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Abstract In addition to all benefits of blasting in mining and
civil engineering applications, blasting has some undesirable
impacts on surrounding areas. Blast-induced air-overpressure
(AOp) is one of the most important environmental impacts of
blasting operation which may cause severe damage to nearby
residents and structures. Hence, it is a major concern to predict
and subsequently control the AOp due to blasting. This paper
presents an adaptive neuro-fuzzy inference system (ANFIS)
model for prediction of blast-induced AOp in quarry blasting
sites. For this purpose, 128 blasting operations were moni-
tored in three quarry sites, Malaysia. Several models were
constructed to obtain the optimummodel in which eachmodel
involved five inputs and one output. Values of maximum
charge per delay, powder factor, burden to spacing ratio, stem-
ming length, and distance between monitoring station and
blast face were set as input parameters to predict AOp. For
comparison purposes, considering the same data, AOp values
were predicted through the pre-developed artificial neural net-
work (ANN) model and multiple regression (MR) technique.
The results demonstrated the superiority of the ANFIS model
to predict AOp compared to other methods. Moreover, results

of sensitivity analysis indicated that the maximum charge per
delay and powder factor and distance from the blast face are
the most influential parameters on AOp.

Keywords Blast monitoring . Air-overpressure .

Environmental impact . Adaptive neuro-fuzzy inference
system . Artificial neural network

Introduction

Blasting is the most common technique to excavate and break
down of rocks. This technique is frequently used in mining,
quarrying and civil engineering applications such as dam or
road construction. Rock is blasted into smaller pieces in dif-
ferent mining operations such as quarrying and open pit min-
ing, or into large blocks for some civil engineering applica-
tions (Bhandari 1997). While blast-holes are exploded inde-
pendently, a cylindrical plug of broken ground is produced
around each blast-hole. The size of this plug depends on ex-
plosive gases pressure and the time for which they act in the
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radial cracks growing from the blast-hole. The pressure is
released by creating the radial cracks and fissures to the free
surface and also venting through the stemming.

When explosives are detonated, pressure waves of air-blast
are produced and these phenomena continued in a few sec-
onds (Wharton et al. 2000). In each blasting operation, about
20 to 30 % of the produced energy by explosive is utilized for
rock crushing and displacement. The rest of the energy pro-
duced by explosive is wasted and produces undesirable envi-
ronmental impacts such as flyrock, air-overpressure (AOp),
ground vibration and back-brak (Khandelwal and Singh
2006; Monjezi et al. 2011; Tonnizam Mohamad et al. 2012;
Jahed Armaghani et al. 2013; TonnizamMohamad et al. 2013;
Ghoraba et al. 2015; Ebrahimi et al. 2015; Shirani Faradonbeh
et al. 2015). AOp arises from blasting and it may cause dam-
ages to nearby residents and surrounding structures (Hopler
1998; Hajihassani et al. 2014).

Several empirical equations have been proposed to predict
AOp. According to National Association of Australian State
(1983), AOp from confined blast-hole charges can be estimat-
ed using the following empirical formula:

P ¼
140

ffiffiffiffiffiffiffiffi
E

200
3

r

d
ð1Þ

in which, P is AOp in kilopascals, E is mass of charge in
kilogram, and d is distance from center of blast-hole in meter.
McKenzie (1990) recommended an equation to describe the
decay of AOp as follows:

dB ¼ 165−24log D=W 1=3
� �

ð2Þ

in which, dB is decibel reading with a linear of flat weighting,
D is distance, and W is the weight of explosive (in kilogram).
The cube-root scaled distance factor (SD) is a method to esti-
mate blast-induced AOp. The relationship between SD and
two parameters including distance and explosive charge
weight per delay is formulated as below:

SD ¼ DW −0:33 ð3Þ

in which, D is the distance (in meter or feet) and W is the
weight of explosive (in kilogram or pound) and SD is the
scaled distance factor. The form of the prediction equation of
AOp is as follow:

AOp ¼ H SDð Þ−β ð4Þ

in which, AOp is measured in pascal or dB, SD is the scaled
distance factor and H and β are the site factors. This equation
is widely used in surface blasting to predict AOp (Hustrulid
1999; Kuzu et al. 2009). The site factor values, H and β, for
some blasting conditions are tabulated in Table 1.

Kuzu et al. (2009) established a new empirical relationship
between AOp and two parameters including the distance and
charge weight. They used 98 AOp recorded from quarry
blasting operations under different conditions and
demonstrated the proposed equation predicts AOp with
reasonable accuracy. Segarra et al. (2010) provided a new
AOp prediction equation based on monitoring data in two
quarries. They used a data set comprising of 122 AOp records
as well as other blasting parameters at distances less than
400 m in 41 blasting works. Based on Eq. 4, effects of two
other parameters namely Af (the influence of the azimuth of
the measurement point with respect to the bench face) and As
(the effect of the blast initiation) were considered to develop a
new equation for AOp prediction. Eventually, the accuracy of
32 % for their proposed model was obtained in predicting
AOp. In addition, the proposed model was validated using
five new blasting data with 22.6 % accuracy.

Besides, the use of soft computing methods for AOp pre-
diction has been reported in several researches. Khandelwal
and Singh (2005) presented an artificial neural network
(ANN) approach to predict AOp by using charge per delay
and distance from the blast-face. They demonstrated that
ANN provides high performance capacity for prediction of
AOp. Mohamed (2011) predicted AOp using fuzzy inference
system (FIS) and ANN by using two parameters including the
distance and charge per delay. They compared the results with
the values obtained by regression analysis and observed field
data and concluded that the ANN and fuzzy models have
accurate prediction compared to regression analysis.
Khandelwal and Kankar (2011) predicted AOp due to blasting
using 75 datasets obtained from three mines by support vector
machine (SVM)method. They compared AOp values predict-
ed by SVM with the results of generalized predictor equation

Table 1 Site factors, H and β for some blasting conditions

Reference Description H β

Siskind et al. (1980) Quarry blasts, behind face 622 0.515

Quarry blasts, direction of
initiation

19,010 1.12

Quarry blasts, front of face 22,182 0.966

Hopler (1998) Confined blasts for AOp
suppression

1,906 1.1

Blasts with average burial of the
charge

19,062 1.1

Hustrulid (1999) Detonations in air 185,000 1.2

Kuzu et al. (2009) Quarry blasts in competent rocks 261.54 0.706

Quarry blasts in weak rocks 1,833.8 0.981

Overburden removal 21,014 1.404

Hajihassani et al.
(2014)

Quarry blasts, front of face
(distance of 300 m)

10,909 1.09

Quarry blasts, front of face
(distance of 600 m)

959.48 0.45
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and demonstrated that the SVM method yields more accu-
rate results in comparison to generalized predictor. A new
approach was developed by Hajihassani et al. (2014) based
on hybrid particle swarm optimization (PSO) and ANN
model to predict AOp induced by quarry blasting. The mea-
sured AOp values were compared with the results of the
empirical formula to evaluate the accuracy of the presented
PSO-based ANN model. The results demonstrated that the
presented approach is an applicable tool to predict AOp
with high degree of accuracy. Table 2 presents some studies
with their performances in predicting AOp using soft com-
puting techniques.

In this paper, an adaptive neuro-fuzzy inference system
(ANFIS) is developed to predict AOp induced by blasting in
quarry sites. For the sake of comparison, AOp values are also
predicted by a pre-developed ANN and multiple regression
(MR) models.

Theory of blast-induced AOp

The explosion is produced once the pressure reactive gases
reach the sonic velocity due to the shock wave of chemical
reaction (Baker et al. 1983). The gas pressure velocity is in-
creased quickly when the explosive detonation happens in the
blast-hole. Consequently, the gas pressure suddenly loads

surrounding rocks which produces a compressive shock pulse
and moves rapidly away from the borehole. The pressure in
terms of blasting is mainly indicated with shock and gas
mechanisms (Roy 2005).

AOp is produced by a large shock wave from explosion
point into the free surface. Consequently, the AOp is a shock
wave which is refracted horizontally by density variations in
the atmosphere. The atmospheric pressure waves of AOp con-
sist of an audible high frequency and sub-audible low-fre-
quency sound. In general, in blasting operations, AOp waves
are created from following sources (Wiss and Linehan 1978;
Siskind et al. 1980; Morhard 1987).

& Air pressure pulse which is displacement of the rock at
bench face

& Rock pressure pulse which is induced by ground vibration
& Gas release pulse which is the escape of gases through

rock fractures
& Stemming release pulse which is the escape of gases from

the blasthole when the stemming is ejected

AOp is known in terms of sound which is measured with
pascal (Pa) or decibels (dB) (Kuzu et al. 2009). The lower
boundary of detectable sound for human ear is 20 Hz and
below than that it is unhearable. Hence, it is undeniable that
there is a concussion possibility for human with sound more
than 20 Hz. In addition, if the AOp waves energy exceed the
atmospheric pressure (194 dB, or 65.4 N), the surrounding
structures may be affected with some damages. The level of
AOp of the possibility of structural damage is 180 dB and
windows break is between140 and 170 dB. The allowable
limitation of decibel value for AOp is 134 dB (Griffiths
et al. 1978; Kuzu et al. 2009). Therefore, it should be
attempted to keep the AOp level below 120 dB in blasting
operations.

AOp is influenced by several parameters. According to
Khandelwal and Kankar (2011), blast geometry, maximum

Table 3 Description of case studies blasting sites

Site name Distance from
Johor (Km)

Latitude Longitude Bench
height
(m)

Kulai 35 1° 39′ 21″ N 103° 36′ 11″ E 18–27

Senai 27 1° 36′ 00″ N 103° 39′ 00″ E 15–22

Kota Tinggi 40 1° 44′ 12″ N 103° 54′ 08″ E 14–23

Table 2 Several works on AOp prediction using soft computation techniques

Reference Technique Input No. of dataset R2

Khandelwal and Singh (2005) ANN DI, MC 56 R2=0.96

Mohamed (2011) ANN, FIS DI, MC 162 R2ANN=0.92
R2FIS=0.86

Khandelwal and Kankar (2011) SVM DI, MC 75 R2=0.85

Tonnizam Mohamad et al. (2012) ANN HD, S, B, N, D, ST, PF 38 R2=0.93

Hajihassani et al. (2014) ANN-PSO HD, S, B, ST, PF, N, DI, MC, RQD 62 R2=0.86

Hajihassani et al. (2015) ANN-PSO BS, MC, HD, ST, SB, RQD, PF, NH, DI 88 R2=0.89

Jahed Armaghani et al. (2015) ANN DI, MC 166 R2=0.83

S spacing, B burden, ST stemming, PF powder factor, SVM support vector machine,MCmaximum charge per delay,D hole diameter,HD hole depth,N
number of row, PSO particle swarm optimization, DI distance from the blast-face, RQD rock quality designation, FIS fuzzy inference system, R2

coefficient of determination, BS burden to spacing ratio, SB subdrilling, NH number of hole
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charge per delay, distance and vegetation are the foremost
influential parameters of AOp. Furthermore, AOp is influ-
enced by other parameters such as atmospheric conditions,
over-charging, weak strata and conditions arise from

secondary blasting (Siskind et al. 1980; Dowding 2000;
Segarra et al. 2010). However, AOp induced by blasting is
not easy to predict as the same blast design can produce dif-
ferent results in different cases.

Fig. 2 A view of Kulai quarry
site

Fig. 1 Location of the investigated sites
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Data collection and monitoring

A total number of 128 blasting works from three granite quar-
ry sites in Malaysia are investigated and AOp values are mon-
itored in each operation. Table 3 shows the description of the
three quarry sites which are placed near to Johor, Malaysia. In
these quarries, blast holes of 75 and 89 mm diameter with
average length of 19.1 m are vertically drilled. ANFO is uti-
lized as the main explosive material and dynamite is used as
initiation. Fine gravels are used as the stemming material.
Figures 1 and 2 show the location of the granite sites and a
view of Kulai quarry site, respectively.

Data monitoring is carried out over six month to collect
blasting data. The blasting parameters including stemming
length, spacing, burden, powder factor, maximum charge per
delay and hole depth and diameter are measured during
blasting operations. Utilizing the microphones connected to
the AOp channels, AOp values are monitored in each blasting
operation (see Fig. 3). This instrument records AOp values
ranging from 88 dB (7.25×10−5 psi or 0.5 Pa) to 148 dB
(0.0725 psi or 500 Pa). The distance betweenmonitoring point
and the blast-face is ranged between 115 to 680 m in different
blasting operations.

ANN approach for AOp prediction

ANNs include a series of parallel interconnected processing
units named neuron or node. There are some activation func-
tions which transfer the activation signal between neurons.
However, performance of an ANN system is significantly re-
lated to architecture including number of hidden layer and the
neurons in the hidden layer (Dreyfus 2005). In terms of the
structure, ANNs are divided into two types; feed-forward and
recurrent ANNs. Among these, feed-forward (FF) neural net-
work is the most commonly-used ANN type in a wide range
of science and engineering as reported by many researchers
(e.g. Haykin 1999; Engelbrecht 2007). Study by Shahin et al.
(2002) suggests that this type of ANN can be implemented
when there is no time-dependent variable in defining ANNs.

In FF ANN, normally, the nodes are categorized into sev-
eral layers. Using the connections, a signal moves throughout
the input to the output layer(s). Haykin (1999) and Monjezi
et al. (2012a) reported that Multi-Layer Perceptron (MLP)
neural network is one of the most popular feed-forward
ANNs. Typically, MLP ANNs comprise at least three layers
known as input, hidden and output layers which are intercon-
nected through connection weights (Veelenturf Leo 1995;

Table 4 Input and output
parameters for AOp prediction Parameter Category Unit Symbol Minimum Maximum Average

Powder factor Input (kg/m3) PF 0.37 0.74 0.52

Maximum charge per delay Input (kg) MC 162 378 68.88

Stemming length Input (m) ST 1.30 3.20 2.09

Burden to spacing ratio Input – BS 0.39 0.94 0.71

Distancea Input (m) D 115 680 393

Air-Overpressure Output (dB) AOP 90.78 139.66 115.40

a Distance between blast-face and monitoring point

Fig. 3 AOp monitoring in
blasting sites
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Hagan et al. 1996). Compared to other types of ANNs, feed-
forward MLP ANN is not complicated to implement (Marto
et al. 2014). Du et al. (2002) and Kalinli et al. (2011) reported
on the high efficiency of MLP-ANNs in approximating vari-
ous functions in high-dimensional spaces. MLP has success-
fully been utilized in numerous field-of-engineering problems
(Tonnizam Mohamad et al. 2014). Nevertheless, the ANN
needs to be trained before interpreting the results. Back-
propagation (BP) algorithm is the most commonly used algo-
rithm to train the system and it can adjust the network weights
during learning process (Kosko 1994; Rezaei et al. 2012).
Fundamentally, BP learning consists of forward and backward
passes in various layers of the network. The input pattern is
applied to the neurons and outputs are produced. The error
correction is conducted if the outputs of the network are dif-
ferent from the desired values. This action is conducted
through the adjustment of weights and biases in which BP
algorithm utilized for this purpose (Simpson 1990). At the
end, the network error can be calculated using several perfor-
mance indices, e.g., root mean square error (RMSE) and value
account for (VAF). More details of the BP algorithm can be
seen in the classic artificial intelligence books (Fausett 1994).

As mentioned earlier, blasting parameters of 128 blasting
operations are measured in three quarry sites and AOp values
are monitored in each operation. The collected data is used to
train and subsequently verify the accuracy of ANN in
predicting AOp induced by blasting. According to Siskind
et al. (1980), maximum charge per delay and distance from
blast-face are the most effective parameters on AOp. In addi-
tion, as presented in Table 2, widely used input parameters are
maximum charge per delay and distance from blast-face.
Apart from that, other blasting parameters such as burden,
spacing, stemming, and powder factor are affected in result
of AOp (Khandelwal and Kankar 2011; Tonnizam Mohamad
et al. 2012; Hajihassani et al. 2014). Therefore, in this study,
powder factor (PF), maximum charge per delay (MC), stem-
ming length (ST), burden to spacing ratio (BS), and distance
between monitoring station and blast face (D) are selected as
network inputs for prediction of AOp. Input and output pa-
rameters used in the modeling as well as their statistical infor-
mation are listed in Table 4.
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Table 5 The proposed number of neuron for hidden layer

Heuristic Reference

(Ni + N0)/2 Ripley (1993)

2Ni /3 Wang (1994)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � No

p Masters (1994)

2Ni Kaastra and Boyd (1996)
Kanellopoulas and Wilkinson (1997)

Ni number of input neuron, N0 number of output neuron
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In this research, all datasets are distributed randomly into
two different datasets namely testing and training. To do this,
80% of the datasets is used to train the systemwhile the rest of
20 % is considered to check the performances of the network.
Using the following equation, the datasets are normalized:

Xnorm ¼ X − Xminð Þ= Xmax − Xminð Þ ð5Þ

where Xnorm is the normalized value of the measured param-
eter; X is the measured value, Xmax and Xmin are the maxi-
mum and minimum values of the measured parameters in the
dataset, respectively.

In order to achieve a superior performance of the ANN
model, it is necessary to determine the optimum network ar-
chitecture. Normally, hidden layer numbers and number of
neurons in hidden layer can be defined as network architec-
ture. According to Hornik et al. (1989), a network with one
hidden layer can be utilized in any continuous function.
Hence, one hidden layer is used for ANN modeling of this
study. The number of neurons in the hidden layer is the most
critical task in the ANN architecture (Sonmez et al. 2006;
Sonmez and Gokceoglu 2008). As can be seen in Table 5,
several relationships have been proposed for determining the
number of neurons in the hidden layer by several researchers.
According to this table, for AOp prediction, the number of
neurons which might be utilized in the hidden layer varies
between 2 and 9. To achieve the optimum number of neurons
in the hidden layer, following the trial and error method, sev-
eral networks with different training and testing datasets are

trained and tested. The results of analyses in terms of coeffi-
cient of determination (R2) and RMSE are tabulated in
Table 6. According to this table, model number 3 with 4 hid-
den nodes (iteration 2) indicates higher performances in pre-
diction of AOp among other models and therefore, this model
is chosen as the best ANN model. It is worth mentioning that
in construction of ANNmodels, the learning rate and momen-
tum coefficient are set to be 0.05 and 0.9, respectively.

AOp prediction through ANFIS

Adaptive neuro-fuzzy inference system (ANFIS) developed by
Jang (1993) based on FIS model. ANFIS is a universal predic-
tor with the capability to approximate any real continuous
functions (Jang et al. 1997). ANFIS works based on the con-
struction of a set of if-then fuzzy rules with proper membership
functions to produce the required output data. In general, a FIS
is generated based on five functioning blocks including: sev-
eral if-then fuzzy rules, a database to define the membership
functions, a decision-making element to conduct the inference
operations on the rules, a fuzzification interface to convert the
inputs utilizing linguistic values and finally, a defuzzification
interface to convert the fuzzy results into an output.

ANFIS integrates the philosophies of artificial neural net-
works (ANNs) and FIS and therefore, potentially presents all

Fig. 4 a Sugeno fuzzy model with two rules, b equivalent ANFIS architecture (Jang 1993)

Table 7 Performances of the five ANFIS models in predicting AOp

ANFIS Model Train Test

R2 RMSE R2 RMSE

1 0.963 2.687 0.927 3.225

2 0.973 2.285 0.958 2.492

3 0.966 2.574 0.934 3.072

4 0.944 3.463 0.925 3.267

5 0.952 3.116 0.959 2.411

Table 8 Characterizations of the proposed ANFIS model

ANFIS parameter type Value

Type of membership function Gaussian

Number of membership functions 3

Number of nodes 524

Number of linear parameters 243

Number of nonlinear parameters 30

Total number of parameters 273

Number of training data pairs 102

Number of checking data pairs 26

Number of fuzzy rules 243
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benefits of them in a unique framework. Through the hybrid
learning, ANFIS is able to evaluate the relationships between
inputs and target data by determining the optimum
distribution of membership functions. Sezer et al. (2014) men-
tioned that a typical ANFIS often is composed of one input
layer, one output layer and four hidden layers. It is worth
noting that the number of hidden nodes in ANFIS reflects
the rule numbers. It should be mentioned that ANFIS imple-
ments Takagi and Sugeno’s (1985) type rules (Jang et al.
1997). Generally, the aforementioned type of rules is more
flexible in solving complex problems as this point was
highlighted by Jin and Jiang (1999). In fact, in contrary to
Mamdany fuzzy rules, the consequent part of Takagi and
Sugeno fuzzy rules is often a linear function of input variables.
Figure 4 shows a basic ANFIS architecture. According to this
figure, ANFIS architecture consists of two parts including
premise and consequent parts.

To explain the modeling procedure by ANFIS, it is sup-
posed that the FIS under consideration consists of two inputs

(x, y) and one output ( f ) and the rule base includes two fuzzy
rule set Bif-then^ as bellow:

Rule I : if x is A1 and y is B1; then f 1 ¼ p1x þ q1y þ r1
Rule II : if x is A2 andy is B2; then f 2 ¼ p2xþ q2yþ r2

where p1, p2; q1, q2; r1 and r2 are linear parameters and A1,
A2, B1 and B2 are non-linear parameters (see Fig. 4b).
According to Jang (1993) and Jang et al. (1997), an ANFIS
with five layers and two rules can be explained as follows:

Layer I: Every node i in layer I produces a membership
grade of a linguistic label. For example, the node function of
the ith node is:

Q1
i ¼ μAi xð Þ ¼ 1

1þ x−vi
σ1

� �2
� �bi ð6Þ

in which Q1
i and x are the membership function and input to

node i respectively. Ai is the linguistic label related to node i

Fig. 5 Membership functions assigned for powder factor

Fig. 6 Membership functions assigned for maximum charge per delay
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and σ1; vi; bi are parameters that make changes in the form of
the membership functions. The existing parameters in this
layer are related to the premise part, as in Fig. 4a.

Layer II: Each node in layer II computes the firing strength
of each rule through multiplication:

Q2
i ¼ wi ¼ μAi xð Þ:μBi yð Þ i ¼ 1; 2 ð7Þ

Layer III: The ratio of firing strength of the ith rule to the
sum of firing strengths of all rule is obtained in this layer.

Q3
i ¼ Wi ¼ wiX 2

j¼1
wj

i ¼ 1; 2 ð8Þ

Layer IV: Every node i in this layer is a node function
whereas Wt is the output of layer III. Parameters of this layer
are related to consequent part.

Q4
i ¼ Wi f i ¼ Wi pixþ qiyþ rið Þ ð9Þ

Layer V: The incoming signals are summed in this layer
and form the overall output.

Q5
i ¼ Overall output ¼

X
Wi f i ¼

X
wi f iX
wi

ð10Þ

ANFIS as a superior model has been extensively-used in
different fields of geotechnical engineering (Grima et al. 2000;
Iphar et al. 2008; Yilmaz and Yuksek 2009; Sezer et al. 2014).
Grima et al. (2000) utilized this technique to predict penetra-
tion rate of tunnel boring machine. Ground vibration resulting
from blasting was successfully predicted by ANFIS in the
study conducted by Iphar et al. (2008). In addition, Yilmaz
and Yuksek (2009) and Jahed Armaghani et al. (2014a) ap-
plied ANFIS to predict uniaxial compressive strength (UCS)
of the rock samples.

To predict blast-induced AOp, an ANFIS-based model is
developed. This model utilized five input parameters which

Fig. 7 Membership functions assigned for stemming length

Fig. 8 Membership functions assigned for burden to spacing ratio
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are chosen same as the input parameters in the ANNmodel, as
tabulated in Table 4. All datasets were distributed randomly to
training (80 %) and testing (20 %) datasets same as the ANN
analysis. In order to determine the optimum number of fuzzy
rules, using the trial and error method, several models with
different membership function combinations of 2, 3, 4, and 5
are trained and evaluated. Finally, it is found that each input
with 3 membership functions yields superior results among
other models concerning the root mean squared error
(RMSE). Therefore, ANFIS model with total number of 243
fuzzy rules (3×3×3×3×3) shows the best performance to
predict AOp. To obtain the best performance of the selected
ANFIS model, this model is trained and tested utilizing dif-
ferent training and testing datasets and the results are tabulated
in Table 7. Considering the results of both training and testing
datasets, model number 2 indicates higher prediction perfor-
mances among all 5 models and therefore, this model is se-
lected for AOp prediction.

In the modeling process, the Gaussian membership func-
tion which is the most commonmembership function in fuzzy
systems is utilized (Jahed Armaghani et al. 2014a). The char-
acterizations of the proposed ANFIS-based model are tabulat-
ed in Table 8. The linguistic variables for the input parameters
are assigned as low (L), medium (M), and high (H). Figures 5,

6, 7, 8, and 9 show the membership functions assigned for the
input parameters in the proposed ANFIS model.

Multiple regression analysis

Multiple regression (MR) analysis is utilized to propose rela-
tionships between independent and dependent variables. By
performing regression analysis, parameters of a functionwhich
are best fitted to a set of data observation are determined. In
fact, regression analysis measures the degree of influence of
the independent or input parameters on dependent or output
parameter. For the bivariate regression, the dependent variable
can be calculated using the simple equation as follows:

y ¼ aþ bx ð11Þ

where a is constant, y and x are dependent and independent
parameters, respectively. This type of equation could be ex-
tended to a multiple variable concept as follows:

y ¼ aþ b1x1 þ b2x2 þ b3x3 þ⋯bnxn ð12Þ

where x1, x2, x3, … xn are different independent variables to
predict y.

MR technique has been widely-used to solve the problems
in different fields of engineering. In the case of geotechnical
engineering, many researchers have been performed this
method as well. Gokceoglu and Zorlu (2004) utilized this
method for proposing a multiple equation to predict strength
of rock samples. Bahrami et al. (2011) proposed a MR equa-
tion for prediction of rock fragmentation resulting from
blasting operation. Shear strength parameters (C and ϕ) of
rock were predicted using LMR technique in the study con-
ducted by Jahed Armaghani et al. (2014b).

To apply MR analysis for AOp prediction, AOp is consid-
ered to be the product of the five parameters (same as the

Fig. 9 Membership functions assigned for distance

Table 9 Statistical information for the MR predictive model

Independent Variable Coefficients St. error t value p value

Constant 136.221 5.878 23.177 0

PF −1.690 6.234 −0.271 0.787

MC 0.057 0.009 6.184 0

ST −0.124 1.674 −0.074 0.941

BS −5.877 5.333 −1.102 0.273

D −0.063 0.004 −16.501 0
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ANN analysis). The statistical software package Microsoft
Excel 2013 is used for regression analysis and Eq. 13 is pro-
duced. Table 9 shows the statistical information regarding the
developed MR predictive model.

AOp ¼ 136:221– 1:690 PF þ 0:057 MC – 0:124 ST

– 5:877 BS – 0:063 D ð13Þ

Results and discussion

In this study, an attempt has been made to show the
capability of the applied methods (MR, ANN, and
ANFIS) in predicting AOp. The models of ANFIS,
ANN, and MR are constructed using five input param-
eters (i.e., PF, MC, ST, BS, and D). The graph of pre-
dicted AOp values using MR approach against the mon-
itored AOp values for all 128 datasets is illustrated in
Fig. 10. As shown in this figure, the relatively low R2

value equal to 0.766 and high RMSE value equal to
6.599 reveal the low reliability of the MR method to
predict AOp. In addition, Fig. 11 shows the predicted
AOp values by performing ANN model plotted against
the monitored AOp values for training and testing
datasets. The R2 and RMSE values of 0.913 and 4.191
for training, and 0.920 and 4.092 for testing datasets
show that the ANN approach is able to predict AOp
with relatively suitable accuracy. Furthermore, in predic-
tion of AOp by ANFIS, R2 and RMSE values of 0.973
and 2.285 for training, and 0.958 and 2.492 for testing
datasets suggest the superiority of this model in AOp
prediction (see Fig. 12).

Fig. 10 Monitored and predicted values of AOp though MR analysis

Fig. 11 Monitored and predicted values of AOp though ANN analysis for training and testing datasets

Fig. 12 Monitored and predicted values of AOp though ANFIS analysis for training and testing datasets
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In this study, RMSE and amount of value account for
(VAF) are computed to control the capacity performance of
the predictive models as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X N

i¼1
y−y0ð Þ2

r
ð14Þ

VAF ¼ 1−
var y−y0ð Þ
var yð Þ

� �
� 100 ð15Þ

where, y and y′ are the obtained and estimated values, respec-
tively, and N is the total number of data. The model will be
excellent if the RMSE is zero and VAF is 100. Performance
indices obtained by predictive models for all 128 datasets are
shown in Table 10. In addition, to demonstrate capability of
the developed models in predicting AOp, several empirical
models including Siskind et al. (1980), Hopler (1998) and
Kuzu et al. (2009) from all presented models in Table 1 are
selected to predict measured values of AOp. As shown in
Table 10, the ANFIS predictive model can provide higher
performance in prediction of AOp compared to other devel-
oped models as well as previous empirical models. For in-
stance, in the case of R2, values of 0.653, 0.634, and 0.689
for Siskind et al. (1980), Hopler (1998) and Kuzu et al. (2009)
models, respectively, indicate lower prediction capacities of
empirical models, while these values are obtained as 0.766,
0.914, and 0.971 for MR, ANN and ANFIS models,

respectively. In addition, a large difference can be seen be-
tween RMSE results of empirical and developed models.
Predicted AOp values using Siskind et al. (1980), Hopler
(1998) and Kuzu et al. (2009) models, respectively, against
measured AOp values are shown in Figs. 13, 14, and 15.

Sensitivity analysis

Sensitivity analysis is a technique to evaluate the most effec-
tive input parameters on output(s). To apply this, the cosine
amplitude method can be utilized (Jong and Lee 2004). This
method is illustrated in the following equation:

Ri j ¼
X n

k¼1
xik � x jk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

k¼1
xik

2
X n

k¼1
x jk

2
q ð16Þ

where xi and xj represent input and output parameters, respec-
tively, and n is the number of all datasets.

Monjezi et al. (2012b) used this technique for in order to
show the effects of different parameters on UCS of the rock.
Effective parameters on bearing capacity of the pile were ob-
tained by CAM in the study conducted by Momeni et al.
(2014). Rezaei et al. (2012) utilized this method in obtaining
influential parameters on burden in blasting operations.

Fig. 13 Predicted values of AOp using Siskind et al. (1980) model
against monitored AOp

Table 10 Performance indices of the predictive models for all 128
datasets

Predictive model Performance indices

R2 RMSE VAF (%)

Siskind et al. (1980) 0.653 409.597 –

Hopler (1998) 0.634 181.031 –

Kuzu et al. (2009) 0.689 101.393 54.124

MR 0.766 6.599 76.584

ANN 0.914 4.17 90.811

ANFIS 0.971 2.329 97.110 Fig. 14 Predicted values of AOp using Hopler (1998) model against
monitored AOp

Fig. 15 Predicted values of AOp using Kuzu et al. (2009) model against
monitored AOp
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Based on Eq. 16, a series of analyses were performed on
input and output parameters. Figure 16 shows the strengths of
the relations (rij values) between AOp and input parameters.
As it can be seen in this figure, the most influential parameters
on AOp are maximum charge per delay (MC), and distance
from the blast face (D).

Conclusion

An ANFIS model is developed to predict AOp induced by
blasting in quarry sites. In order to obtain the optimum perfor-
mance, several models are trained and tested using measured
data. To construct the models, 128 datasets including influen-
tial parameters on AOp are measured from three granite quar-
ry sites in Malaysia. Each dataset is associated with one AOp
recorded from corresponding blasting operation. In addition,
utilizing the same input and output parameters, AOp values
are predicted using pre-developed ANN and MR methods.
The results demonstrated the superiority of the proposed
ANFIS model to predict AOp induced by blasting among
other predictive models. It can be concluded that the proposed
ANFIS model is able to be used as an accurate and applicable
approach for estimation of AOp induced by blasting in quarry
sites.
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