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Abstract Blasting, as the most frequently used method for
hard rock fragmentation, is a hazardous aspect in mining in-
dustries. These operations produce several undesirable envi-
ronmental impacts such as ground vibration, air-overpressure
(AOp), and flyrock in the nearby environments. These envi-
ronmental impacts may cause injury to human and damage to
structures, groundwater, and ecology of the nearby area. This
paper is aimed to predict the blasting environmental impacts
in granite quarry sites through two intelligent systems, namely
artificial neural network (ANN) and adaptive neuro-fuzzy in-
ference system (ANFIS). For this purpose, 166 blasting oper-
ations at four granite quarry sites in Malaysia were

investigated and the values of peak particle velocity (PPV),
AOp, and flyrock were precisely recorded in each blasting
operation. Considering some model performance indices in-
cluding coefficient of determination (R2), value account for
(VAF), and root mean square error (RMSE), and also using
simple ranking procedure, the best models for prediction of
PPV, AOp, and flyrock were selected. The results demonstrat-
ed that the ANFIS models yield higher performance capacity
compared to ANN models. In the case of testing datasets, the
R2 values of 0.939, 0.947, and 0.959 for prediction of PPV,
AOp, and flyrock, respectively, suggest the superiority of the
ANFIS technique, while in predicting PPV, AOp, and flyrock
using ANN technique, these values are 0.771, 0.864, and
0.834, respectively.

Keywords Blasting environmental impacts . Peak particle
velocity . Air overpressure . Flyrock . Artificial neural
network . Adaptive neuro-fuzzy inference system

Introduction

Blasting is a common technique of rock fragmentation in
quarry and mining operations as well as some civil engineer-
ing applications such as tunneling and road construction. In
quarry operations, blasting consists of drilling several rows of
blast-holes almost parallel to the free face of the bench. These
operations create several environmental impacts such as air
overpressure, ground vibration, flyrock, and back-break
around the blasting zone (Monjezi and Dehghani 2008;
Fisne et al. 2011; Jahed Armaghani et al. 2013; Hajihassani
et al. 2014a; Ebrahimi et al. 2015). There are some empirical
equations for prediction of these environmental impacts.
Nevertheless, these equations just consider limited numbers
of influential parameters on them whereas these impacts are
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also affected by other effective factors such as blast geometry
and geological conditions (Douglas 1989; Singh and Singh
2005). As a result, empirical approaches are not accurate
enough, while sometimes prediction of the environmental im-
pact values with higher accuracy is essential to minimize en-
vironmental damage due to blasting operations (Jahed
Armaghani et al. 2013; Hajihassani et al. 2014a).

Ground vibration is defined as a wave motion which
spreads away from the blast to nearby areas (Khandelwal
and Singh 2009; Bakhshandeh Amnieh et al. 2012). The
ground vibrations can be determined in terms of peak particle
velocity (PPV) and frequency. As mentioned in several stan-
dards (Bureau of Indian Standard 1973), PPV is considered as
a vibration index, which is an important indicator to control
the structural damage criteria. High ground vibration can
cause damage to the surrounding structures, groundwater,
and ecology of the nearby area (Singh and Singh 2005;
Monjezi et al. 2010a; Hajihassani et al. 2014b). Several pa-
rameters such as blast design, distance between the blast-face
and monitoring point, rock mass mechanical properties, ex-
plosive charge weight per delay, and geological conditions are
the most influential parameters on ground vibration induced
by blasting (Wiss and Linehan 1978; Khandelwal and Singh
2006).

Air overpressure (AOp) is created by a large shock wave
from explosion point to the free surface. The pressures of AOp
waves contain an audible high-frequency and subaudible low-
frequency sound. Normally, four main sources can cause AOp
waves in blasting operations: air pressure pulse which is rock
displacement at bench face, rock pressure pulse which is in-
duced by ground vibration, gas release pulse which is the
escape of gases through rock fractures, and finally stemming
release pulse which is the escape of gases from the blasthole
when the stemming is ejected (Wiss and Linehan 1978;
Siskind et al. 1980; Morhard 1987). AOp may cause damage
to structures and should be kept below critical ranges (Kuzu
et al. 2009; Rodriguez et al. 2010). AOp is influenced by
several factors such as explosive charge weight per delay,
blast geometry, distance between blast-face and monitoring
point, length of stemming, geological discontinuities, and
blasting direction (Konya and Walter 1990; Khandelwal and
Kankar 2011).

Excessive random throw of rock fragments beyond the
blast safety area can be defined as flyrock (Khandelwal and
Monjezi 2013; Raina et al. 2014). In the mechanism of
flyrock, three parameters namely rock mass mechanical
strength, charge confinement, and explosive energy distribu-
tion are in an affective relationship to each other and any
mismatch between these parameters can create flyrock
(Bajpayee et al. 2004). When flyrock happens, huge energy
is used to throw the rock rather than creation of fragmented
rock (Roy 2005). Flyrock induced by blasting can cause dam-
age to structures and injury to human (Kecojevic and

Radomsky 2005; Roy 2005; Khandelwal and Monjezi
2013). Inadequate burden and spacing, inadequate stemming,
inaccurate drilling, overloaded holes, excessive powder factor,
and unfavorable geological conditions may produce flyrock
(Hemphill 1981; Bhandari 1997).

Utilizing soft computing methods such as artificial neural
network (ANN) (Khandelwal et al. 2011; Tonnizam
Mohamad et al. 2012; Monjezi et al. 2013a), fuzzy inference
system (FIS) (Mohamed 2011), and adaptive neuro-fuzzy in-
ference system (ANFIS) (Iphar et al. 2008) for prediction of
blasting environmental impacts are recently highlighted in
literatures. In this study, two intelligent systems namely
ANN and ANFIS were used to predict blasting environmental
impacts including PPV, AOp, and flyrock using the datasets
obtained from four granite quarry sites in Malaysia.

Prediction methods of blasting environmental
impacts

Peak particle velocity

Various empirical predictors have been established to predict
PPV by several scholars (Duvall and Petkof 1959; Langefors
and Kihlstrom 1963; Davies et al. 1964; Bureau of Indian
Standard 1973; Ghosh and Daemen 1983; Roy 1993).
However, in a particular blasting, predicted PPV values ob-
tained by these predictors are different and there is no homo-
geneity in their results. Furthermore, these empirical predic-
tors only consider two influential parameters including charge
per delay and distance from blast-face whereas PPV is also
influenced by other effective parameters such as blast geom-
etry and geological conditions (Jahed Armaghani et al. 2013).

Apart from the empirical predictors, soft computing tech-
niques have been extensively used to predict PPV. ANN and
regression analysis were applied to predict PPV by Singh and
Singh (2005). They demonstrated that ANN is a more accurate
technique in comparison to regression analysis for PPV pre-
diction. Fisne et al. (2011) utilized fuzzy logic approach and
classical regression analysis to predict PPV using 33 datasets
obtained from Akdaglar quarry in Turkey. In their research,
charge weight and distance from blast-face were considered as
input parameters. They concluded that the predicted PPVs
obtained from fuzzy model were much closer to the measured
values in comparison to those predicted by statistical models.
Monjezi et al. (2013a) predicted PPV values using different
empirical equations and ANN technique. They compared the
computed results with the actual field data obtained from Shur
River Dam in Iran. Finally, they found that the results of ANN
model are more accurate in comparison to those of empirical
equations. In the other study, Saadat et al. (2014) predicted 69
PPV values obtained from Gol-E-Gohar iron mine in Iran by
using ANN. For the sake of comparison, they compared the
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ANN results with common empirical approaches and multiple
linear regression (MLR). It was found that the ANN approach
performs better in comparison to empirical and MLR models.

Air overpressure

Many attempts have been made to develop empirical
approach for prediction of AOp induced by blasting.
Rodriguez et al. (2007) established semi-empirical meth-
od for prediction of AOp due to blasting outside a tun-
nel. Their method was surveyed with several cases, and
they found that it can be used under different conditions.
A new empirical relationship for prediction of AOp was
developed by Kuzu et al. (2009) using two parameters
including the distance between blast-face and monitoring
point as well as weight of explosive materials. They
concluded that the proposed equation predicts AOp with
reasonable degree of accuracy. Segarra et al. (2010) pro-
posed a new AOp predictive equation using recorded
data from two quarries. AOp values were measured from
122 records in 40 blasting operations in the rocks with
low to very low strength. Finally, they presented a pre-
dictive equation with 32 % of accuracy.

In addition to empirical methods, the use of soft computing
approaches for AOp prediction is recently highlighted. An
ANN model was presented for prediction of AOp by
Khandelwal and Singh (2005) using weight of explosive as
well as distance between blast-face and monitoring point.
They compared the ANN results with the US Bureau of
Mines (USBM) predictor and MLR technique and
concluded that the ANN yields better estimation of AOp
values compared to other methods. Mohamed (2011) used
ANN and FIS to predict AOp. He compared the results of
predictive models with the values obtained by regression anal-
yses and observed field data. From that study, it was found that
the ANN and fuzzy models are accurate predictive models for
AOp estimation. Support vector machine (SVM) technique
was applied to predict AOp by Khandelwal and Kankar
(2011) using 75 datasets obtained from three mines in India.
They compared AOp values predicted by SVM with the re-
sults of generalized predictor equation. The results demon-
strated that the estimated values of AOp using SVM are much
closer to the actual values. A combination of PSO and ANN
approaches was presented to predict AOp byHajihassani et al.
(2014a). Two empirical formulas were also established to pre-
dict AOp values using distances of 300 and 600 m. Finally,
they found that the PSO-ANN technique is an applicable tool
to predict AOp with high degree of accuracy.

Flyrock

Several empirical equations have been established by some
researchers to predict flyrock distance. An empirical equation

based on hole and rock diameters was developed by Lundborg
et al. (1975) as follows:

Lm ¼ 260� D2=3 ð1Þ

Tb ¼ 0:1� D2=3 ð2Þ
in which Lm is the maximum throw of the rock (m), D is hole
diameter (in.), and Tb is the rock size (m). Another equation
was proposed using stemming length and burden parameters
by Gupta (1990), as given below:

L ¼ 155:2� D−1:37 ð3Þ
where L is the ratio of stemming length to burden, andD is the
distance of thrown fragments (m). Ghasemi et al. (2012a)
developed an empirical equation for flyrock prediction using
dimensional analysis as follows:

Fd ¼ 6946:547 B−0:796S0:783St
1:994H1:649D1:766 P=Qð Þ1:465

h i
ð4Þ

where B is burden, S is spacing, St is stemming, H is blasthole
length,D is diameter of blasthole, P is powder factor, andQ is
mean charge per blasthole. Coefficient of determination (R2)
equals to 0.83 shows the high prediction performance of the
proposed equation.

In another empirical study, Trivedi et al. (2014) proposed
an equation to predict flyrock distance using multivariate re-
gression analysis. To do this, they monitored 95 blasting op-
erations of four opencast limestonemines in India and relevant
blasting parameters were recorded. Proposed flyrock equation
is as follows:

Flyrock ¼ 105:1qI
0:51q0:14

B0:93ST0:64σc
0:75RQD0:93 ð5Þ

where qI is linear charge concentration, q is specific charge, σc
is unconfined compressive strength, ST is stemming length, B
is burden, and RQD is rock quality designation. R2 of 0.815
was obtained for their developed model.

Apart from the empirical methods, prediction of flyrock
using artificial intelligent methods has been reported by many
researchers. Monjezi et al. (2011b) predicted 192 datasets of
flyrock induced by basting operations by using ANN. From
their study, it was found that the ANN technique can predict
flyrock with high degree of accuracy. Rezaei et al. (2011) used
FIS model to predict flyrock and compared the FIS results
with conventional statistical approaches. They clearly found
that the efficiency of the developed FIS model is much better
than that of statistical models. Ghasemi et al. (2012b) predict-
ed flyrock distance using two predictive models namely ANN
and FIS models. They indicated that both models are able to
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predict flyrock distance in which the FIS model yields higher
performance in comparison to the ANN approach. Neuro-
genetic predictive model was utilized to predict flyrock and
back-break by Monjezi et al. (2012). They compared the pro-
posed model with the regression analysis and concluded that
the proposed model is a better tool in prediction of flyrock.
Amini et al. (2012) presented two intelligent approaches
namely SVM and ANN to estimate flyrock distance. They
used hole diameter, hole length, burden, spacing, stemming,
powder factor, and specific drilling as inputs. After
comparison, it was found that the SVM method is more
precise than ANN technique. In the other study of flyrock
prediction, Khandelwal and Monjezi (2013) used SVM and
MLR techniques to estimate flyrock of Soungun Copper
Mine, Iran. After comparison of these methods, they intro-
duced SVM as a better option for close flyrock prediction.
Table 1 shows some recent studies with their performances
in predicting PPV, AOp, and flyrock induced by blasting.

Artificial neural network

The ANN is a soft computation technique inspired by the
human brain information process. A typical ANN consists of
three main constituents, namely learning rule, network archi-
tecture, and transfer function (Simpson 1990). There are two
major types of ANN: recurrent and feed-forward. Shahin et al.
(2002) recommend that if there is no time-dependent param-
eter in the ANN, the feed-forward (FF)-ANN can be
employed. The multilayer perceptron (MLP) neural network
is one of the most well-known FF-ANNs (Haykin 1999;
Rezaei et al. 2012; Monjezi et al. 2013b). MLP consists of a
number of nodes or neurons in three layers (input, hidden, and
output) linked to each other by weights. Du et al. (2002) and
Kalinli et al. (2011) reported on the high efficiency of MLP-
ANNs in approximating various functions in high-
dimensional spaces. Nevertheless, the ANN needs to be
trained before interpreting the results. Among many kinds of
learning algorithms to train MLP-FF, the back-propagation
(BP) algorithm is the most extensively utilized (Dreyfus
2005). In a BP-ANN, the imported data in the input layer starts
to propagate to hidden neurons through connection weights
(Kuo et al. 2010). The input from each neuron in the previous
layer, Ii, is multiplied by an adjustable connection or weight,
Wij. At each node, the sum of the weighted input signals is
computed and then, this value is added to a threshold value
known as the bias value, Bij (see Eq. 6). To create the output of
the neuron, the combined input, Ji, is passed through a non-
linear transfer function f (Jj), such as a sigmoidal function (see
Eq. 7). However, in general, the output of each neuron pro-
vides the input to the next layer neuron. This procedure is
continued until the output is generated. To achieve the error,
the created output is checked against the desired output. The

BP training can change the weights between the neurons iter-
atively in a way that minimizes the root mean square error
(RMSE) of the system. More details of the BP algorithm can
be seen in the classic artificial intelligence books (Fausett
1994).

J j ¼
X

wi jI i
� �þ Bj ð6Þ

yi ¼ f J j

� � ð7Þ

Adaptive neuro-fuzzy inference system

ANFIS developed based on the Takagi and Sugeno (1985) FIS
by Jang (1993). ANFIS is considered as a universal predictor
which is able to approximate real continuous functions Jang
et al. (1997). In fact, ANFIS integrates the principles of ANN
and FIS and, therefore, potentially presents all benefits of
them in a unique framework. By determining the optimum
distribution of membership functions, ANFIS is able to ana-
lyze the relationships between the input and target data using
the hybrid learning. As in Fig. 1a, ANFIS structure consists of
premise and consequent parts. The equivalent architecture of
ANFIS including five layers is shown in Fig. 1b. Regarding
the applicability of ANFIS in prediction of the nonlinear rela-
tionship between input and output data, it has been widely
used in various applications of engineering.

In order to describe the procedure of ANFIS, it is assumed
that the FIS under consideration consists of two inputs (x, y)
and one output ( f ) and the rule base includes two fuzzy rule
set Bif-then^ as follows (Jang 1993):

Rule I If x is A1 and y is B1, then f1=p1x+q1y+r1
Rule II If x is A2 and y is B2, then f2=p2x+q2y+r2

in which pi, qi, and ri are the consequent parameters to be settled.
According to Jang (1993) and Jang et al. (1997), an ANFIS with
five layers and two rules can be described as follows:

Layer I Every node i in layer I produces a membership grade
of a linguistic label. For example, the node function
of the ith node is

Q1
i ¼ μAi xð Þ ¼ 1

1þ x−vi
σ1

� �2
� �bi ð8Þ

in which Qi
1 and x are the membership function and

input to node i, respectively. Ai is the linguistic label
related to node i, and σ1,vi, bi are parameters that
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make changes in the shape of the membership func-
tion. The existing parameters in this layer are related
to the premise part (see Fig. 1a).

Layer II Each node in layer II computes the firing strength of
each rule via multiplication:

Q2
i ¼ wi ¼ μAi xð Þ:μBi yð Þ i ¼ 1; 2 ð9Þ

Layer III The ratio of firing strength of the ith rule to the sum
of firing strengths of all rules is calculated in this
layer.

Q3
i ¼ Wi ¼ wiX 2

j¼1
wj

i ¼ 1; 2 ð10Þ

Table 1 Recent works on PPV, AOp, and flyrock prediction using soft computation techniques

Reference Technique Input Output No. of dataset R2

Iphar et al. (2008) ANFIS DI, C PPV 44 R2=0.98

Bakhshandeh Amnieh et al. (2010) ANN ST, DI, C, N PPV 29 R2=0.99

Monjezi et al. (2011a) ANN HD, ST, DI, C PPV 182 R2=0.95

Khandelwal et al. (2011) ANN DI, C PPV 130 R2=0.92

Mohamed (2011) ANN, FIS DI, C PPV 162 R2ANN=0.94
R2 FIS=0.90

Fisne et al. (2011) FIS DI, C PPV 33 R2=0.92

Li et al. (2012) SVM DI, C PPV 32 R2=0.89

Mohamadnejad et al. (2012) SVM, ANN DI, C PPV 37 R2SVM=0.89
R2ANN=0.85

Ghasemi et al. (2013) FIS B, S, ST, N, C, DI PPV 120 R2=0.95

Monjezi et al. (2013a) ANN C, DI. TC PPV 20 R2=0.93

Jahed Armaghani et al. (2013) ANN-PSO S, B, ST, PF, C, D, N, RD, SD PPV 44 R2=0.94

Hajihassani et al. (2014b) ANN-ICA BS, ST, PF, C, DI, Vp, E PPV 95 R2=0.98

Ghoraba et al. (2015) ANN BS, DI, C, ST, HL PPV 115 R2=0.98

Khandelwal and Singh (2005) ANN DI, C AOp 56 R2=0.96

Mohamed (2011) ANN, FIS DI, C AOp 162 R2ANN=0.92
R2FIS=0.86

Khandelwal and Kankar (2011) SVM DI, C AOp 75 R2=0.85

Tonnizam Mohamad et al. (2012) ANN HD, S, B, N, D, ST, PF AOp 38 R2=0.93

Hajihassani et al. (2014a) ANN-PSO HD, S, B, ST, PF, N, DI, C, RQD AOp 62 R2=0.86

Monjezi et al. (2010b) ANN HD, BS, ST, PF, SD, N, C, RD Flyrock 250 R2=0.98

Rezaei et al. (2011) FIS HD, S, B, ST, PF, SD, RD, C Flyrock 490 R2=0.98

Monjezi et al. (2011b) ANN HD, BS, ST, PF, D, SD, C, B Flyrock 192 R2=0.97

Monjezi et al. (2012) ANN-GA HD, S, B, ST, PF, SD, D, C, RMR Flyrock 195 R2=0.89

Amini et al. (2012) SVM, ANN HL, S, B, ST, PF, SD, D Flyrock 245 R2ANN=0.92
R2SVM=0.97

Tonnizam Mohamad et al. (2013) ANN HD, BS, ST, PF, C, D, N, RD, SD Flyrock 39 R2=0.97

Jahed Armaghani et al. (2013) ANN-PSO S, B, ST, PF, C, D, N, RD, SD Flyrock 44 R2=0.94

Monjezi et al. (2013b) ANN HD, S, B, D, C Flyrock 310 R2=0.98

Khandelwal and Monjezi (2013) SVM HL, S, B, ST, PF, SD Flyrock 187 R2=0.95

Marto et al. (2014) ANN-ICA RD, HD, BS, ST, PF, C, Rn Flyrock 113 R2=0.98

Trivedi et al. (2014) ANN B, ST, qI, q, σc, RQD Flyrock 95 R2=0.98

Ghasemi et al. (2014) ANN, FIS HL, S, B, ST, PF, C Flyrock 230 R2ANN=0.94
R2FIS=0.96

HL hole length, S spacing,B burden, STstemming,PF powder factor, SD specific drilling, SVM support vector machine,Cmaximum charge per delay,D
hole diameter, HD hole depth, RD rock density, BS burden to spacing, N number of row, B blastability index, GA genetic algorithm, RMR rock mass
rating, PSO particle swarm optimization, Sb subdrilling, DI distance from the blasting face, TC total charge, RQD rock quality designation, ICA
imperialist competitive algorithm, EYoung’s modulus, Vp p wave velocity, qI linear charge concentration, q specific charge, σc unconfined compressive
strength
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Layer IV Every node i in layer IV is a node function whereas
Wi is the output of layer III. Parameters of this layer
are related to consequent part.

Q4
i ¼ Wi f i ¼ Wi pixþ qiyþ rið Þ ð11Þ

Layer V The incoming signals are summed in this layer and
form the overall output.

Q5
i ¼ Overall output ¼

X
Wi f i ¼

X
wi f iX
wi

ð12Þ

Site description and data collection

To provide a sufficient number of datasets for prediction of
blasting environmental impacts, four granite quarry sites were
studied in Johor area, Malaysia. Table 2 shows the descrip-
tions of these sites. The purpose of blasting operation in these

quarries is to produce aggregate with capacity of 160,000 to
380,000 t per month. Depending on the weather conditions, 6
to 12 blasting operations are carried out per month in these
quarries.

The minimum bench height of 10 m was investigated
in Kulai quarry whereas maximum bench height (28 m)
was observed is Bukit Indah quarry. A range of rock
mass weathering zones from moderately weathered
(MW) to completely weathered (CW) was identified in
Taman Bestari, Senai Jaya, Kulai and Bukit Indah
quarries (Alavi Nezhad Khalil Abad et al. 2014). In
addition to mentioned weathered zones, residual soil
(RS) was investigated only in Bukit Indah quarry. In
identification of weathering zones, suggested method
proposed by International Society of Rock Mechanics
(ISRM 2007) was utilized. Schmidt hammer test was
also conducted based on ISRM (2007) in order to esti-
mate rock mass strength. Range of Schmidt hammer
rebound values (Rn) was obtained between 19 and 37.
Furthermore, values of 40.7 and 99.8 were obtained as
minimum and maximum of uniaxial compressive

Fig. 1 a Sugeno fuzzy model
with two rules; b equivalent
ANFIS architecture
(Jang et al. 1997)
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strength (UCS), respectively. It should be noted that the
uniaxial compression tests were conducted on limited
block samples collected from the quarries. As a jointing
degree or fracturing of the rock mass, RQD can be used
to represent the geological discontinuities. RQD is mea-
sured as a percentage of the drill core in lengths of
100 mm or more. This parameter was measured in the
selected blasting operations. Minimum and maximum
values of 22.5 and 61.25, respectively, were achieved
for RQD results.

A total number of 166 blasting operations were in-
vestigated, and related parameters of blasting were mea-
sured. Various blasting parameters including spacing,
burden, stemming length, maximum charge per delay,
powder factor, and distance from the blast-face were
recorded. It should be mentioned that hole diameter of
115 mm was used for all blasting operations. ANFO
and dynamite are used as the main explosive material
and initiation, respectively. The blastholes are stemmed
using fine gravels.

In each blasting, PPV and AOp values were recorded
using VibraZEB seismograph with transducers for PPV
and AOp measurement. The AOp values were moni-
tored using linear L-type microphones connected to the
AOp channels of recording units. The VibraZEB records
AOp values ranging from 88 dB (7.25×10−5 psi or
0.5 Pa) to 148 dB (0.0725 psi or 500 Pa). The micro-
phones have an operating frequency response from 2 to
250 Hz, which is adequate to measure AOp accurately
in the frequency range critical for structures and human

hearing. The distance between the monitoring point and
the center of blast-face ranged from 65 to 710 m. To
measure the flyrock distances in quarry sites, the surface
of benches were colored and two video cameras were
placed to monitor the flyrock projections. After each
blasting, the relevant videos were reviewed to find the
locations of the maximum flied rocks. According to
Table 1, the widely used input parameters in predicting
PPV and AOp are maximum charge per delay and dis-
tance from the blast-face. In addition, according to
Siskind et al. (1980), the most effective parameters on
PPV and AOp are maximum charge per delay and dis-
tance from blast-face. In the case of flyrock, the exten-
sively utilized input parameters are burden, spacing,
stemming length, powder factor, and maximum charge
per delay (see Table 1). Moreover, several researchers
obtained these parameters as the most influential one on
flyrock resulting from blasting (e.g., Monjezi et al.
2010b, 2011b, 2013b; Rezaei et al. 2011). Therefore,
in this study, maximum charge per delay and distance
from the blast-face were used as model inputs for pre-
diction of PPV and AOp, while burden to spacing ratio
(having effects of both burden and spacing), stemming
length, powder factor, and maximum charge per delay
were set as input parameters in predicting flyrock dis-
tance. Summary of the measured data is tabulated in
Table 3. Figures 2, 3, and 4 illustrate the frequency
distributions of PPV, AOp, and flyrock distance used
in this study.

Application of intelligent systems in predicting PPV,
AOP, and flyrock

To predict PPV, AOp, and flyrock induced by quarry blasting,
two intelligent systems namely ANN and ANFIS were devel-
oped. As mentioned earlier, maximum charge per delay and
distance from the blast-face were selected as inputs to predict
PPV and AOp, while maximum charge per delay, distance
from the blast-face, burden to spacing ratio, and stemming

Table 2 Description of granite quarry sites used in this study

Quarry name Distance to
Johor (km)

Latitude Longitude Bench
height (m)

Taman Bestari 17 1° 60′ 41″ N 103° 78′ 32″ E 7–17

Senai Jaya 27 1° 36′ 00″ N 103° 39′ 00″ E 13–24

Kulai 35 1° 39′ 21″ N 103° 36′ 11″ E 10–22

Bukit Indah 18 1° 93′ 12″ N 103° 35′ 08″ E 15–28

Table 3 Summary of measured
parameters in the predictive
models

Parameter Unit Symbol Min Max Mean St. deviation

Burden to spacing – BS 0.41 0.91 0.75 0.103

Stemming length m ST 1.4 4 2.87 0.619

Powder factor kg/m3 PF 0.24 0.98 0.69 0.197

Maximum charge per delay kg C 69.79 309.09 202.44 64.534

Distance from the blast-face m DI 65 710 329 142.961

Peak particle velocity mm/s PPV 1.21 37.44 14.4 8.673

Air-overpressure dB AOp 89.30 137.8 113.2 12.159

Flyrock distance m – 39 258 140.2 48.521
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length were set as input parameters for flyrock prediction. The
modeling procedures of the ANN and ANFIS techniques are
described in the following sections.

Prediction of PPV, AOp, and flyrock using ANN

An attempt was made to predict PPV, AOp, and flyrock using
ANN technique. To do this, all data were normalized in the
range of (0,1) using the following equation:

Xnorm ¼ X−Xminð Þ= Xmax−Xminð Þ ð13Þ
where X is the measured value, Xnorm represents the normal-
ized value of the measured parameter, and Xmin and Xmax are

the minimum and maximum values of the measured
parameters in the dataset. The performance of the ANN
models depends strongly on the suggested architecture of the
network as mentioned in the studies by Hush (1989) and
Kanellopoulas and Wilkinson (1997). Therefore, determina-
tion of the optimal architecture is required to design an ANN
model. The network architecture is defined as the number of
hidden layer(s) and the number of nodes in each hidden
layer(s). According to various researchers (e.g., Hecht-
Nielsen 1987; Hornik et al. 1989; Baheer 2000), one hidden
layer can solve any complex function in a network. Hence, in
this study, one hidden layer was selected to construct the ANN
models. In addition, determining neuron number(s) in the hid-
den layer is the most critical task in the ANN architecture as

Fig. 2 Frequency distribution of
measured PPV values

Fig. 3 Frequency distribution of
measured AOp values
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stated by Sonmez et al. (2006) and Sonmez and Gokceoglu
(2008). Table 4 tabulates some equations related to determi-
nation of number of neuron proposed by several scholars.
Based on this table, the number of hidden neuron in the range
of 1 to 5 should be used for PPV and AOp prediction (using
two inputs and one output), while this range is between 1 and
9 for flyrock prediction (using four inputs and one output).

In this study, all datasets were divided randomly to training
and testing datasets. The idea behind using some data for
testing is to check the performance capacity of the developed
model. In the studies by Swingler (1996) and Looney (1996),
testing dataset was recommended as 20 and 25 % of whole
dataset, respectively, while a range of 20 to 30 % of whole
data was suggested for testing in the study by Nelson and
Illingworth (1990). Considering these recommendations,
20 % (33 datasets) of whole datasets (166 datasets) was se-
lected randomly as testing datasets, whereas the remaining
133 datasets were used for training the system. In order to
determine the optimum number of neurons in the hidden layer,

several ANNmodels were constructed using one hidden layer
and mentioned number of hidden neurons for prediction of
PPV, AOp, and flyrock as presented in Table 5. In this table,
five iterations were modeled for each hidden node in all out-
puts and average results of these iterations were presented.
According to average results, considering R2 value of both
training and testing datasets, model nos. 5, 4, and 6 outper-
form the other ANN models for prediction of PPV, AOp, and
flyrock, respectively. Hence, in construction of ANN models,
values of 5, 4, and 6 were selected as number of hidden neu-
rons to predict PPV, AOp, and flyrock.

In the next step of ANN modeling, five different datasets
were selected to develop ANN models for prediction of PPV,
AOp, and flyrock. A visual basic code was written to choose
the random datasets through the randomizer function (Zorlu
et al. 2008). Using the suggested ANN structure for each
output and five different randomly selected datasets, totally
15 ANN models were constructed for all outputs (see
Tables 6, 7, and 8). The testing datasets were also simulated
for each train as shown in these tables. It should be noted that
in constructing ANN models in this study, using trial-and-
error procedure and recommended values in different studies
(Yagiz et al. 2009; Jahed Armaghani et al. 2014), the learning
rate and momentum coefficient were considered as 0.1 and
0.9, respectively.

Prediction of PPV, AOp, and flyrock using ANFIS

To develop a predictive ANFIS model in predicting environ-
mental impacts of blasting, 166 quarry blasting operations
were investigated results of these operations were used. In
ANFIS analyses, similar to ANN modeling, the best architec-
ture should be determined. To this aim, using a trial-and-error
procedure, several ANFIS models were built to determine the

Fig. 4 Frequency distribution of
measured flyrock distances

Table 4 The proposed equations for number of neurons in hidden layer

Heuristic Reference

≤2× Ni + 1 Hecht-Nielsen (1987)

(Ni+N0)/2 Ripley (1993)

2þN0�Niþ0:5N0� N0
2þNið Þ−3

NiþN 0

Paola (1994)

2Ni /3 Wang (1994)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � N 0

p
Masters (1994)

2Ni Kaastra and Boyd (1996)
Kanellopoulas and Wilkinson (1997)

Ni: number of input neuron, N0: number of output neuron.
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Table 5 R2 of trained ANN models to predict PPV, AOp, and flyrock

Output Model no. Nodes in
hidden layers

Network result

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Average

R2 R2 R2 R2 R2 R2

Train Test Train Test Train Test Train Test Train Test Train Test

PPV 1 1 0.741 0.749 0.733 0.781 0.726 0.783 0.473 0.405 0.740 0.743 0.683 0.692

2 2 0.784 0.706 0.783 0.651 0.769 0.659 0.755 0.729 0.757 0.734 0.770 0.696

3 3 0.751 0.704 0.753 0.766 0.755 0.750 0.770 0.632 0.787 0.605 0.763 0.691

4 4 0.754 0.621 0.760 0.797 0.766 0.815 0.750 0.842 0.780 0.798 0.762 0.775

5 5 0.773 0.869 0.768 0.839 0.780 0.778 0.750 0.780 0.767 0.824 0.768 0.818

AOp 1 1 0.779 0.858 0.797 0.779 0.259 0.411 0.790 0.814 0.776 0.841 0.680 0.741

2 2 0.825 0.776 0.792 0.780 0.812 0.819 0.825 0.766 0.819 0.771 0.815 0.782

3 3 0.806 0.826 0.803 0.845 0.828 0.728 0.805 0.83 0.805 0.846 0.809 0.815

4 4 0.819 0.819 0.857 0.829 0.863 0.812 0.837 0.812 0.843 0.821 0.844 0.819

5 5 0.86 0.712 0.846 0.722 0.817 0.806 0.839 0.787 0.843 0.753 0.841 0.756

Flyrock 1 1 0.371 0.421 0.396 0.163 0.398 0.241 0.333 0.653 0.411 0.253 0.382 0.345

2 2 0.446 0.310 0.448 0.237 0.469 0.246 0.520 0.262 0.475 0.302 0.472 0.271

3 3 0.490 0.194 0.489 0.349 0.564 0.279 0.482 0.269 0.441 0.565 0.493 0.331

4 4 0.470 0.469 0.615 0.419 0.548 0.406 0.65 0.530 0.648 0.426 0.586 0.450

5 5 0.587 0.495 0.601 0.456 0.593 0.474 0.651 0.342 0.639 0.529 0.614 0.459

6 6 0.799 0.785 0.833 0.809 0.828 0.789 0.772 0.812 0.805 0.611 0.807 0.761

7 7 0.685 0.593 0.741 0.788 0.728 0.686 0.794 0.810 0.731 0.623 0.736 0.701

8 8 0.812 0.698 0.759 0.609 0.794 0.786 0.791 0.805 0.754 0.677 0.782 0.715

9 9 0.841 0.493 0.780 0.513 0.803 0.765 0.778 0.654 0.799 0.766 0.801 0.638

Table 6 Performance indices of
each model and their rank values
in predicting PPV

Method Model R2 RMSE VAF Rating
for R2

Rating for
RMSE

Rating
for VAF

Rank
value

ANN Train 1 0.806 0.102 80.575 5 5 5 15

Train 2 0.785 0.110 78.471 3 4 3 10

Train 3 0.790 0.113 79.022 4 3 4 11

Train 4 0.779 0.115 77.915 2 1 2 5

Train 5 0.762 0.114 76.202 1 2 1 5

Test 1 0.734 0.137 73.239 2 2 3 7

Test 2 0.771 0.113 76.544 4 5 4 13

Test 3 0.741 0.113 71.475 3 5 2 10

Test 4 0.696 0.121 66.736 1 3 1 5

Test 5 0.798 0.118 79.399 5 4 5 14

ANFIS Train 1 0.953 0.049 95.324 2 2 1 5

Train 2 0.971 0.040 97.196 5 5 5 15

Train 3 0.960 0.048 96.021 4 3 3 10

Train 4 0.971 0.042 97.093 5 4 4 13

Train 5 0.959 0.050 95.887 3 1 2 6

Test 1 0.924 0.076 92.351 4 1 4 9

Test 2 0.922 0.062 91.533 3 4 2 9

Test 3 0.939 0.058 93.721 5 5 5 15

Test 4 0.920 0.064 91.673 2 3 3 8

Test 5 0.922 0.072 88.968 3 2 1 6
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Table 7 Performance indices of
each model and their rank values
in predicting AOp

Method Model R2 RMSE VAF Rating
for R2

Rating for
RMSE

Rating
for VAF

Rank
value

ANN Train 1 0.841 0.099 84.104 5 5 5 15

Train 2 0.819 0.105 81.863 1 2 1 4

Train 3 0.826 0.105 82.566 2 2 3 7

Train 4 0.837 0.103 83.745 4 4 4 12

Train 5 0.828 0.104 82.816 3 3 2 8

Test 1 0.801 0.117 78.545 1 1 1 3

Test 2 0.859 0.107 85.458 4 3 5 12

Test 3 0.838 0.104 83.152 3 4 3 10

Test 4 0.834 0.108 80.521 2 2 2 6

Test 5 0.864 0.101 84.831 5 5 4 14

ANFIS Train 1 0.961 0.050 96.052 1 1 1 3

Train 2 0.971 0.043 97.019 5 5 5 15

Train 3 0.968 0.045 96.757 3 3 3 9

Train 4 0.970 0.044 97.011 4 4 4 12

Train 5 0.967 0.046 96.714 2 2 2 6

Test 1 0.932 0.063 93.073 2 3 2 7

Test 2 0.947 0.058 94.715 4 4 5 13

Test 3 0.935 0.063 93.510 3 3 3 9

Test 4 0.949 0.056 94.276 5 5 4 14

Test 5 0.927 0.069 92.284 1 2 1 4

Table 8 Performance indices of
each model and their rank values
in predicting flyrock

Method Model R2 RMSE VAF Rating
for R2

Rating
for RMSE

Rating
for VAF

Rank
value

ANN Train 1 0.781 0.103 78.077 2 2 2 6

Train 2 0.812 0.095 81.130 3 3 3 9

Train 3 0.824 0.089 82.310 4 4 4 12

Train 4 0.776 0.109 77.548 1 1 1 3

Train 5 0.846 0.083 84.376 5 5 5 15

Test 1 0.790 0.104 78.457 2 3 2 7

Test 2 0.807 0.102 80.287 4 4 4 12

Test 3 0.834 0.106 82.291 5 2 5 12

Test 4 0.785 0.085 78.342 1 5 1 7

Test 5 0.802 0.109 78.485 3 1 3 7

ANFIS Train 1 0.988 0.024 98.798 5 5 5 15

Train 2 0.975 0.032 97.432 3 3 3 9

Train 3 0.969 0.038 96.871 1 1 1 3

Train 4 0.985 0.028 98.470 4 4 4 12

Train 5 0.971 0.035 96.999 2 2 2 6

Test 1 0.959 0.044 95.908 5 5 5 15

Test 2 0.940 0.070 93.944 3 1 3 7

Test 3 0.934 0.065 93.128 1 2 2 5

Test 4 0.935 0.057 92.804 2 4 1 7

Test 5 0.951 0.063 95.134 4 3 4 11
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number of fuzzy rules in predicting PPV, AOp, and flyrock
separately. The Gaussian membership function, as a well-
known membership function in fuzzy systems, was employed
in the modeling (Jahed Armaghani et al. 2014). Eventually,
each input parameter with seven fuzzy rules outperforms the
other ANFIS models in predicting PPV and AOp, while the
value of 3 was obtained for prediction of flyrock. Therefore, a
number of 49 fuzzy rules (7×7) show the best perfor-
mance for PPV and AOp prediction and 81 fuzzy rules
(3×3×3×3) indicate the best performance for flyrock
prediction. In determining the number of fuzzy rules,
the results of RMSE were only considered. The linguis-
tic variables were set as very very low (VVL), very low
(VL), low (L), medium (M), high (H), very high (VH),
and very very high (VVH) in modeling PPV and AOp,
while these linguistic variables were assigned as L, M,
and H for flyrock prediction.

In the next step, considering the suggested ANFIS struc-
ture, using the same selected datasets in ANN modeling, 15
ANFIS models were constructed for all output as shown in

Tables 6, 7, and 8. In addition, these models were checked
using the data assigned for testing datasets. Figures 5, 6, and 7
show the normalized membership functions of input parame-
ters for prediction of PPV, AOp, and flyrock, respectively. The
presented membership functions were assigned after training
the system. Furthermore, for the output, a linear type of mem-
bership functionwas utilized. It is worth noting that the RMSE
results were not decreased after epoch numbers of 10, 14, and
45 for best models of PPV, AOp, and flyrock, respectively. In
this study, all ANN and ANFIS models were constructed
using Matlab version 7.14.0.739 (Demuth et al. 2009).

Analysis of the results

In this research, two nonlinear techniques namely ANN and
ANFIS were developed to predict environmental impacts of
quarry blasting including PPV, AOp, and flyrock distance.
During the modeling process of this study, all 166 datasets
were randomly divided to five different datasets (training

Fig. 5 Membership functions assigned for the input parameters of PPV: a maximum charge per delay and b distance
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and testing) for development of intelligent models. Some per-
formance indices including R2, amount of value account for
(VAF), and RMSE were computed to check the capacity per-
formance of all predictive models:

R2 ¼ 1−

X N

i¼1
y−y0ð Þ2X N

i¼1
y−ð Þ2

ð14Þ

VAF ¼ 1−
var y−y0ð Þ
var yð Þ

� �
� 100 ð15Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X N

i¼1
y−y0ð Þ2

r
ð16Þ

where y, y′, and ỹ are the measured, predicted, and mean of the
y values, respectively, N is the total number of data, and P is

the number of predictors. Theoretically, the model will be
excellent if the VAF is 100 and RMSE is zero. Results of
models performance indices (R2, RMSE, and VAF) for all
randomly selected datasets based on training and testing are
presented in Tables 6, 7, and 8 in predicting PPV, AOp, and
flyrock, respectively. High performances of the training
dataset indicate that the learning step of the models is
successful if the testing dataset reveals that the model
generalization ability is satisfactory. As it can be seen in
Tables 6, 7, and 8, selecting the best models is too difficult.
To overcome this difficulty, a simple ranking procedure
suggested by Zorlu et al. (2008) was used to select the best
models. A ranking value was calculated and assigned for each
training and testing dataset separately (see Tables 6, 7, and 8).
Each performance index was ordered in its class and highest
rating was assigned to the best result. For instance, in the case
of PPV (see Table 6), R2 values of the train datasets for ANN
technique were obtained as 0.806, 0.785, 0.790, 0.779, and
0.762, respectively. Therefore, their ratings were assigned as

Fig. 6 Membership functions assigned for the input parameters of AOp: a maximum charge per delay and b distance
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5, 3, 4, 2, and 1, respectively. This procedure was repeated for
all performance indices. After this process, the obtained rat-
ings for each dataset (training and testing) were summed, sep-
arately. For example, for prediction of PPV (see Table 6), the
rating values of ANN training dataset 1 were 5 for R2, 5 for
RMSE, and 5 for VAF, so the performance rating was com-
puted as 15. The final stage of selecting the best models is to
calculate the total rank by summing up the rank value of each
dataset (training and testing). Total ranking of training and
testing datasets for two intelligent systems in predicting
blasting environmental impacts is shown in Table 9.

According to this table, model nos. 2 and 3 exhibited
the best performance of PPV prediction for ANN and
ANFIS techniques, respectively, while model nos. 5 and
2 yielded the best results of ANN and ANFIS, respec-
tively, in predicting AOp. In addition, the best ANN
and ANFIS models for prediction of flyrock distance
are model nos. 3 and 1, respectively. Based on the pre-
sented results, considering both training and testing
datasets, the prediction performances of the ANFIS
models are higher than the ANN models.

The graphs of predicted PPV, AOp, and flyrock using
the ANN and ANFIS techniques against their measured
values for training and testing datasets are shown in
Figs. 8, 9, and 10, respectively. As shown in these
figures, the ANFIS model can perform better in the
prediction of blasting environmental impacts in compar-
ison to ANN predictive models. In these figures, R2

values of testing datastets equal to 0.939, 0.947, and
0.959 for prediction of PPV, AOp, and flyrock, respec-
tively, suggest the superiority of the ANFIS technique
in predicting blasting environmental impacts, while
implementing ANN model, these values are 0.771,
0.864, and 0.834 in predicting PPV, AOp, and flyrock,
respectively.

Summary and conclusion

Two intelligent systems (ANN and ANFIS) were devel-
oped to predict blasting environmental impacts using
166 datasets obtained from four granite quarry sites in
Malaysia. For this purpose, the blasting parameters such
as burden, spacing, stemming, powder factor, and max-
imum charge per delay, as well as environmental im-
pacts including PPV, AOp, and flyrock were precisely
recorded in each blasting event. Several ANN and ANFI
S models were constructed to predict environmental im-
pacts of quarry blasting. In this study, based on previ-
ous researches, maximum charge per delay and distance
from the blast-face were used as inputs for prediction of
PPV and AOp, while burden to spacing ratio, stemming
length, powder factor, and maximum charge per delay
were set as input parameters in predicting flyrock dis-
tance. Considering some model performance indices in-
cluding R2, RMSE, and VAF and also using simple
ranking method, the best ANN and ANFIS models were
selected among all constructed models. The results indi-
cated that the ANFIS technique can provide higher per-
formance capacity in predicting blasting environmental
impacts compared to ANN model. R2 values of testing
datastets equal to 0.939, 0.947, and 0.959 for prediction
of PPV, AOp, and flyrock, respectively, suggest the
higher performance capacity of the ANFIS technique

Table 9 Results of total rank for all outputs obtained from five
randomly selected datasets

Output Technique Model Total rank

PPV ANN 1 22

2 23

3 21

4 10

5 19

ANFIS 1 14

2 24

3 25

4 21

5 12

AOp ANN 1 18

2 16

3 17

4 18

5 22

ANFIS 1 10

2 28

3 18

4 26

5 10

Flyrock ANN 1 13

2 21

3 24

4 10

5 22

ANFIS 1 30

2 16

3 8

4 19

5 17

�Fig. 7 Membership functions assigned for the input parameters of
flyrock: a burden to spacing ratio, b stemming, c powder factor, and d
maximum charge per delay
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in predicting blasting environmental impacts, while in
predicting PPV, AOp, and flyrock performing ANN approach,
these values are 0.771, 0.864, and 0.834, respectively.
Although all proposed models in this study are applicable
for prediction of blasting environmental impacts, they can be

used depending on the condition. When higher accuracy is
required, the ANFIS model would be the proper alternative
as it combines the advantages of the ANN and FIS techniques
to demonstrate a high prediction capacity in nonlinear engi-
neering problems.

Fig. 9 Correlation between normalized measured and predicted values of AOp using ANN and ANFIS techniques

Fig. 10 Correlation between normalized measured and predicted values of flyrock distance using ANN and ANFIS techniques

Fig. 8 Correlation between normalized measured and predicted values of PPV using ANN and ANFIS techniques
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