrological stations. For more detailed analyses of the
impact of dramatically decreasing glacier to the runoff varia-
tion, we used hydrological data from four stations for each
glacierized sub-basin (Kora, Koksu, Koktal, and Chizhin)
and one station from non-glacierized catchment Tekeli (see
Fig. 1, Table 1).

We acquired data from the Taldykorgan weather station,
which was the closest weather station available to our study
area. This station is situated in the foothills and provided long-
term temperature and precipitation records since 1960. The

accumulative deviation test was applied to detect trends in
air temperature at the Taldykorgan weather station. Test results
showed that the temperature had step change point occurrence
in 1977. Therefore, the data series was divided into two pe-
riods before and after 1977. Both periods included data series
of more than 20 years, which is acceptable for the nonpara-
metric Mann-Kendall test. The multi-temporal trend analysis
by Stojković et al. (2014) has shown that the trend direction
and magnitude depend on the length of time series and the
position of the sub-series within the whole series. Therefore,
the conclusions about the trend significance can be quite dif-
ferent depending on the period covered in the analysis. It has
also been shown that the long-term periodicity affects the
direction and the intensity of the trend (Stojković et al. 2014).

The rank-based nonparametric Mann-Kendall test is com-
monly used to assess the significance of monotonic trends in
hydrometeorological time series (e.g., Hirsch and Slack 1984;

Fig. 1 Location of the study area; map based on SRTM3-DEM; sub-basins with glacier: 1—Kora; 2—Koksu; 3—Koktal; 4—Chizhin; 5—Tekeli;
Weather station—Taldykorgan (air temperature, precipitation)

Table 1 Characteristics of sub-
basins with discharge records
available

River Gauging
station

Basin area
(km2)

Elevation of
station (m)

Glacierisation
in 1956 (%)

Length of
discharge record

Mean runoff
(m3/s)

Kora Tekeli 484 1030 14 1940–2013 14.1

Koksu Koksu 1590 1260 7 1955–2013 39.2

Koktal Araltobe 293 2020 5 1946–2013 9.3

Chizhin Tekeli 479 1060 2 1929–2006 11.6

Tekeli Tekeli 193 1100 0 1940-2012 2.2
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Gan 1998; Xu et al. 2010; Wang et al. 2013; Yao et al. 2014).
In this test, the standard normal statistic Z is estimated and
compared with the standard normal deviate Zα/2. The test sta-
tistic Z is not statistically significant if ‐ Zα/2 < Z < Zα/2.
Correspondingly, this test shows a statistically significant
trend if Z< ‐Zα/2 or Zα/2 <Z (Gan 1998). The confidence
levels fixed at α=0.95 and critical z values for two-sided test
are −1.96 and +1.96. The standard normal statistic Z is esti-
mated by the following formula as (Hirsch and Slack 1984;
Gan 1998)

Zc ¼
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in which the xk and xj are the sequential data values, n is the
length of the data set, and t is the extent of any given time. The
magnitude of the trend is given as

β ¼ Median
xi−x j
i− j

� �

; ∀ j < i ð5Þ

in which 1 < j< i < n. A positive value of β indicates an
Bupward trend,^ and a negative value of β indicates a
Bdownward trend.^

In addition, the relationship between hydrological and me-
teorological variables was explored by using Pearson’s corre-
lation coefficient. The correlations calculated were tested for
statistical validity at the 95 % significance level.

Results

Changes in temperature and precipitation

Annual mean temperature and total precipitation over the 47-
year period of 1960–2007 were analyzed from the
Taldykorgan weather station, situated close to the study area
(Fig. 1). The linear trend analysis of mean temperature indi-
cated that the average rate of temperature increase was 0.43 °C

(10a)−1, while the summer (JJA) temperature rose 0.28 °C
(10a)−1 (Fig. 2). From 1960 to 2007, records at the same
station displayed a slight decrease in annual precipitation.
The results of Mann-Kendall test applied to annual and sea-
sonal data series showed statistically significant trends during
the period 1960–2007. Trends in summer and autumn seasons
were higher than those in winter and spring. Monthly highest
positive trend was for August, September, and October
months (Table 2).

Changes in glacier area

We identified 243 glaciers in 1989, 226 in 2001, and 214 in
2012 that were listed in the Catalogue of Glaciers with total
areas of 142.8, 122.2, and 109.3 km2, respectively. Thus, the
summarized area change for the period 1956–1989, based on
our defined mountain regions, was equal to −28 %, area
change for 1989–2001 was −14 %, and area change for
2001–2012 was −11 %; for the whole period, the total
glacierized area decreased from 285 glaciers with a total area
of 199.2 km2 in 1956 to 214 glaciers with a total area of
109.3 km2 in 2012, which resulted in shrinkage of 45% during
the last 56 years (Table 3). During our study period, 71 glaciers
listed in the Catalogue of Glaciers and 39 small glaciers not
listed were not found again. All of the glaciers decreased con-
tinuously, both in area and in length, throughout all of the
periods of the study. Our results indicated that glacier area loss
in the Karatal river basin reached −23 %, or −1.02 % per year,
for 1989–2012. The Kora sub-basin had the largest glaciers,
with a mean size of 0.873 km2, while the smallest glaciers
were located in the Koktal sub-basin, with a mean size of
0.403 km2 (Table 3). Koktal had the highest rate of shrinkage,
reaching 39% from 1989 to 2012. The decreasing number rate
was significantly higher (more than −40 %) for the Koktal and
Chizhin glacierized areas during the studied period.

Trends of runoff

Trends in monthly and annual runoff for the sub-basins of
Karatal river were analyzed. Discharge trend analysis was
calculated for three periods: full observed time and for periods
before and after 1977 (step change year) for each hydrological
station. Annual runoff of the almost all sub-basins showed
increasing trend for annual, melting, and frozen seasons for
the entire observed time (see Table 4(A)). Increasing dis-
charge trend was statistically significant in more glacierized
catchments (Kora, Koksu, and Koktal). Trends of runoff for
the melting season were similar to those in the annual cycle.
However, runoff for the frozen season exhibited higher chang-
es during entire observed time for all sub-basins, but the ab-
solute changes remained small. Less glacierized (Chizhin) and
non-glacierized sub-basins (Tekeli) show lower increasing
trend in the melting season and annual time.
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The discharge trend for the first period, before step change
year (1977), showed slightly negative trend in annual and
melting cycle. Positive trend was only for two stations,
Chizhin and Tekeli. Neither positive nor negative trend was
statistically significant during the first period for annual and
melting cycles. However, trend for cold months and frozen
season was different. Discharge trend was increased in
Koktal and decreased in Chizhin, and both trends were statis-
tically significant (Table 4(B)).

Runoff data for the second period (after 1977) indicated
trends that are more positive. In the Koksu sub-basin, where
the most glaciers were located (108.6 km2 in 1956), trend
analysis exhibited statistically significant increasing for melt-
ing, frozen, and annual cycles. Three sub-basins, which were

more glacierized, showed the slight increasing trend, while
less glacierized had small decreasing trend during the melting
season (Table 4(C)).

Surprisingly, the runoff trend in the Kora sub-basin showed
the decreasing trend for July, August, and September months,
in spite of relatively intensive glaciation (14 %) and statistical-
ly significant increasing temperature in these months. Detailed
analysis of year-to-year variation of runoff from this station
showed the anomaly increasing discharge for the 1988–2000
period. Mean discharge for this month during 1988–2000 was
two times higher than mean level during 1940–2014. This is
the anomaly impact to the trend analysis for the second period.
Thus, despite the fact that there is a statistically significant
positive trend during 1940–2014 for annual and melting

Fig. 2 Annual and summer (JJA) temperature and annual precipitation of Taldykorgan station (Kaldybayev et al. 2016)

Table 2 Area changes of glaciers

Region Glacier area (km2)/number Area change (%)/annual rate (%) Mean size
(km2) in 1989

1956 1989 2001 2012 1956–1989 1989–2001 2001–2012 1956–2012 1989–2012

Koktal 14.1/36 8.4/21 6.5/21 5.1/17 −40/−1.22 −23/−1.96 −20/−1.8 −63/−1.13 −39/−1.68 0.403

Koksu 108.6/167 75.3/149 64.1/140 56.1/135 −31/−0.93 −15/−1.24 −13/−1.14 −48/−0.86 −26/−1.11 0.506

Chizhin 8.7/19 4.9/11 4.2/10 3.8/10 −44/−1.32 −15/−1.24 −9/−0.79 −56/−1.0 −22/−0.97 0.445

Kora 67.8/66 54.1/62 47.5/55 44.2/52 −28/−0.61 −14/−1.03 −7/−0.63 −35/−0.62 −18/−0.80 0.873

Total 199.2/285 142.8/243 122.2/226 109.3/214 −28/−0.86 −14/−1.20 −11/−0.96 −45/−0.81 −23/−1.02 0.588

Glaciers
<0.1 in 1956

3.6/73 2.36/77 0.76/39 0.59/34 −34/−1.04 −68/−5.63 −22/−1.99 −83/−1.49 −75/−3.25 0.031
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season, trend for those was negative and positive during 1940–
1977 and 1978–2014, respectively. This high runoff phenom-
enon during 1988–2000 might be technical mistakes during
observation in the station or human factor impact.
Neighboring sub-basins showed the quite stable trend during
this period.

Discussion

The Pearson’s correlation coefficient values (Table 5) show
that the runoff of the lower glacierized sub-basins, such as
Tekeli, Chizhin, and Koktal, has a strong and significant cor-
relation with the precipitation. For the temperature, the corre-
lations are much weaker and less significant, even for, com-
paratively, the most glacierized Kora.

Annual mean temperature and total precipitation over the
47-year period (1960–2007) were analyzed from the
Taldykorgan weather station, situated close to the study area
(Fig. 1). The linear trend analysis of mean temperature indi-
cated that the average rate of temperature increase was 0.43 °C

(10a)−1, while the summer (JJA) temperature rose 0.28 °C
(10a)−1 (Fig. 2). From 1960 to 2007, records at the same
station displayed a slight decrease in annual precipitation.
Increasing temperature leads to (1) increasing energy available
for ice and snowmelt, (2) decreasing snow accumulation, and
(3) lower albedo of the glacier surface (Ageta and Kadota
1992; Fujita and Ageta 2000; Wang et al. 2014, Kaldybayev
et al. 2016). The temperature increase caused the rainfall rate
to increase, rather than snowfall in the high-altitude
glacierized areas, leading to a reduction of accumulation and
the acceleration of ablation, especially during the summer
(Chaulagai 2003). Due to that annual temperature significant
increased between 1960 and 2007 and annual precipitation
had stable trend, that not compensated rising temperature,
led to intensive glacier melt.

The area changes of the glaciers investigated in the Karatal
river basin confirmed an expected and widely published trend
of glacier retreat (Unger-Shayesteh et al. 2013; Sorg et al.
2012). However, our results for this region indicated the
highest shrinkage rate for the period of 1989–2012 compared
to other glacierized areas of Central Asia, including all parts of

Table 4 Kendall test Z statistics for trends of monthly, annual, and seasonal runoff for the sub-basins of Karatal river

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual Melt Frozen

A.

Kora 4.28 4.11 4.50 2.60 2.73 3.12 1.68 0.90 2.89 3.06 3.49 4.21 3.32 2.97 4.96

Koksu 4.49 4.23 4.01 3.36 3.52 1.15 1.45 1.92 4.43 4.85 4.96 4.29 2.38 2.21 4.55

Terisakkan 4.9 5.07 5.27 3.64 1.32 1.11 0.54 0.5 1.86 2.83 3.14 4.17 2.31 1.39 5.38

Chyzhyn −1.91 −1.62 −0.72 2.16 0.52 −0.69 −1.08 −0.49 0.69 −0.7 0 −1.23 −0.43 −0.59 0.94

Tekeli 2.33 2.12 1.53 0.44 −2.03 −0.21 0.98 1.22 2.88 2.26 2.5 2.8 0.86 0.28 2.94

B.

Kora 0.86 0.86 0.81 0.07 −0.72 0.07 −0.13 −1.56 −0.18 0.20 0.47 0.44 −0.33 −0.33 0.67

Koksu −1.66 −0.82 0.56 0.39 0.17 −0.03 −0.37 −1.45 −1.59 −1.93 −1.16 −2.22 −0.58 −0.05 −0.85
Terisakkan 4.51 3.92 3.6 2.71 1.52 1.33 0.47 0.54 1.17 2.7 4.08 4.31 2.03 1.66 4.73

Chyzhyn −4.44 −4.31 −2.84 0.08 −0.07 −0.44 −1.18 −1.6 −1.43 −2.32 −2.01 −2.68 −1.17 −1.28 −2.61
Tekeli −2.21 −2.03 0.32 1.44 −0.23 −1.11 −1.19 −0.99 −1.28 −1.94 −1.7 −2.19 −0.7 −0.62 0.21

C.

Kora 1.63 1.67 1.95 1.08 1.78 1.22 −0.63 −0.77 0.06 0.73 0.64 0.91 0.77 0.61 2.08

Koksu 4.56 4.07 5.03 4.51 3.87 2.28 2.28 3.83 5.5 5.15 4.81 3.91 3.01 2.79 5.38

Terisakkan 2.82 3.66 3.92 2.81 0.03 −0.79 −0.24 1.54 2.39 2.37 2.27 2.51 1.12 0.11 3.92

Chyzhyn −0.33 0.45 1.78 0.39 −0.57 −1.17 −1.33 0 0.99 −0.79 0 −0.79 −0.51 −0.56 0.73

Tekeli 0.87 0.99 1.85 0.74 −2.61 −0.37 1.28 1.52 2.24 1.98 2.34 1.52 1 −0.02 2.52

(A) for entire period and (B) and (C) for the periods before and after the 1977 (step change) year, respectively. Statistically significant trends are indicated
in italics. Significant at P< 0.05. Critical value of Z<−1.96 and >+1.96 (two-sided)

Table 3 Kendall test Z statistics for trends of monthly, annual, and seasonal temperature and for annual precipitation of Taldykorgan station

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann T Winter Spring Summer Autumn Ann P

Test Z 1.00 2.46 1.52 2.32 1.25 2.84 2.37 3.14 3.24 3.03 1.75 0.84 4.51 2.27 2.00 3.49 3.65 −0.60

Statistically significant trends are indicated in italics. Significant at P< 0.05. Critical value of Z<−1.96 and >+1.96 (two-sided)
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Tien Shan and Pamir (Vilesov and Morozova 2005; Bolch
2007; Aizen et al. 2007; Kutuzov and Shahgedanova 2009;
Khromova et al. 2006; Kriegel et al. 2013).

Despite the detected glacier area loss, there was no
significant positive trend in mean summer month dis-
charge (JJA) observed for the all sub-basins that would
be expected from the enhanced glacier melt. These re-
sults suggested that the increasing glacier melt and re-
treat do not positively affect the discharge in summer
months (JJA). The absence of significant positive trends
in these time discharges can be explained by the low
glacierized catchments (less than 15 %). In addition,
the evapotranspiration has negative effect on river runoff,
but their roles are limited. Kriegel et al. (2013). who
estimated changes in potential evaporation based on the
empirical approach of Thornthwaite (1948). which solely
relies on temperature, suggest that evaporation changes
are insignificant during the ablation season, mainly due
to small changes in air temperature. However, due to
increasing trend in spring and autumn months, trend
showed statistically significant positive increasing for
the melting and annual cycle in glacierized catchments.
The effect on runoff changes was different in glacierized
sub-basins of Karatal river. Relatively highest glacierized
Kora (14 % glaciation) showed highest positive trend,
while smaller glacierized Koktal (5 %) demonstrated
smaller trend, with the statistically significant magnitude
of 3.32 and 2.31, respectively. In the catchment with
only 2 % glaciation (Chizhin), trend was even negative
with magnitude of −0.43. Apparently, the tipping point
(peak water) for this catchment might be already passed
(Sorg et al. 2014). The tipping point is a phenomenon
when runoff during warming climate will, at first, in-
crease owing to higher temperatures and more meltwater,
while this effect is gradually reduced when the glacier
area begins to decline as a result of continued glacier
mass loss (Ye et al. 2003; Rango et al. 2007; Huss
2011). Tekeli sub-basin without glacier showed slight
increasing trend, but absolute water volume of rising
trend was very small. Based on runoff trend analysis,
runoff in sub-catchments was controlled by temperature,
provoking the glacier melting stored for previous decades
and centuries.

Conclusions

Our results, with the shrinkage rate of about −0.8 to −1 % per
year for the periods of 1956–1989 and 1989–2012 for this
study area, showed a highest decreasing rate compared to
other glacierized areas of Central Asian mountains, including
Altai, Tien Shan, and Pamir. Climatic condition plays a basic
role on glacier status. Two main climatic factors, statistically
significant temperature increasing and precipitation slight de-
creasing, played the main cause in the glacierized area loss in
the Karatal river basin.

River runoff demonstrated a significant increasing trend
during the last half century at the expense of glaciers’melting
intensification against a background of slight decreasing pre-
cipitation in the same time.

Even small glacierized areas (5–14 % of total basin) had
significant impact on the river runoff fluctuations in condition
of global temperature increasing.
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