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Abstract Mapping landslide-prone regions are crucial in nat-
ural hazard management and urban development activities in
hilly and tropical regions. This research aimed to delineate a
spatial prediction of landslide hazard areas along the Jelapang
Corridor of the North-South Expressway inMalaysia by using
two statistical models, namely, logistic regression (LR) and
evidential belief function (EBF). Landslides result in high
economic and social loses in Malaysia, particularly to high-
way concessionaries such as PLUS Expressways Berhad. LR
and EBF determine the correlation between conditioning fac-
tors and landslide occurrence. EBF can also be applied in
bivariate statistical analysis. Thus, EBF can be used to assess
the effect of each class of conditioning factors on landslide
occurrence. A landslide inventory map with 26 landslide sites
was recorded using field measurements. Subsequently, the
landslide inventory was randomly divided into two data sets.
Approximately 70 % of the data were used for training the
models, and 30 % were used for validating the results. Eight
landslide conditioning factors were prepared for landslide sus-
ceptibility analysis: altitude, slope, aspect, curvature, stream
power index, topographic wetness index, terrain roughness
index, and distance from river. The landslide probability index
was derived from both methods and subsequently classified
into five susceptible classes by using the quantile method. The

resultant landslide susceptibility maps were evaluated using
the area under the curve technique. Results revealed the pro-
ficiency of the LRmethod in landslide susceptibility mapping.
The achieved success and prediction rates for LR were 90 and
88 %, respectively. However, EBF was not successful in pro-
viding reasonable accurate results. The acquired success and
prediction rates for EBF were 53 and 50 %, respectively.
Hence, the LR technique can be utilized in landslide hazard
studies for land use management and planning.

Keywords Landslide . Hazard . LiDAR . EBF . LR . GIS .

Malaysia

Introduction

Landslides result in considerable commercial, social, and eco-
logical damages worldwide. They are frequently triggered by
other natural catastrophes, such as earthquakes and floods,
and are hard to predict (Glenn et al. 2006). Moreover, strong
or continuous rainfall can trigger land failure (Huang et al.
2012). Unplanned agricultural activities in landslide-prone
areas can also cause significant soil erosion. Moreover, con-
struction projects in hilly regions trigger land failures.
Malaysia is a good example of this situation; this country is
located in a tropical area that receives a huge amount of pre-
cipitation annually. Landslides have always posed serious
threats to settlements and structures in Malaysia that support
transportation, natural resources, and tourism. Landslide oc-
currences are prevalent in the hill complexes of Malaysia both
in the highlands and lowlands, including along the highways.
These occurrences have caused loss of lives and properties in
recent years. Therefore, landslide susceptibility, hazard, and
risk mapping should be implemented to reduce landslide oc-
currence (Pradhan and Lee 2010c). The first step in landslide
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hazard and risk mapping is to prepare a landside susceptibility
map. This map shows the areas with the same probability of
landslide occurrence within a specific period (Pradhan and
Youssef 2010). Therefore, comprehensive landslide prediction
along highways reduces damages by providing preventive
actions. Early warning and preparedness, assigning highly
sensitive landslide zones as protected (non-developable)
areas, as well as detecting and monitoring landslide occur-
rences are possible examples of these actions.

Landslide susceptibility mapping assesses the proneness of
a terrain to land failure and landslide at a particular area or
under specific conditioning factors (Pourghasemi et al. 2012).
Remote sensing and geographic information system (GIS) are
efficient techniques for landslide susceptibility mapping
(Jebur et al. 2014b; Van Westen 2000). Several studies have
focused on landslide susceptibility mapping. The most popu-
lar methods for such mapping are the analytic hierarchy pro-
cess (AHP) (Pourghasemi et al. 2012), statistical approaches
such as frequency ratio (FR) (Pradhan and Lee 2010b) and
logistic regression (LR) (Lee and Pradhan 2007), support vec-
tor machine (SVM) (Wan and Lei 2009), neuro-fuzzy, fuzzy
logic (Tien Bui et al. 2012), evidential belief function (EBF)
(Lee et al. 2013; Pradhan et al. 2014), artificial neural network
(ANN), and weight of evidence (WoE) (Lee and Choi 2004).
However, only a few studies have compared the efficiency and
performance of these methods (Pradhan 2013; Pradhan and
Lee 2010a).

Qualitative methods such as AHP have been used in re-
gional studies because of different opinions among experts.
Several situations can affect the choice of experts and can
consequently negatively influence their assessment (Ayalew
and Yamagishi 2005). Moreover, two experts may have
completely different views. Chen et al. (2011) believed that
the use of qualitative methods such as AHP leads to subjective
and uncertain outcomes. Some researchers attempted to
overcome the disadvantages of AHP by choosing experts
from different areas; nevertheless, the disadvantages of this
approach cannot be completely overcome because human
decision is involved. Pradhan (2013) recently utilized decision
tree (DT), SVM, and an adaptive neuro-fuzzy inference sys-
tem (ANFIS) to map prone areas in Penang Hill, Malaysia and
compared their proficiency. He indicated that defining the
rules for DTand choosing SVM parameters are difficult tasks.
Moreover, these methods require considerable time to process
data. ANFIS performs better than DT and SVM, but it in-
volves several parameters. Moreover, all three methods re-
quire a high-speed processor that is capable of handling heavy
performance and huge amount of spatial data. ANN is a com-
mon technique used inmany domains and particularly in land-
slide studies (Wan et al. 2010). Some researchers call ANN as
a black box with a complicated procedure and performance
(Pradhan and Buchroithner 2010). Moreover, ANN cannot
produce precise predictions when the validation data set

consists of values outside the range of those utilized for train-
ing (Wan et al. 2010). ANN is also considerably time consum-
ing when a large number of factors are involved. Fuzzy logic
is easier to understand than ANN. It has been employed in
numerous landslide applications; however, the opinions of
experts contribute some degrees of uncertainty in the out-
comes of this method (Tilmant et al. 2002).

Statistical methods are simple, and their input, computa-
tion, and outcome processes are easily understood. FR and
LR can be used to perform bivariate statistical analysis
(BSA) and multivariate statistical analysis (MSA), respective-
ly (Aleotti and Chowdhury 1999). The principles of statistical
techniques are primarily based on the mathematical expres-
sions of the association between conditioning factors and
landslides. BSA allocates weights to the categories of each
conditioning factor by assessing their role in landslide occur-
rence. The effect of each class can be recognized by examin-
ing the correlation between the landslide inventory map and
landslide conditioning factors. The density of landslides in
each category is the main factor considered during weight
assignments. LR, which is frequently used in susceptibility
mapping, examines the correlation between conditioning fac-
tors and landslide occurrence. Most MSA methods require
strict assumptions that are defined prior to the study. LR can
overcome this problem and provide an easy procedure for
analysis without the need to define prior assumptions
(Benediktsson et al. 1990). WoE is another BSA method that
is less used in hazard studies than FR. Although each BSA
method needs particular mechanisms for calculation, all these
methods follow the same concept (Ozdemir and Altural 2013;
Youssef et al. 2013, 2015; Zare et al. 2013; Regmi et al. 2014;
Pourghasemi et al. 2013). BSAmethods identify the effects of
each class of conditioning factors on landslide occurrence but
cannot evaluate the association between conditioning factors
and landslide occurrence (Ayalew and Yamagishi 2005). The
advantage of LR is that the relationship among conditioning
factors is considered. Meanwhile, Althuwaynee et al. (2012)
examined the efficiency of EBF in landside studies and found
that the degree of belief (Bel), degree of disbelief (Dis), degree
of uncertainty (Unc), and degree of plausibility (Pls) should be
individually measured to calculate EBF (Tien Bui et al. 2012).
Although both FR and EBF can perform BSA, EBF
frequently provides better results than FR. EBF can also
assess the correlation among conditioning factors. That is,
EBF can perform both BSA and MSA. Tien Bui et al.
(2012) compared the proficiency of EBF and fuzzy logic
methods in landslide susceptibility map and found that the
results derived from EBF exhibit the highest prediction
capacity.

Statistical methods that are typically employed in landslide
susceptibility mapping include LR and EBF (Althuwaynee
et al. 2012; Lee and Pradhan 2007). In the present study, these
two methods were chosen for landslide modeling along the
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corridor of the North-South Expressway. Jelapang, a small
stretch of PLUS Highway Berhad in Malaysia, is prone to
landslides. PLUS Berhad holds the concession for a total of
987 km of toll expressways in Malaysia, the longest of which
is the North-South Expressway or NSE. Acting as the Bback-
bone^ of the west coast of the peninsula, the NSE stretches
from the Malaysian-Thai border in the north to the border with
neighboring Singapore in the south, linking several major cities
and towns along the way. North-South Expressway inMalaysia
contributes to the country economic development through
trade, social, and tourism sector. Presently, the highway is good
in terms of its condition and connection to every state but some
locations need urgent attention. Stability of slopes at these lo-
cations is of most concern as any instability can cause danger to
the motorist. Therefore, landslide hazard assessment along the
NSE is highly important. The achievement of this research will
be considerably beneficial to landslide preparedness and dam-
age mitigation for PLUS Highway Berhad.

Study area

The Jelapang Corridor of the North-South Expressway, also
known as the PLUS Expressways in Malaysia, was selected for
the implementation of the landslide susceptibility analysis be-
cause of the frequent occurrence of mass movements in this
region (Fig. 1). The expressway links many major cities and
towns in western Peninsular Malaysia, functioning as the back-
bone of the west coast of the peninsula. It is the longest express-
way in Malaysia with a total length of approximately 772 km.
This expressway passes through seven states on the peninsula,

namely, Johor, Malacca, Negeri Sembilan, Selangor, Perak,
Penang, and Kedah. This area is approximately located at the
zone of 4°43′ 7.605″ N to 4°39′ 18.038″ N latitude and 101°4′
6.068″ E to 100°59′ 7.232″ E longitude. The study area experi-
ences frequent mass movements that cause erosion and land-
slides. Annual rainfall is very high, averaging between 2500
and 3000mmper year. Two pronounced wet seasons occur from
September to December and from February to May. Rainfall
peaks between November to December and March to May.
The geomorphology of the area consists of an undulating plateau
and a hilly terrain. The geology of the area mostly consists of
Quaternary and Devonian granite. In recent years, many land-
slides have been recorded along PLUS highways, roads, and
streams, which scour the sides of streams.

Data used

Landslide inventory

Landslide inventory maps are the basis and first requirement
of most landslide susceptibility mapping methods (Pradhan
et al. 2014). Furthermore, inventory maps can be utilized to
assess and decrease landslide occurrence and risk at a local
scale (Umar et al. 2014). A landslide inventory map is crucial
for assessing the correlation between landslide occurrence and
conditioning factors. Multiple field surveys and observations
were conducted in the study area to create a complete inven-
torymap. A total of 26 landslides were found in the study area,
which was subsequently divided into two data sets for training
and testing. Based on literature, 70 % of the landslide

Fig. 1 Landslide location map
with a hill-shaded map of
Jelapang, Malaysia
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inventory was used for training the models and 30 % was
utilized for validation (Fig. 1). Training slope failure locations
were used to create the dependent layer. The produced layer
consists of two values, namely, 0 and 1, where 1 denotes the
presence and 0 indicates the absence of slope failure in the
study area. The remaining slope failure locations were utilized
to test the outcomes. Both layers were made in ArcGIS and
transformed into raster format.

Landslide conditioning factors

Landslide susceptibility is defined by utilizing reasonable
qualitative and quantitative studies of the conditioning factors
in affected areas (Domínguez-Cuesta et al. 2007). The condi-
tions of conditioning factors differ per region. Providing the
conditioning factor data set is a challenging task, and no exact
rule is available to decide how many conditioning factors are
sufficient for a particular susceptibility analysis (Nefeslioglu
et al. 2010). These factors are typically selected based on
expert knowledge or literature. In the current research, condi-
tioning factors were chosen based on knowledge derived from
literature. The conditioning factor data set contains altitude,
slope, aspect, curvature, stream power index (SPI), topograph-
ic wetness index (TWI), terrain roughness index (TRI), and
river factors. Table 1 lists the conditioning factors, and Fig. 2
shows the data layers. All conditioning factors were resized to
a 1 m×1 m grid, and the grid of the Jelapang region was built
by 9254 columns and 7067 rows (28,379,958 pixels;
28.37 km2).

Altitude, slope, aspect, curvature, SPI, TWI, and TRI maps
were derived from a digital elevation model (DEM), as shown
in Fig. 2a–g, respectively. To perform EBF, the quantile clas-
sification technique was utilized to categorize each condition-
ing factor. The logic behind such classification is to implement
BSA; scale data should be categorized to evaluate the influ-
ence of each class on slope failure occurrence (Tehrany et al.
2013). At the altitude of 0–1339.24 m, 10 classes were
established using the quantile classification method. This

method is commonly used in classification and various appli-
cations (Tehrany et al. 2014b). Slope is an influential condi-
tioning factor in landslide occurrence. This factor directly af-
fects slope failure occurrence and is typically used in landslide
susceptibility analysis (Pradhan and Lee 2010a). The vertical
component of gravity rises with the amount of slope. The
slope in the study area ranges from 0 to 89.85° (Fig. 2b).
Hence, the slope map of the study area was prepared and
partitioned into 10 slope classes (Fig. 2b). Aspect is also a
key landslide conditioning factor (Jebur et al. 2014a). The
morphological situation of the study area and the extent of
rainfall and sunlight are the meteorological conditions
that influence the occurrence of slope failure. Aspect
influences weathering, and therefore, indirectly affects
the shear strength of rock mass. Although the relation-
ship between aspect and slope failure occurrence has
been discovered, no exact agreement is available on
the effect of this factor on slope failure (Gokceoglu
et al. 2005). The aspect map that was utilized to recog-
nize the association between aspect and slope failure
occurrence is displayed in Fig. 2c. Ten classes have
been made for the aspect map (flat, north, northeast, east,
southeast, south, southwest, west, northwest, and north). The
effect of curvature on slope failure is the convergence or di-
vergence of water during downhill movement (Oh and
Pradhan 2011). Thus, this factor is another conditioning factor
that is involved in landslide occurrence. Curvature was de-
rived fromDEM and subsequently categorized into three clas-
ses: concave, convex, and flat.

The hydrological factors SPI and TWI were calculat-
ed using Eqs. 1 and 2, respectively. Some researchers
considered these two factors as secondary topographical
characteristics in landslide susceptibility mapping (Gokceoglu
et al. 2005).

SPI ¼ Atanβ=b; ð1Þ

TWI ¼ loge
A
�
btanβ

� �
; ð2Þ

where A (m2) is the flow accumulation, b (m) is the cell
width through which water flows, and β (radian) is the
slope (Regmi et al. 2010). SPI demonstrates the power
of water flow to create erosion based on the assumption
that discharge is related to a particular catchment area. SPI
predicts net erosion in the region of profile and tangential
convexity (flow acceleration and convergence zones) and
the net deposition in the areas of profile concavity (zones of
decreasing flow velocity). TWI is the amount of water accu-
mulation at a site. Ten classes were made for SPI (0–22.37)
and TWI (0–16.41).

Table 1 Results of LR for each conditioning factor

Conditioning factors Logistic coefficient SIG

Altitude 0.003640 0.009817

Slope −0.019112 0.054408

Aspect −0.000193 0.850179

Curvature 0.000033 0.746136

SPI 0.384703 0

TWI −0.433722 0.028179

TRI −0.018751 0.016210

Distance from river −0.000210 0.012215

Constant 0.214791
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Fig. 2 Input thematic layers: a altitude, b slope, c aspect, d curvature, e SPI, f TWI, g TRI, and h distance from river
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Another influential factor is TRI, which is broadly utilized
in landslide studies. This factor was calculated using Eq. 3.

TRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj j max2 −min2
� �q

; ð3Þ

where max and min are the greatest and lowest values of the
cells in the nine rectangular neighborhoods of altitude, respec-
tively (Riley et al. 1999). TRI was also categorized into 10
classes using the quantile technique. In the case of distance
from river, only the undercutting of the side slopes of rivers
might cause slope failure initiation (Jebur et al. 2014a).

Methodology

Logistic regression (LR)

In some cases, landslide susceptibility maps are producedwith
a high level of uncertainty because of the non-efficiency of
model performance and the limitation of data (Jebur et al.
2014a). LR is a commonly used multivariate statistical model.
Recent studies have analyzed the performance on LR in land-
slide studies (Choi et al. 2012; Yesilnacar and Topal 2005). LR
is a commonMSA technique that assesses multivariate regres-
sion correlation between conditioning factors and landslide
occurrence (Tehrany et al. 2014a). Akgün and Bulut (2007)
evaluated the precision of the landslide susceptibility maps
produced by weighted linear combination and LR. Brenning
(2005) examined the efficiency of LR, SVM, and DT in
probability mapping. Xu et al. (2012) compared the bivariate
statistics model with ANN, LR, and SVM, where LR
exhibited the best performance. Lee and Pradhan (2007) and
Nandi and Shakoor (2010) also showed the capabilities of LR
in the hazard domain.

LR was employed to recognize the possibility of landslide
occurrence in the study area using Eqs. (4) and (5) produced
by conditioning factors. The first requirement of this tech-
nique is having a dependent layer (landslide inventory) that
consists of two values, namely, 0 and 1, which indicate the
absence and presence of landslide, respectively. All the con-
ditioning factors (Fig. 2) were converted from raster into
ASCII format, as required in SPSS. SPSS software was uti-
lized to implement MSA. The regression coefficients were
calculated and listed in Table 1. When the LR coefficient is
high, the probable influence on landslide occurrence is large.
Using the measured LR coefficients, we calculated the land-
slide probability index as follows:

p ¼ 1= 1þ e−zð Þ; ð4Þ

where p is the landslide probability that is attained between 0
and 1 on an S-shaped curve. z is the linear combination. LR

involves fitting an equation with the following form into the
data:

z ¼ b� þ b1x1 þ b2x2 þ b3x3 þ bnxn; ð5Þ

where b° is the intercept of the model, bi (i=0, 1, 2,…, n)
denotes the LR coefficients, and xi (i=0, 1, 2,…, n) indicates
the conditioning factors (Lee and Sambath 2006).

Evidential belief function

EBF follows Dempster–Shafer theory of evidence algorithms.
This theory is a generalized Bayesian theory of subjective prob-
ability and has been used in the GIS environment in numerous
applications (Carranza and Hale 2003). The main advantage of
EBF is its flexibility, which is attributed to uncertainty accep-
tance; in addition, the belief of many sources can be integrated.
Using EBF, the probability degree that shows the closeness of
the probability to be true can be measured (Tien Bui et al.
2012). EBF has four basic mathematical functions, namely,
Bel, Dis, Unc, and Pls (Althuwaynee et al. 2012). Pls and Bel
present the upper and lower limits of the probability for the
proposition, respectively. The variety between Pls and Bel is
measured by Unc, which also shows the ignorance value.
Finally, Dis is the belief in the false probability values for a
particular case. In EBF, Bel+Unc+Dis=1. In the absence of
landslide, Bel will be zero, and Dis should be reset to zero.

EBF can be calculated in two ways, namely, data-driven
and subjective (Choi et al. 2012). Using data-driven analysis,
the spatial correlation between landslide occurrence and con-
ditioning factors is considered; moreover, the spatial correla-
tion among the parameters themselves is taken. The relation-
ship between landslide and a conditioning factor can be cal-
culated by overlaying the landslide layer on the eight condi-
tioning factors. The landslide conditioning factor C=(Ci, i=1,
2, 3,…, n), which contains mutually exclusive and exhaustive
factors of Ci, is adopted in this study. EBF analysis can be
applied using Eq. 6 (Carranza and Hale 2003).

Bel Ci j

� � ¼ WCi j landslideð ÞX n

j¼1
WCi j landslideð Þ

; ð6Þ

where the weight of Cij is represented by WCi j landslideð Þ and
supports the belief that the existence of landslides is more than
their absence. WCi j non‐landslideð Þ represents the weight of Cij,

which supports the belief that landslides are more absent than
present. A detailed explanation of EBF measurement can be
obtained from Tien Bui et al. (2012) and Jebur et al. (2014a).
The EBFmodel was applied for the eight conditioning factors,
and the resulting weight was used to reclassify each layer.
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Validation

The prediction precision and efficiency of the methods used
should be evaluated. In the current research, the results were
assessed by comparing the generated landslide probability
maps with existing landslide inventory data. The area under
the curve (AUC) method was utilized to examine the out-
comes quantitatively. AUC is commonly used to assess the
reliability of outcomes, which defines the success and predic-
tion rates (Jebur et al. 2014c). To evaluate the correctness and
proficiency of the landslide probability maps, both success
and prediction rate curves were measured. The success rate
was attained using the training data set, which accounted for
70% of the inventory landslide locations. The training data set

was used to produce the landslide model; hence, it cannot be
used to validate the prediction capability of the method. The
prediction rate reveals how well the model can predict slope
failure in the study area. Hence, it was measured using the
testing data set (30 % of the landslide events) that
was not utilized in the training procedure. The acquired
landslide probability index was arranged in descending
order to calculate the relative ranks for each prediction
pattern. Subsequently, the cell values were divided into
100 classes and set on the vertical axis (y), with accu-
mulated 1 % intervals in the horizontal axis (x). The
presence of the landslide events in each interval was mea-
sured, and the success and prediction rates were calculated
(Tehrany et al. 2014b).

Fig. 3 Landslide probability
maps derived from a LR method
and b EBF method
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Results and discussion

The MSA result was acquired through the LR method
(Table 1). The correlation between landslide occur-
rence and landslide conditioning factors was evaluated
using SPSS V.19. LR coefficients and significant prob-
ability (Sig) factors were calculated using LR and
listed in Table 1. A Sig factor identifies the condition-
ing factors that significantly affect landslide occur-
rence (Papadopoulou-Vrynioti et al. 2013). Sig values
less than 0.05 indicates that the conditioning factor
exerts statistically significant effect on slope failure.
As shown in Table 1, altitude, SPI, TWI, TRI, and distance
from river were the most influential conditioning factors.
Slope, aspect, and curvature attained Sig values over
0.05, which indicated that these factors did not exert
significant effect on landslide occurrence. The reason
is in some cases when two or more factors have similar
impact, the regression analysis makes one of them sig-
nificant and others are none. Based on the acquired LR
coefficients, slope, aspect, TWI, TRI, and distance from
river were negatively correlated with landslide occur-
rence. The LR coefficient for SPI (0.384703) revealed
that this factor is strongly and positively correlated with
landslide occurrence in the study area.

Table 2 Spatial correlation between conditioning factors and landslide
occurrence extracted by EBF

Parameter Classes Belief Disbelief Uncertainty Plausibility

Altitude 0–129 0 11 89 89

129–185 5 10 85 90

185–253 27 8 65 92

253–314 24 8 68 92

314–370 30 7 63 93

370–419 6 10 84 90

419–469 0 11 89 89

469–524 0 11 89 89

524–598 5 10 85 90

598–1339 0 11 89 89

Slope 0–29.24 25 8 67 92

29.24–42.99 17 9 74 91

42.99–52.85 23 8 69 92

52.85–59.91 12 9 79 91

59.91–65.54 7 10 83 90

65.54–70.12 4 10 86 90

70.12–74.01 2 10 88 90

74.01–77.52 0 11 89 89

77.52–80.69 0 10 90 90

80.69–89.85 4 10 86 90

Aspect Flat 0 11 89 89

North 4 12 84 88

Northeast 21 9 70 91

East 47 6 47 94

Southeast 16 10 74 90

South 4 12 84 88

Southwest 0 12 88 88

West 0 12 88 88

Northwest 6 11 83 89

Curvature Concave 12 27 61 73

Flat 78 31 −9 69

convex 8 40 52 60

SPI 0–3.81 5 10 85 90

3.81–4.61 11 9 80 91

4.61–5.14 15 9 76 91

5.14–5.59 14 9 77 91

5.59–6.03 6 10 84 90

6.03–6.47 15 9 76 91

6.47–7.01 11 9 80 91

7.01–7.72 8 10 82 90

7.72–8.96 7 10 83 90

8.96–22.37 3 10 87 90

TWI 0–0.01 18 5 77 95

0.01–0.57 45 10 45 90

0.57–1.09 10 10 80 90

1.09–1.61 7 10 83 90

1.61–2.05 8 10 82 90

2.05–2.51 0 10 90 90

2.51–3.02 0 10 90 90

3.02–3.79 10 10 80 90

Table 2 (continued)

Parameter Classes Belief Disbelief Uncertainty Plausibility

3.79–5.33 0 10 90 90

5.33–16.41 0 10 90 90

TRI 0–28.97 27 8 65 92

28.97–43.46 26 7 67 93

43.46–57.95 14 9 77 91

57.95–67.61 13 9 78 91

67.61–77.26 5 10 85 90

77.26–86.92 2 10 88 90

86.92–101.41 2 11 87 89

101.41–115.91 1 10 89 90

115.91–135.21 1 10 89 90

135.21–1231.43 4 10 86 90

Distance
from river
(meter)

2120–3609 5 10 85 90

3609–4164 22 8 70 92

4164–4716 19 8 73 92

4716–5281 17 9 74 91

5281–5771 6 10 84 90

5771–6141 0 11 89 89

6141–6461 5 10 85 90

6461–6778 0 11 89 89

6778–7104 11 9 80 91

7104–7687 11 9 80 91

Constant
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To obtain the landslide probability index, the LR coeffi-
cient for each factor was entered in Eq. 5, which yields the
following:

z ¼ 0:003640�00 DEM00ð Þ− 0:019112�00 slope00ð Þ
− 0:000193�00 aspect00ð Þ þ 0:000033�00 curvature00ð Þ
þ 0:384703�00 SPI00ð Þ− 0:433722�00 TWI00ð Þ
− 0:018751�00 TRI00ð Þ− 0:000210�00 river00ð Þ þ 0:214791:

In the next step, the landslide probability index was
measured from Eq. 4. The association between condi-
tioning factors and slope failure occurrence was recog-
nized. The landslide probability index was calculated
and categorized using the appropriate system. The the-
matic map of landslide probability is shown in Fig. 3a.
This index denotes the predicted probabilities of slope
failure for each pixel under the existence of a particular
set of conditioning factors. As previously mentioned,
EBF was used as a second method to produce a landslide

Fig. 4 Landslide susceptibility
maps derived from a LR method
and b EBF method
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susceptibility map. The landslide probability map produced
by EBF is shown in Fig. 3b.

Table 2 shows the EBF values that were calculated for each
class of each conditioning factor. As listed in Table 2, altitude
significantly influenced the characteristics of the study area.
Altitude ranges from 0 to 1339m in the study area. It had three
classes that revealed high landslide probability. These classes
were 185–253 m, 253–314 m, and 314–370 m, with Bel
values of 27, 24, and 30, respectively. This finding can be
attributed to the instability of the terrain in high altitudes.
Slope and aspect factors are related to the physical character-
istics of the ground. In the case of slope, the classes (0–29.24°)
and (42.99–52.85°) attained 25 and 23 successive Bel results,
respectively. The Beast^ class in the aspect factor acquired the
highest Bel value among the classes, which constituted 47.
The highest Bel value of 78 was assigned to the class of Bflat^
in the curvature, which revealed the considerable effect of this
class on landslide occurrence. Other concave and convex clas-
ses received 21 and 8 Bel values, respectively. In SPI, the
classes (4.61–5.14) and (6.03–6.47) acquired the highest Bel
value of 15. The two highest Bel values of 18 and 48 were
associated with the classes of (0–0.01) and (0.01–0.57) of the
TWI layer, respectively. Bel decreased as TRI increased. This
result indicates that the first two classes of TRI acquired the
highest Bel values of 27 and 26; however, the Bel values
decreased as TRI ranges increased. In the case of distance
from river, the areas closer to the river showed higher land-
slide probability than those regions far from the river. The
distance from 3609 to 5281m received the greatest Bel values,
which presented an extremely high landslide probability.

To create a susceptibility map, the probability index must
be divided into different classes (Ohlmacher and Davis 2003).
Various classification techniques are available, each of which
is suitable for a specific application. The most popular

techniques for classification include standard deviation, natu-
ral break, equal interval, and quantile (Ayalew and Yamagishi
2005). The quantile method was used in the current study
because of its reputation in probability index classification.
This method provides the same number of features for each
class and has been employed by scientists such as
Papadopoulou-Vrynioti et al. (2013), Umar et al. (2014), and
Jebur et al. (2014c) in susceptibility studies. The technique
produced appropriate outcomes on the comparison between
the generated landslide susceptibility map and the spatial dis-
tribution of slope failure locations. Finally, landslide suscep-
tibility maps were obtained using both methods, and the study
area was divided into five classes of landslide susceptibility:
very low, low, medium, high, and very high. The landslide
susceptibility maps generated by LR and EBF are shown in
Fig. 4.

As shown in Fig. 4, LR and EBF revealed significantly
different results on highly susceptible areas. To understand
which result is accurate and precise, accuracy assessment
was performed. The success rate curves generated by AUC
are shown in Fig. 5a. The acquired success rates for LR and
EBF were 90.12 and 53.95 %, respectively. The prediction
curve is shown in Fig. 5b. The AUC values of 88.78 and
50.96 % correspond to the prediction accuracies of LR and
EBF, respectively. Based on the acquired validation outcomes,
the performance of EBF was considerably less efficient than
that of LR. However, LR produced a highly accurate landslide
susceptibility map with high success and prediction rates. In
the current research, the proficiency and strength of both LR
and EBF methods were assessed and compared. EBF did not
perform efficiently in this case study. The proficiency of this
method might be improved by combining it with other
methods, such as machine learning, which can be considered
in future works.

Fig. 5 AUC: a success rate b
prediction rate
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Conclusion

Several techniques have been utilized to map landslide-prone
regions. Each method has advantages and disadvantages.
Among all the methods, statistical methods are simple, under-
standable, and accurate. The current research assessed the po-
tential application of LR and EBF in landslide susceptibility
mapping at an expressway corridor in Jelapang, Malaysia. LR
and EBF were individually used to map the landslide-prone
regions in the study area. Slope failure occurrence is related to
several conditioning factors. Eight landslide conditioning fac-
tors were considered in the analysis, namely, altitude, slope,
aspect, curvature, SPI, TWI, TRI, and river. Bel, Dis, Unc, and
Pls were calculated for the EBF method, and the influence of
the categories of each conditioning factor on slope failure
occurrence was evaluated. Dempster’s rule of combination
was used to obtain the integrated EBF map for accuracy as-
sessment. Subsequently, the influence of each conditioning
factor on landslide occurrence was assessed using LR.
Probability index maps were derived using both methods.
The obtained probability index for each method was catego-
rized using quantile classification. Two landslide susceptibil-
ity maps were created. The provided susceptibility maps pro-
duced spatial predictions of slope failures without producing
any information on Bwhen^ and Bhow often^ a future slope
failure will occur. AUC graphs were used for validation, and
the success and prediction rates were calculated. Comparison
proved LR to be more efficient than EBF in the current re-
search. The success rate and prediction rate of LR were 90.12
and 88.78 %, respectively. The acquired success and predic-
tion rates for EBF were considerably low, which constituted
53.95 and 50.96 %, respectively. The validation outcomes
revealed that the LRmodel had a reasonably higher prediction
capability than the EBF model. The derived landslide suscep-
tibility map using the LR method can help planners and the
government control and avoid slope failures in the future.
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