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Abstract Appropriate prediction of rock fragmentation is a
vital task in the blasting operations of open pit mines. Rock
fragmentation is affected by various parameters including
blast pattern and rock characteristics, causing understanding
the process difficult. As such, application of the robust tech-
niques such as artificial intelligence can be utilized in this
regard. In this paper, a predictive model was developed to
predict rock fragmentation using fuzzy inference system
(FIS) in Sarcheshmeh copper mine, Iran. For this purpose,
blasting parameters including burden, spacing, hole diameter,
Schmidt hammer rebound number, density of joint, powder
factor, and stemming length were considered as model inputs
to predict rock fragmentation (D80). In addition, by using the
same data, a multiple equation was proposed with the help of
multiple regression analysis (MRA). Results of coefficient of
determination (R2) between predicted and measured rock frag-
mentation were computed as 0.922 and 0.738 for FIS and
MRA models, respectively. Moreover, root mean square error
(RMSE) and variance account for (VAF) FIS model were
obtained as 2.423 and 92.195 %, respectively, while these

values were achieved for MRA technique as 4.393 and
73.835 %, respectively. Comparison of the performance indi-
ces of the predictive models showed the superiority of the FIS
model over the regression technique. Results of sensitivity
analysis indicated that burden, spacing, and powder factor
are the most influential parameters on rock fragmentation.

Keywords Rock fragmentation . Blasting operation . Fuzzy
inference system . Sarcheshmeh coppermine

Introduction

The main goal of blasting operations is to create the desired
fragment size distribution leading to optimize the overall
mine/plant economics (Michaux and Djordjevic 2005). Rock
fragmentation is the ultimate objective of the blasting opera-
tion in open pit mines. Properly fragmented rock will maintain
successfulness of the subsequent operations of loading,
hauling, and crushing (Morin and Ficarazzo, 2006).
Efficiency of a blast can be evaluated by the quality of rock
fragmentation. Therefore, parameters related to blast design
can play an important role in order to produce the desired rock
fragmentation (Monjezi et al. 2009). However, it should be
mentioned that the fragmentation, too, encounters with prob-
lems because many factors are out of reach of the blast engi-
neer hence; solution seems to be difficult (Monjezi et al.
2009). According to Thornton et al. (2002), influential param-
eters on rock fragmentation are divided into three categories,
namely explosive properties, blast geometry, and rock mass
properties. Normally, detonation and the dynamic response of
the rock are affected rock fracture and fragmentation around a
borehole (Zheming et al. 2007, 2008).

Many attempts have been made to develop empirical
models for prediction of blast-induced rock fragmentation.
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However, involvement of the several effective parameters has
made the available models inefficient. Cunningham (1983) mod-
el is themost renowned fragmentation predictionmodel. To cope
with weakness of the model developed by Kuznetsov (1973), he
used blastability index. In the SveDeFo model (Hjelmberg,
1983), rock mass type and drilling pattern are incorporated for
prediction of the mean fragment size. Roy and Dhar (1996)
utilized joint orientation in their predictive model. Stagg et al.
(1992) established amodel to assess fragment size distribution by
considering rock density and fracture strength. These empirical
models, which are based on obtained data from various blasting
works, cannot be implemented for different conditions (Monjezi
et al. 2009). Moreover, collecting all relevant parameters is not
possible in some occasions especiallywhen some of them are not
clearly understood or the effect of others is difficult to quantify.
Therefore, considering these limitations, new innovative and
more powerful approaches such as artificial intelligence tech-
niques are required in order to predict rock fragmentation
(Bahrami et al. 2011).

Fuzzy sets with ability of modeling logic reasoning can be
implemented in capturing experiential knowledge especially
when the system is semi-continuous or degree of heterogene-
ity is high, the case applicable while involving to rock struc-
tures. In comparison with conventional statistical method,
fuzzy models can efficiently be used to solve multivariable
problems (Grima and Babuska, 1999). Furthermore, these
models are applicable in the systems with vague (qualitative)
parameters that cannot be represented by crisp sets. In the
recent years, applicability of artificial intelligence methods
in the field of geotechnical engineering (Alvarez Grima et al.
2000; Sakellariou and Ferentinou 2005; Choobbasti et al.
2009; Torabi et al. 2013; Jahed Armaghani et al. 2014a;
Momeni et al. 2014) and specially in mining engineering
and rock mechanics has been highlighted in literature
(Monjezi et al. 2011; Jahed Armaghani et al. 2014b; Marto
et al. 2014; Hajihassani et al. 2014; TonnizamMohamad et al.
2012, 2014; Jahed Armaghani et al. 2014c, Momeni et al.
2015; Ebrahimi et al. 2015).

Among these techniques, fuzzy inference system (FIS) of
Mamdani and Tagaki-Sugeno algorithms has been widely uti-
lized. Nguyen and Ashworth (1985), Gokay (1998), Sonmez
et al. (2003), and Aydin (2004) applied FIS model to develop
an expert knowledge-based rock mass classification system.
Chuang (1995) proposed a FIS model to predict shear strengths
of soils. Bascetin (1999) and Iphar and Goktan (2006)) used
fuzzy sets in selecting surface mine equipments. Jiang et al.
(1997) and Deb (2003) employed fuzzy reasoning technique
for the analyzing roof condition in underground mining. Grima
and Babuska (1999), Gokceoglu (2002), and Topcu and
Sarıdemir (2008) used FISmodel to predict uniaxial compressive
strength (UCS) of the rock. Klose (2002) introduced a fuzzy
logic model for geological description using seismic information.
Gokceoglu and Zorlu (2004) employed the fuzzy approach to

predict UCS and elasticity modulus of the rock. Kayabasi et al.
(2003) introduced a FIS model for indirect estimation of the
deformation modulus. Nefeslioglu et al. (2006) predicted joint
density for evaluating rock mass block size using fuzzy logic.
Acaroglu et al. (2008) established a FIS model to simulate rock
cutting process in tunnel boring machine (TBM) tunneling.
Azimi et al. (2010) applied fuzzy set theory to develop a classi-
fication system for rock blastability. Yagiz andGokceoglu (2010)
applied FIS to estimate rock brittleness. Gligoric et al. (2010)
used a hybrid FIS model to evaluate shaft location. Galetakis
and Vasiliou (2010) implemented FIS model in selective mining.
Li et al. (2010) introduced a fuzzy probability measure for
predicting ground subsidence due to underground mining.
Especially, in the field of blasting, Mishnaevsky and
Schmauder (1996) successfully utilized fuzzy set theory to de-
scribe blast-induced damage extent in the heterogeneous rocks.
Moreover,Wu et al. (1999) constructed a fuzzy probability mod-
el to simulate rock mass condition under explosive impact.
Furthermore, Monjezi et al. (2009) used FIS to predict rock
fragmentation induced by blasting. In addition, Monjezi et al.
(2010a, b) employed the same approach for predicting blast-
induced back-break. A FIS model was developed by Rezaei
et al. (2011) to predict flyrock. They compared the FIS results
with conventional statistical models and showed the higher effi-
ciency of the developed FIS model compared to statistical
models.

In this paper, a FIS model was developed to predict rock
fragmentation resulting from blasting operations in the
Sarcheshmeh copper mine, Iran. For comparison purpose,
multiple regression analysis was also employed to demon-
strate capability of the FIS model in predicting rock
fragmentation.

FIS

The fuzzy set theory was originally introduced by Zadeh (1965).
In fact, this theory provides a mathematical (satisfactorily ap-
proximation) solution for complex decision problems with sub-
jective, incomplete and imprecise information which cannot be
easily described with classical methods (Zimmermann 1992). In
this method, any type of information ranging from interval-
valued numerical data to linguistic expressions can be processed
(Dubois and Prade 2000). In the recent years, there is an increas-
ing interest in obtaining fuzzymodels from experimental or mea-
sured data. As compared to the classic sets, fuzzy sets are more
applicable to reflect the real world and even the fuzziness of
human decision can be taken into account (Monjezi et al.
2010a, b; Rezaei et al. 2011).

In the classic or ordinary sets, membership of an element is
crisp; hence, an element belongs to or does not belong to a set. In
these sets, a uniquemembership function is sufficient to describe
all of the members. But, in the fuzzy sets which are
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generalization of the ordinary sets, there are no sharp
boundaries and an element can be a member of a set
with a specific degree ranging the interval [0, 1] (Iphar
and Goktan 2006) (see Fig. 1).

The process of determining membership functions for
fuzzy variables is defined as fuzzification. In this process,
individual inputs are converted to degrees of membership by
selecting an appropriate membership function. Membership
function selection is performed according to relevant expert’s
experiences (Yagiz and Gokceoglu 2010). There exist various
types of membership functions such as triangular, trapezoidal,
piecewise-linear, Gaussian, bell-shaped, etc. In the fuzzy sets,
linguistic expressions of the uncertainties such as “very low,”
“low,” “medium,” “high,” and “very high” are represented
mathematically with the help of membership functions.

FIS is a robust computing system with capabilities such as
classification and decision analyses (Galetakis and Vasiliou
2010). The system basically consisted of three main compo-
nents, namely database, rule base, and reasoning mechanism.
In the rule base construction, in order to solve the problem, a
number of rules have to be selected. On the other hand, data-
base is implemented for defining membership functions, and
finally, reasoning mechanism is employed to generate logic
outputs. A FIS model can be constructed by fuzzy rules (rela-
tionships of inputs and outputs parameters) in order to describe
complex and uncertain vague systems. In a rule-based model,
fuzzy propositions are replaced by implication functions or
fuzzy if-then rules (Grima 2000). A rule-based model with the
ability of combining experts’ knowledge and numerical data
can be considered as the key component of a FIS model
(Grima 2000; Iphar and Goktan 2006). The process of combin-
ing the individual consequents into a single fuzzy set or
final consequent is called aggregation of rules. This
process can be performed using maximum operator. The most
widely employed FISmodels in the aggregation process are as
follows:

& Mamdani fuzzy model
& Takagi–Sugeno–Kang fuzzy (TSK) model
& Tsukamoto fuzzy model
& Singleton fuzzy model

Among these models, Mamdani is considered as one of the
most commonly applied algorithms in the fuzzy logic
(Sonmez et al. 2003; Aydin 2004; Iphar and Goktan 2006).
Mamdani and Assilian (1975) indicated that fuzzy sets and
fuzzy logic can provide a totally unstructured set of linguistic
heuristics into a structured algorithm. General form of the
Mamdani “if-then” rule structure is given below:

If xi is Ail…and xr is Air then y is Bi i ¼ 1; 2; …; kð Þ

where k represents the rule number, and xi and y are the input
and output variables, respectively (Sonmez et al. 2003).

There exist various composition methods of fuzzy relations
but max–min composition is the most frequently utilized
method. A diagram of a Mamdani model with two-rule is
shown in Fig. 2. Base on this figure, overall system output
“z” which is subjected to two crisp inputs “x” and “y” can be
seen. For each rule, using the minimum operator, consequent
fuzzy set is truncated considering the minimum of the ante-
cedent fuzzy sets.

The final step of a FIS model procedure is defuzzification
in which a representative crisp value is obtained from a fuzzy
set. Among many methods of defuzzification such as centroid
of area (COA), smallest of maximum, and mean of maximum,
COA is the most extensively used method (Grima 2000). In
the COA technique, crisp value is obtained as follows:

Z*
COA ¼

Z
z
μA zð ÞzdzZ

z
μA zð Þzdz

ð1Þ

where ZCOA
* represents the crisp value of output (“z”), and

μA(z) is the aggregated output membership function (Iphar
and Goktan 2006).

Data collection and site investigation

In this study, Sarcheshmeh copper mine which is located in
Kerman Province, Iran was investigated to predict rock frag-
mentation induced by blasting. Sarcheshmeh porphyry

Fig. 1 a Crisp set and b fuzzy set
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Fig. 2 A diagram of Mamdani
FIS (Jang et al. 1997)

Fig. 3 Location of the
Sarcheshmeh copper mine, Iran
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deposit is located in an elongated NNW–SSE range extending
from Turkey to the southeast of Iran in Baluchestan Province.
It is mainly composed of folded and faulted Tertiary volcano-
sedimentary rocks. Figure 3 indicates location of the
Sarcheshmeh copper mine in Iran.

The deposit has an elliptical shape with diameters of 2,300
and 1,200 m. The host rocks are Eocene andesite and miner-
alized grandiorite. Waste is mainly composed of hornblende,
feldspar, and biotite porphyritic rocks. The mine production is
40,000 t/day, and average grade of primary crusher feed is
1.1 %. In the Sarcheshmeh blasting operations, mostly blast
holes of 228 and 251 mm with length of 15 m were vertically

drilled with the help of three-cone bits. Detonating cord is
used for initiation, and ammonium nitrate and fuel oil
(ANFO) with specific gravity of 0.85–0.95 g/cm3 is utilized
as the main explosive material. Delay time between the first
and second row is 80 ms, whereas it is 50 ms between the
other rows.

Evaluation of the fragmentation by image processing is a
low-cost and quick technique. In this study, size distributions
of the fragmented rocks were analyzed using digital images
with the help of Split Desktop software. In this regard, a num-
ber of photographs were taken after each blast and during
loading of the muck pile. A scaling device of known dimen-
sions has to be placed in each view to reference the sizing.
Figure 4 shows a sample photo prepared for the process. In
addition, Fig. 5 displays output of the employed software, i.e.,
size distribution curve.

A number of 185 datasets were prepared from the
Sarcheshmeh mine blasting operations. The data was col-
lected from benches with various rock strength and jointing
properties. Table 1 lists input parameters of several studies
of rock fragmentation prediction. According to this table, a
wide range of input parameters (e.g., spacing, burden, pow-
der factor, stemming, hole diameter, and hole depth) was
utilized to solve the problem of rock fragmentation. In ad-
dition, for prediction of rock fragmentation empirically,
many input parameters such as explosive charge, powder
factor, blastability constant, hole depth, and specific charge
should be used. Based on above discussion, performing
several input parameters may solve rock fragmentation
problem. Hence, burden, spacing, hole diameter, Schmidt
hammer rebound number, density of joint, powder factor,
and stemming length were measured and used in the
modeling. The input–output variables along with their re-
spective limit values are presented in Table 2. According to

Fig. 4 A sample photo prepared for image processing

Fig. 5 Size distribution results

Arab J Geosci (2015) 8:10819–10832 10823



this table, overall range of powder factors in these opera-
tions was between 150 and 180 g/t, whereas the exact
range was between 136.40 and 240.14 g/t. The maximum
measured stemming length (fine gravel) was 8 m.
Generally, design of holes was like rhomb with distance
(B×S) of 6 m×8 m in the rock deposit. Maximum and
minimum number of holes in these operations was 81
and 16, respectively. In this study, L-type Schmidt’s ham-
mer was used for estimation of rock surface strength. The
procedure suggested by ISRM (2007) was used to conduct
Schmidt hammer test. The values of 10 and 49.2 were
measured as the minimum and maximum values of
Schmidt hammer rebound number, respectively.

Empirical predictors for fragmentation prediction

In order to demonstrate the capability of the empirical predic-
tors, the most popular empirical predictors were utilized to
predict rock fragmentation (D50), as shown in Table 3. In
Kuznetsov model, A presents the rock factor (very soft rocks
(A=3); soft rocks (A=5); medium rocks (A=7); hard rocks
(A=13)), q depicts the powder factor (kg/m3), Q presents the
explosive charge in a blast hole (kg), and SANFO depicts the
relative weight of explosive that determine D50 (cm). In the
SveDeFo model, B is the burden (m), S is the spacing (m), L is
the blast hole depth (m), T is the stemming length (m), CE is
the specific charge (kg/m3), S′ is the blastability constant (very
jointed and fissured rock (S′=0.6); jointed rock (S′=0.55);
relatively homogeneous rock (S′=0.45); normal rock with hair
cracks (S′=0.4)), and C is the rock constant (normally in the
range of 0.3–0.5) that determine D50 (cm).

The correlations between the predicted and actual values of
D50 were determined using the mentioned equations, and
relevant results are displayed in Figs. 6 and 7. As shown in
these figures, coefficient of determination (R2) values of 0.262
and 0.459 for Kuznetsov and SveDeFo models, respectively,
reveals poor prediction capabilities of these models.

Additionally, root mean square error (RMSE) values were
obtained as 8.820 and 12.541 for Kuznetsov and SveDeFo,
respectively. Results of empirical equations show that there is
a need to develop new models with higher accuracy for pre-
diction of rock fragmentation. Therefore, a FIS model is de-
veloped to estimate rock fragmentation as described in the
following section.

Fuzzy model for fragmentation prediction

A Mamdani algorithm-based fuzzy model was developed for
prediction of rock fragmentation in the Sarcheshmeh copper
mine. Burden, spacing, hole diameter, Schmidt rebound num-
ber, density of joints, powder factor, and stemming length
were considered as model inputs (dependent variables) to pre-
dict rock fragmentation as model output (independent vari-
able). The input and output parameters in the developed FIS
model are depicted in Fig. 8. As mentioned earlier,
fuzzification of the input/output variables is performed using
an appropriate membership function. As the most applicable
membership functions, triangular and trapezoidal were uti-
lized for fuzzification in this study (Monjezi et al. 2009;
Monjezi et al. 2010a, b; Rezaei et al. 2011). Here, the linguis-
tic variables for some parameters were set as low (L), medium
(M), and high (H) and for other parameters were assigned asTable 1 Several works on rock fragmentation prediction and their input

parameters

Reference Input No. of
dataset

Monjezi et al. (2009) B, S, ST, SD, PF, HD, RD 415

Monjezi et al. (2010a, b) D, HD, BS, ST, N, PF, RC, C 250

Bahrami et al. (2011) B, S, ST, SD, PF, HD, C, BI, D 220

Sayadi et al. (2013) B, S, HD, SD, SC 103

S Spacing, B burden, ST stemming, PF powder factor, SD specific dril-
ling, C charge per delay, D hole diameter, HD hole depth, RD rock
density, BS burden to spacing, N number of row, BI blastability index,
CLR charge last row, SC specific charge

Table 2 Input and output quantities obtained from the mine

Variable
category

Input/output variables Symbol Minimum Maximum

Input Burden (m) B 5.00 7.50

Spacing (m) S 6.00 10.00

Hole diameter (mm) D 152.40 251.00

Schmidt hammer
rebound number

E 10.00 49.20

Density of joint J 10.00 120.00

Powder factor (g/t) PF 136.40 240.14

Stemming length (m) ST 5.00 8.00

Output D80 of fragmentation (cm) F 9.90 38.00

Table 3 Empirical fragmentation predictors

Predictor Equation

Kuznetsov (Kuznetsov
1973) Xm ¼ Aq−0:8Q

1=6 115
SANFO

� �19=30

SveDeFo (Hjelmberg
1983) K50 ¼ S0 1þ 4:67 T

L

� �2:5h i
e0:29lnB

2
ffiffiffiffiffi
S

1:25

p
−1:18ln CE

Cð Þ−0:82
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very low (VL), low (L), medium (M), high (H), and very high
(VH). It should be noted that the selection of membership
degrees for inputs is according to field observations and engi-
neering experience. The assessment of membership function
number was usually obtained based on the experience of fuzzy
expert in addition to trial-and-error method. It can be said that
insufficient rules can cause “underfitting,” whereas excessive
rules can result in “overfitting.” In the underfitting, the requi-
site accuracy of the modeling is not achieved, whereas in the
overfitting, the fuzzy model performance would not be real
because instead of realizing relationship between the patterns,
fuzzy inference system just remembers the patterns.
Accordingly, fuzzy experts can realize the optimum number
of rules based on their experiences. Figures 9, 10, 11, 12, 13,
14, and 15 show membership functions of model inputs.

Moreover, Fig. 16 displays membership function of model
output. In this study, a total of 150 rules were employed to
develop the rule base of the Mamdani fuzzy model. Based on
the variety parameter interval in the available database for
constructing of the fuzzy models and the expert experi-
ences, the number of membership functions can be var-
iable. Considering the number of membership functions,
all of the possible rules are not required in the model
construction due to overlap of some rules and
overfitting considerations. However, the optimum num-
ber of membership functions and relevant rules can be
obtained based on the experience of fuzzy expert. Based
on the complexity of the problem, the aggregation
method is selected. In this research, the Mamdani ag-
gregation algorithm which is one of the most used FIS

Fig. 6 Relationship between
measured and predicted D50 by
Kuznetsov

Fig. 7 Relationship between
measured and predicted D50 by
SveDeFo
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to apply in complex engineering geological problems
was utilized. Several samples of fuzzy rules implement-
ed in the modeling can be seen in Table 4. As the last
step of model development (defuzzification), converting
of the obtained fuzzy values into crisp (numeric) values
was performed using COAmethod. The rule viewer and fuzzy
reasoning mechanism of the MATLAB environment is shown
in Fig. 17. The trial-and-error method is used for selecting the
better type of fuzzification and defuzzification methods in this
research. Precise estimation of rock fragmentation is possible
when input parameters are given to the proposed fuzzy model.

Based on Fig. 17, when input parameters are B=5 m, S=6 m,
D=152 mm, E=45, J=102 cm, PF=188 g/t, and ST=59 m,
model output or D80 of the rock fragmentation would be
34.6 cm, which is very identical to the real fragmentation
obtained in the mine that performed blasting operation.

Multiple regression analysis

Multiple regression analysis (MRA) is utilized to establish
relationship between independent and dependent variables.

Fig. 8 Schematic illustration of
the fuzzy inference model

Fig. 9 Membership functions of burden Fig. 10 Membership functions of spacing
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By this, parameters of a function which is best fitted to a set of
data observations are determined. In the statistics, there exist
two main regression analyses, i.e., simple and multiple. MRA
can be implemented to achieve the best-fit equation when
there is more than one independent or input parameter.

Here, rock fragmentation (D80) is set to be the product of
the seven parameters (i.e., burden, spacing, hole diameter,
Schmidt rebound number, density of joint, powder factor,
and stemming length). The statistical software package
SPSS 11.5 was used to propose a predictive model for estima-
tion of rock fragmentation (see Eq. 2). Additionally, Table 5
presents statistical information regarding the developed pre-
dictive model.

F ¼ 62:208 − 2:848 B − 0:530 S − 0:033 D

þ 0:072 E − 0:042 PF − 1:065 ST þ 0:058 J ð2Þ

where F is D80 of fragmentation, B is burden (m), S is spacing
(m),D is hole diameter (mm), E is Schmidt rebound number, J
is density of joint (cm), PF is powder factor (g/t), and ST is
stemming length (m).

Results and discussion

In this study, 185 results of rock fragmentation (D80) obtained
from Sarcheshmeh mine were predicted through FIS and
MRA techniques. In order to have a comprehensive compar-
ison between the performance of the FIS and MRA models,
variance account for (VAF), RMSE, and R2 were selected as
they can be seen in Eqs. 3–5, respectively.

VAF ¼ 1−
var yi−yið Þ
var yið Þ � 100 %

� �
ð3Þ

Fig. 11 Membership functions of hole diameter

Fig. 12 Membership functions of Schmidt rebound number

Fig. 13 Membership functions of joint density

Fig. 14 Membership functions of powder factor
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NΣN
i¼1 yi−yið Þ2

s
ð4Þ

R2 ¼ 100
ΣN

i¼1 yi−yað Þ yi−yað Þ
ΣN

i¼1 yi−yað ÞΣN
i¼1 yi−yað Þ2

" #2

ð5Þ

where var = variance, yi = the measured value, yi^ = the pre-
dicted value,N = the number of samples, and ya^ and ya are the
averages of prediction and measured sets, respectively. The
model will be excellent if the VAF is 100, RMSE is 0, and
R2 is 1.

The graphs of the estimated rock fragmentation (D80)
using theMRA and FIS approaches against the measured rock
fragmentation (D80) for testing datasets are displayed in
Figs. 18 and 19, respectively. As indicated in these figures,
FIS model can provide higher performance capacity for

prediction of D80 compared to the MRA technique. The R2

of the FIS model equal to 0.901 suggests the superiority of the
FIS model in predicting D80, while this value is 0.727 for
MRA technique.

Performance indices obtained by predictive models for all
185 datasets are shown in Table 6. As shown in this table,
considering results of RMSE, VAF, and R2, it was found that
performance capacities of the FIS predictive model are higher
than the MRA model. It can be concluded that the FIS model
outperforms the MRA technique in predicting rock
fragmentation.

Fig. 15 Membership functions of stemming length

Fig. 16 Membership functions of the D80 of fragmentation

Table 4 Several examples of if-then fuzzy rules

Description of if-then rules

If (B isM) and (S is L) and (D is L) and (E isM) and (JOINT isM) and (PF
is M) and (ST is L) then (F is H) (1)

If (B is L) and (S is VL) and (D is L) and (E isH) and (JOINT is VH) and
(PF is H) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E isH) and (JOINT is VH) and
(PF is M) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E isH) and (JOINT is L) and (PF
is VL) and (ST is L) then (F is H) (1)

If (B is L) and (S is VL) and (D is L) and (E is H) and (JOINT isM) and
(PF is VH) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E isH) and (JOINT is VH) and
(PF is VH) and (ST is L) then (F is H) (1)

If (B is L) and (S is VL) and (D is L) and (E isH) and (JOINT is L) and (PF
is M) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E isH) and (JOINT is VL) and
(PF is M) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E isH) and (JOINT is VL) and
(PF is H) and (ST is L) then (F is H) (1)

If (B is L) and (S is VL) and (D is L) and (E is H) and (JOINT isM) and
(PF is H) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E is H) and (JOINT is M) and
(PF is M) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E is H) and (JOINT is H) and
(PF is H) and (ST is L) then (F is VH) (1)

If (B is L) and (S is VL) and (D is L) and (E is H) and (JOINT isM) and
(PF is M) and (ST is L) then (F is H) (1)

If (B is L) and (S is VL) and (D is L) and (E is H) and (JOINT isM) and
(PF is H) and (ST is L) then (F is M) (1)

If (B is L) and (S is VL) and (D is L) and (E is H) and (JOINT isM) and
(PF is H) and (ST is L) then (F is H) (1)

If (B isH) and (S is H) and (D isM) and (E isM) and (JOINT is VL) and
(PF is H) and (ST is H) then (F is M) (1)

If (B isH) and (S is VH) and (D isH) and (E isM) and (JOINT is VL) and
(PF is L) and (ST is H) then (F is VL) (1)

If (B isH) and (S is VH) and (D is H) and (E isM) and (JOINT isM) and
(PF is VL) and (ST is H) then (F is VL) (1)

If (B isH) and (S is VH) and (D is H) and (E isM) and (JOINT is VL) and
(PF is VH) and (ST is H) then (F is L) (1)

If (B isM) and (S is L) and (D is L) and (E isM) and (JOINT is VL) and
(PF is VL) and (ST is L) then (F is L) (1)
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Sensitivity analysis

Sensitivity analysis is a technique to evaluate the most effec-
tive input parameters on output(s). To apply this, the cosine
amplitude method can be utilized (Yang and Zang 1997). This
method is given in the following equation:

Ri j ¼
Σn

k¼1 xik � x jk
� �

Σn
k¼1xik

2Σn
k¼1x jk

2
ð6Þ

where xi and xj represent input and output parameters,
respectively, and n is the number of all datasets. The
strengths of the relations between input and output pa-
rameters are shown in Table 7. According to this table, burden,
spacing, and powder factor are the most influential parameters
on D80.

Conclusion

In this paper, a FIS model was efficiently developed for pre-
diction of rock fragmentation in the blasting operations of a
copper mine by encountering probable uncertainties. In this
regard, blasting parameters as well as rock fragmentation of
185 blasting works were measured in Sarcheshmeh copper
mine, Iran. To compare performance of the fuzzy model,
MRA technique was also applied. Developing of both the
predictive models was fulfilled using the same datasets. The
mentioned predictive models were constructed using seven
input parameters (i.e., burden, spacing, hole diameter,
Schmidt rebound number, density of joint, powder factor,
and stemming length) to predict rock fragmentation (D80). It
was observed that the fuzzy model efficiency is considerably

Fig. 17 An example calculation for the FIS model

Table 5 Statistical information for developed predictive model

Independent
variable

Coefficient Standard
error

t value p value

Constant 62.208 4.215 14.757 0

B −2.848 0.508 −5.607 0

S −0.530 0.307 −1.730 0.085

D −0.033 0.012 −2.708 0.007

E 0.072 0.029 2.464 0.015

PF −0.042 0.011 −3.729 0

ST −1.065 0.433 −2.458 0.015

J 0.058 0.013 4.312 0
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better than the statistical model. R2, RMSE, and VAF for the
FIS model were calculated as 0.922, 2.423, and 92.195 %,
respectively, while these values for MRA technique were
computed as 0.738, 4.393, and 73.835 %, respectively.
Although all proposed methods in this study are applicable

in predicting rock fragmentation, FIS model can provide
higher performance capacity compared to MRA technique.
Results of sensitivity analysis indicated that burden, spacing,
and powder factor are the most influential parameters on rock
fragmentation.

Fig. 18 R2 of measured and
predicted fragmentation for
testing datasets using MRA
technique

Fig. 19 R2 of measured and
predicted fragmentation for
testing datasets using FIS model

Table 6 Performance indices of the predictive models for all datasets

Predictive model Performance indices

R2 RMSE VAF (%)

MRA 0.738 4.393 73.835

FIS 0.922 2.423 92.195

Table 7 Strengths of relation between input and output parameters

Input parameter B S D Rn DJ PF ST

rij 0.961 0.955 0.901 0.934 0.909 0.941 0.897
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