
ORIGINAL PAPER

Spatial soil analysis using geostatistical analysis and map Algebra

Ebrahim Jahanshiri1 & Abdul Rashid bin Mohamed Shariff1 & Fazel Amiri2 &

Mohd Amin Mohd Soom3
& Aimrun Wayayokb3

& Taher Buyonga1 &

Biswajeet Pradhan1,4

Received: 11 April 2014 /Accepted: 7 April 2015 /Published online: 17 April 2015
# Saudi Society for Geosciences 2015

Abstract Evaluating soil spatial variability through sampling
is an important step in precision farming processes that aids
farmers to make informed decisions on the spread of agricul-
tural inputs. Manual sampling is essential in ascertaining soil
physical characteristics and could be used to monitor the
chemical components like macronutrient nitrogen (N), phos-
phorus (P), and potassium (K). This type of sampling however
could be costly and time consuming in macronutrient sam-
pling. In order to show the ability of manual sampling to
capture the essence of variability in the agricultural fields with
enough number of samples and therefore, helping the preci-
sion farming process, we conducted an experiment on differ-
ent designs of random, systematic, stratified random, stratified
systematic, and different sizes of samples. The experiment
was carried out on the geostatistical surfaces (base maps) cre-
ated from a set of data which belonged to a rice plantation in
Malaysia. A krigged map for each of these schemes was cre-
ated and compared with the N, P, and K basemaps. The results
showed that the systematic and stratified systematic schemes
were the most accurate sampling schemes in terms of estima-
tion of mean. However, both stratified schemes were not suc-
cessful to create the standard deviation of populations.

Concerning the standard error of mean when the schemes
were used in linear mixed effect modeling grouped by the
sample size, stratified samples could produce lower standard
error (except for stratified random sample of P). In terms of
reproducing the original spatial variability, only systematic
sampling scheme could create better accuracy in most cases.
The result also revealed that the most important property of a
sampling scheme in the study area is representativeness of
samples, and the number of samples does not play an impor-
tant role in accuracy and map making. Therefore, the data
could be equally valid for the precision farming.
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Introduction

Precision farming (PF) or precision agriculture aims to im-
prove farming through the management of variation within
the field (Auernhammer 2001; Earl et al. 2000; Buresh et al.
2005; Robert 2002; Zhang et al. 2002). Therefore, understand-
ing and monitoring variation to apply the inputs non-
uniformly is crucial in this process (Sadler et al. 1998;
Blackmore 2003; Zhang 2007). This information will then
lead to informed decisions to spend the agricultural inputs in
the right place and right time and help the economy of farming
and ultimately preserving the environment. Over time and
space, soil variation is normally affected by farming activ-
ities and several other factors like soil physical and chem-
ical interactions (Goovaerts 1997; Lin et al. 2005; Wong
and Asseng 2006; Kariuki et al. 2006). Therefore, a con-
stant monitoring of the soil spatial variability is important
than the goals of precision farming.
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Soil samples collected by manual soil sampling or soil
sensors are major solutions for obtaining accurate soil vari-
ability information.Manual soil sampling for investigating the
structure of soil is common, but using these samples for mon-
itoring the short-term variability in chemical properties of soil
could be daunting. Soil sensors mounted on tractors could be a
viable alternative that can generate loads of information that
could be useful for monitoring soil chemical variability. These
sensors, however, are still under development and to some
extent, are too costly, and their calibration in different envi-
ronments is intricate (Kim et al. 2007; Terzis et al. 2010).
Another major problem of these sensors is their ineffective
use over the already planted fields. Therefore, manual soil
sampling for short term is feasibly provided; we know the
number and approximate location in which we can get a rep-
resentative sample from the field. In this situation, finding
cost-effective and accurate manual sampling methods for
macronutrients have a lot of benefits, especially for larger
fields. Compared with a traditional statistical survey, more
samples are required to get more accurate data (Zhu and
Stein 2006; Webster and Oliver 2007; Allan Reese 2009).
Another challenge is the absence of an exclusive sampling
design for different areas. Sampling design consists of two
major elements; number and scheme. The scheme can be
random, systematic, stratified or any possible integration, or
bulk. Cochran (2007) defined sampling design as a descrip-
tion of the sample collection plan that specifies the number,
type, and location (spatial or temporal) of sampling units to be
selected for measurement. There are a variety of sampling
techniques and methods devised for soil sampling. Statistical
design mandates that for an inference based on a sample (or a
realization of the population) to be unbiased and accurate, the
scheme should be random (Gruijter et al. 2006).

Design-based samplings, including random and systematic
samplings are powerful sampling methods. Most researchers
focus on the design-based systematic sampling scheme and its
comparison with other sampling schemes. Wang and Qi
(1998) found out that given a certain sampling density, sys-
tematic sampling had better estimation performance than ei-
ther a stratified or a random sampling design. Furthermore,
Entz and Chang (1991) evaluated 16 soil sampling schemes to
determine their impacts on directional sample variogram and
kriging. Kerry et al. (2010) also found out that variograms
estimated from sample data collected from stratified and grid
designs provided the same data on the spatial variability of the
soil bulk density. Stratification of the target population into
groups (called strata) using prior or other information is one
of the most desirable sampling designs that can be more ac-
curate and cost effective. The stratification can be performed
with equal or unequal stratum. In the former, the field can be
divided into grids of the equal area (Franco-Marina et al.
2003) while in the latter, other previous information about
the variable of interest or information from highly correlated

variables can be used to stratify the area. Stratified sampling
design can be the optimum sampling technique from agricul-
tural (Simbahan and Dobermann 2006) to ecological research
(Oggier et al. 1998).

Stratification can also be carried out using existing soil
maps (Brus and De Gruijter 1997) or landscape used classifi-
cations (Sastre et al. 2001). One method uses the geostatistical
techniques to model spatial variation and defines the bound-
aries of strata based on the spatial structure and kriging (Zhang
et al. 2012; Safari et al. 2013). In this method, patterns of
variation used to classify the kriging map can be distinguished
as homogeneous (Elliot et al. 2000). For instance, Simbahan
and Dobermann (2006) used the continuous secondary vari-
ables and one categorical (soil series) variable to propose a
stratification for optimizing soil sampling and mapping, in
cases with no previous direct measurement of variable of in-
terest. The quality of stratified sampling is strongly dependent
on the quality in the data, whether the data comes from the
previous surveys or from other highly correlated variables
(Thompson 1992).

The aim of this research was to evaluate the performance of
the different number of samples and different designs through
sampling on a map created from real data. The performance
was analyzed through (i) the ability to provide a mean close to
population mean with fewer standard deviations and (ii) re-
producing the spatial variability of the base map for each of
macronutrients in the soil.

Materials and methods

Study area

This study was conducted in a paddy plantation located in
Sawah Sempadan, block C. It is a compartment of the
Tanjung Karang irrigation project in Selangor, Malaysia.
Block C (3° 28′ 15″ N, 101° 13′ 15″ E) which consists of
118 plots covering 145 ha has been allocated to precision
farming studies (Fig. 1).

Original data

The original survey was conducted using a semi-systematic
grid with 236 samples for the entire block C area. The grid has
two intervals of 200 and 60 m (Aimrun et al. 2009). All sam-
ples were taken manually from the depth of 0–20 cm of soil.
The sample support was 1 m2 for each sample. The positions
of sampling points have been logged using a Differential
Global Positioning System (DGPS) instrument, and the ob-
tained coordinates were later converted fromWGS1984 coor-
dinate system to the Selangor Cassini-Soldner coordinate sys-
tem. Variables of interest were percentage of total nitrogen
(N), phosphorus (P) in milligrams per kilogram or parts per
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mill ion (ppm), and amount of potassium (K) in
milliequivalents per gram (meq/100 g) of soil.

Preparing the base maps

An interpolated map for N, P, and K was created to act as the
base maps. Normal exploratory data analysis was done on the
data based on the methodology by Kerry and Oliver (2007a,
b). All three datasets were also examined for the existence of
trend in the data. The method to recognize the trend in the data
had two steps; first, a visual examination of scatter plot of the
data to see if the values in the dataset showed a gradual in-
crease in any direction, and second, looking over the standard
error map created by each kriging operation (Yang et al. 2011).
If the error in all predictions was much more than 25 %, then
there was a need to consider the trend in the data analysis. The
method of ordinary kriging was used to create a surface for N,
P, and K data. The created maps of the data were classified
using the geometric intervals (Johnston et al. 2001) of predict-
ed data distribution. All map classifications are done using the
same cutoff for each macronutrient.

Preparing sample coordinates

Four major schemes were used to create samples required
during the analysis: random, systematic, stratified random,
and stratified systematic. Random and systematic samples
were created for both block C and also for each stratified
polygons. For each scheme, seven trials with 100, 150, 200,
250, 300, 500, and 1000 samples were created. The coordi-
nates of these schemes were used to extract the sample values
on the base maps.

Random and systematic samples

The boundary of block C was used to create different sam-
pling schemes for random and systematic methods.
Predetermined number of samples was used to fill the area
with either random coordinates or systematic coordinates.
For random schemes, pseudo-random generator produces a
sequence of unrelated numbers, which are coordinated
within the boundary of the polygons (Hassig et al. 2004).
Since the samples were selected randomly, major statistical
assumptions were preserved. However, other problems like

Fig. 1 The location of study area in block C Sawah Sempadan
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clusters and large unsampled areas may occur. To tackle
the problem of statistical assumptions in the systematic
scheme, the location of the starting point was selected at
random (Hassig et al. 2004). The grid spacing (L) in the
two-dimensional area was calculated using the following
equation (Zhang 2007):

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=0:866n

p
ð1Þ

where, A is the area in square meter and n is the number of
samples. Therefore, for 100, 150, 200, 250, 300, 500, and
1000, the intervals were 129.60, 105.82, 91.64, 81.97, 74.82,
57.96, and 40.98 m (A=1454743.513 m2), respectively. A total

of 37 schemes was created for random and systematic sampling
on N, P, and K base maps using the above procedures.

Stratified samples

In this study, the cost of sampling was considered to be equal
for all schemes in stratified sampling. Therefore, for all strata,
the method of Neyman’s allocation (Gilbert 1987; Hassig
et al. 2004) could be used to allocate the number of samples.
A total predetermined number of samples was allocated into
different polygons based on the population standard deviation
(σh of the stratum h) using the expression:

nh ¼ n
NhσhX L

h¼1
Nhσh

; n ¼
XL

h¼1

nh;N ¼
XL

k¼1

NK ð2Þ

where nh is the number of samples allocated to stratum h, L is
the number of strata, Nh is the total number of units (sample-
able) in stratum h, n is the total number of units sampled in all
strata, andN is the total number of units within the population.
Standard deviation for each stratum (polygon) of base maps
was calculated using the raster that was created from kriging
(Table 1). The standard deviation for the whole block was also
calculated using the raster maps (the value of raster pixels).

As shown in Table 2, the number of samples is different
in each stratum for N, P, and K. Since the shapes of the
strata (polygons) were not uniform, the formula was not
able to allocate an integer number of samples. Therefore,
for stratified N(251), stratified P(101), and stratified
K(101, 201, 1001), one sample was added to the total
number of samples so that the number of samples became
an integer. Consequently, when allocating samples for

Table 1 Standard deviation for different strata of N, P, and K

Stratum N (%) P (ppm) K (meq/100 g)

1 0.0306 1.2453 0.0043

2 0.0057 0.3400 0.0289

3 0.0744 0.6881 0.0166

4 0.0122 2.3519 0.0078

5 0.0077 4.9602 0.0001

6 0.0210 0.6871 0.0080

7 0.0343 0.1232 0.0232

8 0.0417 0.2344 0.0118

9 0.0045 0.0689 0.0007

10 0.0429 0.7297 0.0022

11 0.0425 1.8342 0.0154

12 0.0072 – 0.0043

13 0.0173 – 0.0055

All block 0.1163 6.6163 0.0485

Table 2 Number of samples allocated to each stratum for stratified N, P, and K maps

Stratum N P K

100 150 200 251 300 500 1000 101 150 200 250 300 500 1000 101 150 201 250 300 500 1001

1 4 5 7 9 10 17 34 1 1 1 1 2 2 4 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 30 41 51 62 104 209

3 10 15 20 26 31 52 104 1 1 1 1 1 1 1 11 16 22 28 33 56 112

4 1 1 1 1 1 1 1 11 16 22 27 33 55 110 1 2 2 3 3 5 11

5 1 1 1 1 1 1 1 81 125 169 213 256 433 874 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 21 33 44 55 67 112 226 1 1 1 1 1 1 1 34 52 70 88 107 179 361

8 34 53 72 91 109 185 372 1 1 1 1 1 1 1 1 1 1 1 1 2 3

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 8 12 16 20 24 40 81 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 16 25 34 43 52 87 176 1 1 1 2 2 3 5 27 42 57 71 86 145 292

12 1 1 1 1 1 1 1 – – – – – – – 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 – – – – – – – 1 1 2 2 2 3 7
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random and systematic schemes for all block C area, one
sample was added to the corresponding schemes to main-
tain the same amount of samples across all 74 schemes.

For stratified random sampling, the number of samples was
determined for each stratum, and pseudo-random generator

was used to allocate the sample coordinates randomly inside
that strata. For stratified systematic schemes, the calculated
number of samples was used to define the triangular grid space
(formula 2) then the samples were allocated using the random
start point and grid spacing.

Fig. 2 Bases maps created from 2011 data with their class numbers

Table 3 Number, methods, and
the requirement for trend removal
and transformation

Data Unit Numbera Trend order Transformation Mean SD Cov Skewness

N % 236 0 - 0.39 0.14 36.90 0.32

P ppm 205 1 log 31.30 11.76 37.56 1.08(0.13)

K meq/100 g 231 2 - 0.32 0.08 26.22 0.10

SD standard deviation, Cov coeficient of variation
a Number of samples (after removal of outliers)
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Statistical analysis of samples

For each sample mean, the standard deviation as well as other
measures was calculated. In random sampling, the sample
mean (x) is an unbiased estimator of population mean or glob-
al mean, μ, (E xð Þ ¼ μ), and since the sample was the only
available information, it was impossible to adjust the sample
mean with the population units (N):

x ¼ 1

n

Xn

i¼1

xi ð3Þ

The variance of sample is:

s2 ¼ 1

n−1

Xn

i¼1

xi−xð Þ2 ð4Þ

In stratified sampling, the population with N units is
partitioned into L regions or strata. There are Nh units. nh
samples can be taken by random sampling inside each strata.
Given each strata has its own mean xh and variance, sh

2, the
formula for calculating the mean of stratification is;

μst ¼ xst ¼ 1

N

XL

h¼1

Nhxh ð5Þ

An unbiased estimator of variance is:

var xstð Þ ¼
XL

h¼1

Nh

N

� �2 Nh−nh
Nh

� �
s2h
nh

ð6Þ

Map algebra

A representative sample presumably should create the same
patterns of variability on the map as the population does.
Therefore, it is important to compare the patterns of variability
between the base maps and all 74 maps created by the sam-
ples. Like the base maps, for each sample scheme, a continu-
ous map was created. The data were used to create the
variogram models of the region using the fitted models.
Kriging was then used to create the maps of spatial variability
for each scheme. The maps were then classified into three
classes using the same cutoff values used for the base maps
(Table 4). The result was 74maps of different patterns for N, P,

and K sampling schemes. The next step was to compare the
sample maps with the base maps to see the ability of each
sample to reproduce the same spatial patterns as base maps.
To do this, all the 74 maps were Bintersected^ with their
respected base maps of N, P, and K. The result was a map that
resembled the base map of N, P, and K but with major or
minor difference. For each class, the area that coincided with
the same class in the base maps was derived from the
intersections.

Results and discussions

The analysis started with examining the original datasets for
N, P, and K, and then creating maps of spatial variability for
each of the three datasets using the method of geostatistical
kriging.

Base map analysis results

The investigation into the existence of outliers revealed
that they were mostly erroneous data and therefore, remov-
ing them would not harm the analysis. Table 3 shows the
number of data that remained after the removal of outliers
and were used to create the base maps. The dataset for P
was very much different to deal with because even with the
removal of outliers from the dataset, it showed non-normal
behavior; consequently, a logarithm transformation was
used for the rest of analysis for P dataset. The datasets were
also analyzed for the existence of deterministic trend,
which is a disturbance over the kriging procedure. The
result showed that there was a quadratic trend for K and
linear trend for P (Table 3). For all the three datasets, the
method of ordinary kriging with specifications for trend
was used to create the surface as only this method could
create surfaces with less kriging standard errors. Even with

Table 4 Statistics and
classification limits for the
populations

Unit Minimum Maximum Mean Limit 1 Limit 2 Standard deviation

N % 0.09 0.77 0.39 0.35 0.51 0.12

P ppm 16.86 54.03 31.86 26.42 46.37 6.62

K meq/100 g 0.15 0.43 0.32 0.27 0.35 0.05

Table 5 Percent coverage of each class for N, P, and K base maps

Class 0 Class 1 Class 2 Sum

N 38 45 17 100

P 22 77 1 100

K 14 46 39 100
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the data that has the trend (P and K), incorporating trend in
the kriging system (universal kriging) instead of removing
the trend first and then performing the kriging (ordinary
kriging), yielded surfaces with high level of standard error,
which means the universal kriging was not able to repro-
duce the spatial patterns of base maps.

Figure 2 shows the base maps created from the data. The
three classes are labeled to show the different ranges of con-
centrations for N, P, and K in classes 0 (low), 1 (medium), and
2 (high) (Johnston et al. 2001). The actual units from the
population were 1,454,743, which is the area of the whole
block (Fig. 2). Based on the recommendation of the managers,
only three classes are being used in the precision farming
studies in the region, and therefore this study follows these
three classes.

Since the entire population was available, mean (μ) and
standard deviation (σ) of these units are shown in Table 4.
Limits 1 and 2 are the cutoff values used to classify the base
maps. These values are chosen based on the geometrical in-
terval classification of the population distribution. The same
values are used to classify the sample maps.

The distribution of classes was different for N, P, and K
(Table 5). For N, there was a mixed balance of concentration
for the whole area while for P, most of the area was covered by
medium to low amount (classes 0 and 1) and for K, medium to
high (classes 1 and 2).

Analysis of samples

Nitrogen

Figure 3 shows the mean and standard deviation (SD) of sam-
ples as well as the population. All schemes except the random
scheme could reproduce the mean from the population even
with the smallest number of samples. Both stratified random
and stratified systematic schemes predicted means closer to
the population mean.

The trend could reach the population mean which was
close to sample number (200–250). After that, however, the
random scheme fluctuated considerably while the systematic
scheme did not respond to the sample size of the sample
scheme of 1000 where it could get closer to the population
mean. It is, conversely, noticeable that the number of samples
did not follow any specific trend for any of the schemes. In
general, random schemes tended to fluctuate around the pop-
ulation mean while systematic samples maintained a trend
even if it was a negative one.

Standard deviation of the schemes is also shown in Fig. 3.
Both stratified schemes reduced the standard deviation while
random and systematic samples created the same standard
deviation around the population standard deviation.

This result showed that increasing the number of samples
does not guarantee a better prediction for the global mean. In
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terms of variability, random and systematic schemes were
capable of reproducing the variability (SD) in the population
while both stratified schemes could predict the mean steadier
with lower variability. This conveys that the stratified sam-
pling actually reduces the standard deviation dramatically;
however, this might not be the goal of this analysis. Here,
unlike the sampling projects, the whole population (values
from the base maps is available and therefore the goal is to
provide the closes mean and standard deviation.

Phosphorus

Figure 4 shows the mean and standard deviation of samples
for P. There was a trend of increasing accuracy of means from
the minimum sample to the highest. Random and stratified
random samples showed fluctuations around population mean
while systematic and stratified systematic respond to the in-
crease of sample size. Random sample could create a mean
closer than the population mean line with the sample number
around 250 and stratified random sample around 500. Both
systematic samples did not perform well for P, and they reach
the desired accuracy with the highest number of samples.
Stratified random with 200 samples created very low mean
(10 ppm), and it was omitted from the graph on Fig. 4 to give a
better view of other schemes. This shows one of the pitfalls of
random sampling even when they are applied to stratified
scheme. The situation for standard deviation was similar to
that of N, except random schemes, which showed more fluc-
tuations around the population standard deviation. In general,
for ascertaining the true mean for a population for P, more
samples were needed as most of the schemes reached the
population mean of the maximum sample (1000 samples).

Potassium

Figure 5 shows mean and standard deviation of the K samples.
Random and systematic schemes showed very high fluctua-
tions, and stratified samples demonstrated more consistent
pattern for the prediction of mean. The most accurate scheme
was the stratified systematic as it could accurately estimate the
mean even with the 100 samples. Random sample also had

difficulty in following standard deviation of population with
samples below 300. In general, random and systematic
schemes do not show any trend towards increasing accuracy
since they constantly underestimate or overestimate the mean
while the stratified sample, especially stratified systematic,
could estimate the mean more accurately using all sample
sizes.

Summary of sample’s statistics

Two main conclusions include (i) the unreliability of the ran-
dom sampling to predict the mean concentration of macronu-
trients over a field and (ii) the power of stratified sampling to
predict the average concentration in a sampling project with
inaccurate standard deviation of population. In statistical jar-
gon, a sample is only a realization of what is happening, and
the best is to provide repeated sampling to increase the accu-
racy of the prediction. For agricultural fields, this might be
quite costly; therefore, the best way would be to design the
sampling project so that it can produce the best result.

Table 6 shows the results of modeling using sample
schemes for each macronutrient as fixed effects and sample
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Table 6 Linear fixed effect estimates (using REML) and standard error
of mean

Population mean Scheme Estimate Standard error t value

μN=0.3896 R 0.38511 0.002866 134.4

S 0.388429 0.000929 418.1

SR 0.389998 0.000446 875.2

SS 0.390375 0.000497 785.5

μP=31.8583 R 31.91966 0.003825 834.6

S 31.95411 0.003825 835.5

SR 28.96452 0.303806 9.5

SS 32.01464 0.003826 836.7

μK=0.3235 R 0.3223 8.94E−08 361

S 0.3238 4.14E−08 781

SR 0.3231 1.46E−08 2208

SS 0.3235 5.34E−09 6060

R random, S systematic, SR stratified random, SS stratified systematic
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sizes as random effects. The estimation was done based on
optimization of the residual maximum likelihood function of
linear fixed effect models. This aim here is to show how dif-
ferent sampling designs (or treatments) are in deriving the
mean (μ) of the population for each macronutrient. For N,
the lowest standard error belonged to the stratified random.
Both stratified schemes had higher t values than the random or
systematic samples. For P, the estimates are very close except
for the stratified random that showed higher standard error and

lower t value. This shows that in terms of reproducing the
mean of the populations, there is not much difference between
the sampling designs for the chosen sampling schemes. The
situation for K is the same as Nwhere lower standard error and
higher t values belong to stratified samples.

In the precision farming context, the patterns of varia-
tion are more important from the global measures like
mean and standard deviat ion of the populat ion.
Therefore, the measures of local mean or spatial patterns
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in the form of percent overlap with the original variable
are presented next.

Overlay analysis

Nitrogen

Figure 6 shows the arithmetic mean and weighted mean of the
percentage overlay for all classes. Since the area of all three
classes was not in the same range, a weighted mean was con-
sidered so that the contribution of each class to the overall
percentage overlay became proportional. The weights for clas-
ses 0, 1, and 2 were 0.3801, 0.4481, and 0.1717, respectively.
Clearly, systematic sampling was superior to all schemes for
all sample sizes. The accuracy starts from 85 % for the strat-
ified random to above 98 % for the systematic sampling. The
performance of map overlay for the stratified systematic was
also superior to the random sampling. In general, for all sam-
pling schemes, the increase over the percentage of the com-
mon area was steady from the least sample to the most.

Figure 7 shows the common areas for each class for all 28
schemes and the base map. The sample positions were also
overlaid on each map to show their degree of representative-
ness. For random and systematic samples, simply one stan-
dard deviation was considered, and Neyman’s allocation was
not applicable because there was only one stratum. Therefore,
the number of samples was the same everywhere. For strati-
fied sample, the number of samples was different in each

polygon (most recognizable for stratified systematic). The
samples on the base map were those of the original survey.

White areas on each map in Fig. 7 are the areas of conflict
between the base map and the sample map when they were
intersected. Uncommon areas are very much obvious in the
low sampling schemes. However, they are more obvious for
random sample maps than the others because the samples do
not cover the area as frequently as systematic samples which
in contrast, show consistency and even with the small number
of samples common areas are much higher.

Phosphorus

Since class areas were extremely different for the three classes,
the result for each class was ambiguous. Class 1 covers almost
76 % of the block while class two covers only 1 %. Moreover,
for some of the schemes, there is not any area for class 1 or 2 in
the sample maps. For example, most of the systematic maps,
classes 0 and 2 occupy no area in the map. The percentage for
other schemes, however, remained very high for class 0 from
40 % to around 100 % for stratified random with 200 samples
and above 90 % for class 1. For class 2, most of the schemes
showed 0 % occupation for class 2 and a few schemes like
random 150, 500, and 1000 and systematic 500 and 1000
displayed a small portion of their maps in class 2.

Figure 8 shows the overall result for all schemes. Again,
the problem for the area represented by class 2 tremendously
affected the overall accuracy of the common areas for all
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classes. The overall accuracy was leveled up to 100 % for
systematic and random schemes.

Figure 9 shows the average and weighted average for all
classes without considering class 2. Here, the random and
systematic schemes demonstrated almost equal trend up to
sample number 300 beyond which random sample shows
the good result for 500 samples and systematic sample with
1000 is superior to random sample. Overall as shown for N,
systematic sample tends to keep a steady rise with the increase
with the number of samples while random samples tend to
fluctuate between sampling numbers.

Figure 10 shows the maps produced by samples from the
base map for P. The scheme for stratified random with 200
samples neglects most of the base map patterns, and therefore,
its pattern is different from others.

Potassium

Both systematic and stratified systematic schemes showed a
more consistent upward trend than the two random schemes.
For class 0 which was the smallest class (14 % in base map),
systematic scheme showed a rather flat line around percent

Fig. 10 Common areas for each scheme with the base map and their samples
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accuracy of 97.5. Only at sample size of 300 was the accuracy
higher (up to 99 %). The result was different for classes 1 and
2 in that there were many fluctuations in all maps. Both sys-
tematic schemes, however, performed slightly above the ran-
dom schemes. Systematic scheme performed strongly in clas-
ses 1 and 2 as the best accuracy with the minimum sample size
(100) belonged to be the systematic sampling scheme.

Figure 11 shows the plot of average and weighted average
overlay accuracy for all the schemes. Both plots showed that
systematic sampling was superior to all the others as it was
more accurate with the minimum number of samples.
Stratified systematic scheme also performed like the system-
atic sample to the sample above 200 (Fig. 12).

Overall accuracy

Figure 13 shows the mean of overall accuracies for N, P, and K
where each point is the average accuracy. Like most of the
plots for the above sections, systematic sampling performs the
best for most of the schemes, and more importantly, it showed
the highest accuracy for the least number of samples (100) and
for the most number of samples (1000). Second to systematic
sampling was the random sampling that performed best for all

of the schemes. For all schemes, the overlay accuracy starts
from 73 that belonged to stratified random sampling (200) to
93 %, which belonged to systematic sampling (1000). One of
the challenges of random sampling is the problem of cluster-
ing and unrepresentativeness of the samples from the area.
The samples do not cover the area evenly, a problem that is
addressed very well by the systematic scheme. Both stratified
random and systematic samples followed the pattern of the
random or systematic schemes. Stratified systematic per-
formed well above the stratified random and more importantly
showed a consistent pattern of increasing accuracy.
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In the study area, fertilizer spreading operation was carried
out three times after sowing the seeds using machinery in
1 day. Therefore, given the patterns of the fertilizer spread
which is systematic over the field, this can be inferred that
even with the mobile fertilizers like N, the pattern of variabil-
ity can mostly be ascertained by the systematic sampling
scheme.

Conclusion

In this study, we compared the result of sampling simulation
based on real samples from a rice field. We conducted sam-
pling on the base maps of N, P, and K that were created from
real data. In total, 74 schemes with over 140,000 samples were
derived from the original survey. Maps of the spatial variabil-
ity of these elements were created. These original maps were
considered as base maps, and their statistics were calculated.
The sampling schemes included random, systematic, stratified
random, and stratified systematic. Each of the samples was
analyzed statistically, and the result was compared with the
population for each element. A map of each sample was also
created using the geostatistical kriging and their common
areas with the base maps were calculated. The result was an-
alyzed both statistically and in terms of ability of samples to
produce the same spatial pattern as the base maps for N, P,
and K. In terms of the mean and standard deviation of each
sampling scheme, the result was mixed with a clear sepa-
ration between the performance of random, systematic and
stratified schemes. For nitrogen, stratified systematic per-
formed the best for samples over 200. For phosphorus, all
employed schemes could not estimate the population
means correctly, and they became close to population mean
only with samples over 300. For potassium, stratified sys-
tematic scheme could also estimate the population means
from the minimum number of samples (100). The perfor-
mance of stratified systematic sampling however is suspi-
cious as it could not reproduce the standard deviation of
populations for all the schemes. In terms of mapping, be-
tween all the sampling schemes, systematic sampling per-
formed the best and most importantly; it provided better
accuracy than other sampling schemes for the minimum
number of samples. Random sampling is another candidate
for the choice of sampling scheme. However, its perfor-
mance, especially instability in the plots of samples re-
quires more investigation.

Since the patterns of variation are highly different in agri-
cultural fields, the most important property of a sample
scheme is representativeness. From this point of view, we
demonstrated that systematic sampling is still the best choice
as there is no need to provide many samples. However, its
performance for phosphorus should be investigated further.

Acknowledgments This project is partly funded by theMalaysian Cen-
ter for Remote Sensing (MaCReS) under BThe Study of Rice Precision
Farming^ project.

References

Aimrun W, Amin M, Ezrin M (2009) Small scale spatial variability of
apparent electrical conductivity within a paddy field. Appl Environ
Soil Sci 2009:7. doi:10.1155/2009/267378

Allan Reese R (2009) Geostatistics for environmental scientists. J R Stat
Soc Ser A 172(3):700. doi:10.1111/j.1467-985X.2009.00595_11.x

Auernhammer H (2001) Precision farming-the environmental challenge.
Comput Electron Agric 30(1–3):31–43

Blackmore B (2003) An information system for precision farming.
Cranfield University, USA

Brus D, De Gruijter J (1997) Random sampling or geostatistical model-
ling? Choosing between design-based and model-based sampling
strategies for soil (with discussion). Geoderma 80(1–2):1–44. doi:
10.1016/S0016-7061(97)00072-4

Buresh R, Witt C, Ramanathan S, Mishra B, Chandrasekaran B,
Rajendran R (2005) Site-specific nutrient management: managing
N, P, and K for rice. Fert News 50(3):25–28

Cochran WG (2007) Sampling techniques. John Wiley & Sons, New
York

Earl R, Thomas G, Blackmore B (2000) The potential role of GIS in
autonomous field operations. Comput Electron Agric 25(1–2):
107–120

Elliot P, Wakefield J, Best N, Briggs D (2000) Spatial epidemiology:
methods and applications. Oxford University Press

Entz T, Chang C (1991) Evaluation of soil sampling schemes for
geostatistical analyses: a case study for soil bulk density. Can J
Soil Sci 71(2):165–176

Franco-Marina F, Villalba-Caloca J, Segovia N, Tavera L (2003) Spatial
indoor radon distribution in Mexico City. Sci Total Environ 317(1–
3):91–103. doi:10.1016/S0048-9697(03)00270-5

Gilbert RO (1987) Statistical methods for environmental pollution mon-
itoring. illustrated edn. John Wiley & Sons

Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford
University Press, USA

Gruijter Jd, Brus D, Bierkens M, Knotters M (2006) Sampling for natural
resource monitoring. CAB Direct

Hassig NL,Wilson JE, Gilbert RO, Pulsipher BA, Nuffer L (2004) Visual
sample plan: version 3.0 user’s guide. Richland, WA: Pacific
Northwest National Laboratory. PNNL-149700, Washington

Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001)Using ArcGIS
geostatistical analyst. Esri Redlands: New York

Kariuki S, Hanks T, Zhang H (2006) Spatial and temporal variability of
soil sampling across a pasture field. Paper presented at the ASA-
CSSA-SSSA International Annual Meetings Cincinnati, Ohio, 12–
16 November 2006

Kerry R, Oliver M (2007a) Determining the effect of asymmetric data on
the variogram. I. Underlying asymmetry. Comput Geosci 33(10):
1212–1232. doi:10.1016/j.cageo.2007.05.008

Kerry R, Oliver M (2007b) Determining the effect of asymmetric data on
the variogram. II. Outliers. Comput Geosci 33(10):1233–1260. doi:
10.1016/j.cageo.2007.05.009

Kerry R, Oliver M, Frogbrook Z (2010) Sampling in precision agricul-
ture. In: Geostatistical applications for precision agriculture.
Springer, pp 35–63. doi:10.1007/978-90-481-9133-8_2

Kim H-J, Hummel JW, Sudduth KA, Motavalli PP (2007) Simultaneous
analysis of soil macronutrients using ion-selective electrodes. Soil
Sci Soc Am J 71(6):1867–1877. doi:10.2136/sssaj2007.0002

Arab J Geosci (2015) 8:9775–9788 9787

http://dx.doi.org/10.1155/2009/267378
http://dx.doi.org/10.1111/j.1467-985X.2009.00595_11.x
http://dx.doi.org/10.1016/S0016-7061(97)00072-4
http://dx.doi.org/10.1016/S0048-9697(03)00270-5
http://dx.doi.org/10.1016/j.cageo.2007.05.008
http://dx.doi.org/10.1016/j.cageo.2007.05.009
http://dx.doi.org/10.1007/978-90-481-9133-8_2
http://dx.doi.org/10.2136/sssaj2007.0002


Lin H, Wheeler D, Bell J, Wilding L (2005) Assessment of soil spatial
variability at multiple scales. Ecol Model 182(3–4):271–290

Oggier P, Zschokke S, Baur B (1998) A comparison of three methods for
assessing the gastropod community in dry grasslands. Pedobiologia
42(4):348–357

Robert P (2002) Precision agriculture: a challenge for crop nutrition man-
agement. Plant Soil 247(1):143–149

Sadler EJ, Busscher WJ, Bauer PJ, Karlen DL (1998) Spatial scale re-
quirements for precision farming: a case study in the southeastern
USA. Agron J 90(2):191–197

Safari Y, Boroujeni IE, Kamali A, Salehi MH, Bodaghabadi MB (2013)
Mapping of the soil texture using geostatistical method (a case study
of the Shahrekord plain, central Iran). Arab J Geosci 6(9):3331–
3339. doi:10.1007/s12517-012-0559-9

Sastre J, Vidal M, Rauret G, Sauras T (2001) A soil sampling strategy for
mapping trace element concentrations in a test area. Sci Total
Environ 264(1–2):141–152. doi:10.1016/S0048-9697(00)00616-1

Simbahan GC, Dobermann A (2006) Sampling optimization based on
secondary information and its utilization in soil carbon mapping.
Geoderma 133(3–4):345–362. doi:10.1016/j.geoderma.2005.07.020

Terzis A, Musaloiu-E R, Cogan J, Szlavecz K, Szalay A, Gray J, Ozer S,
Liang C-J, Gupchup J, Burns R (2010)Wireless sensor networks for
soil science. Int J Sens Netw 7(1–2):53–70. doi:10.1504/IJSNet.
2010.03185

Thompson S (1992) Sampling, vol 113. John Wiley, New York
Wang X, Qi F (1998) The effects of sampling design on spatial structure

analysis of contaminated soil. Sci Total Environ 224(1–3):29–41.
doi:10.1016/S0048-9697(98)00278-2

Webster R, Oliver MA (2007) Geostatistics for environmental scientists.
John Wiley & Sons

Wong MT, Asseng S (2006) Determining the causes of spatial and
temporal variability of wheat yields at sub-field scale using a
new method of upscaling a crop model. Plant Soil 283(1–2):
203–215

Yang Y, Zhu J, Zhao C, Liu S, Tong X (2011) The spatial continuity
study of NDVI based on kriging and BPNN algorithm. Math
Comput Model 54(3):1138–1144. doi:10.1016/j.mcm.2010.11.
046

Zhang C (2007) Fundamentals of environmental sampling and analysis.
Wiley-Interscience, New York

Zhang N, Wang M, Wang N (2002) Precision agriculture-a worldwide
overview. Comput Electron Agric 36(2–3):113–132

Zhang M, Li M, Wang W, Liu C, Gao H (2012) Temporal and spatial
variability of soil moisture based on WSN. Math Comput Model.
doi:10.1016/j.mcm.2012.12.019

Zhu Z, Stein ML (2006) Spatial sampling design for prediction with
estimated parameters. J Agric Biol Environ Stat 11(1):24–44. doi:
10.1198/108571106X99751

9788 Arab J Geosci (2015) 8:9775–9788

http://dx.doi.org/10.1007/s12517-012-0559-9
http://dx.doi.org/10.1016/S0048-9697(00)00616-1
http://dx.doi.org/10.1016/j.geoderma.2005.07.020
http://dx.doi.org/10.1504/IJSNet.2010.03185
http://dx.doi.org/10.1504/IJSNet.2010.03185
http://dx.doi.org/10.1016/S0048-9697(98)00278-2
http://dx.doi.org/10.1016/j.mcm.2010.11.046
http://dx.doi.org/10.1016/j.mcm.2010.11.046
http://dx.doi.org/10.1016/j.mcm.2012.12.019
http://dx.doi.org/10.1198/108571106X99751

	Spatial soil analysis using geostatistical analysis and map Algebra
	Abstract
	Introduction
	Materials and methods
	Study area
	Original data
	Preparing the base maps
	Preparing sample coordinates
	Random and systematic samples
	Stratified samples
	Statistical analysis of samples
	Map algebra

	Results and discussions
	Base map analysis results
	Analysis of samples
	Nitrogen
	Phosphorus
	Potassium

	Summary of sample’s statistics
	Overlay analysis
	Nitrogen
	Phosphorus
	Potassium

	Overall accuracy

	Conclusion
	References


