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Abstract In this paper, the calculation and estimation of the
loess of samples taken from the North of Iran (Golestan
Province) have been investigated. The soil used in this study
has been called loess which is defined as a loose, open-struc-
tured, and metastable soil which can withstand high overbur-
den stresses being dry, while upon saturation, the soil col-
lapses creating enormous engineering problems. The engi-
neering properties of the collapsible soils have been deter-
mined, which include the specific gravity, Atterberg limits,
g r a i n s i z e d i s t r i bu t i on , and d ry den s i t y. The
hydrocollapsibility properties, due to wetting under different
stress levels, have been measured in single-oedometer tests.
Then, three neural networks have been proposed to estimate
the collapse potential of soils on the basis of basic index prop-
erties. Field data, consisting of index properties and collapse
potential, have been used to train and test different neural
networks. Various neural network architectures and training
algorithms have been examined, and a comparison study has
been carried out to prove the efficiency of three types of neural

networks including the multilayer perceptron (MLP) network,
radial basis function (RBF) network, and adaptive neuro-
fuzzy inference system (ANFIS). The effect of related param-
eters suppression from simulations has been analyzed. The
numbers of train data and test data have been changed, and
also, in-depth analysis of samples has been carried out to
evaluate the efficiency of different networks. Finally, the op-
timal performance of estimation achieved by the best network
has been presented.

Keywords Loess . Golestan Province . Engineering
properties . Collapse potential estimation . Neural networks

Introduction

Loess is one of the major problematic soils in Golestan
Province. The Loess of Golestan Province has a potential to
collapse which has caused severe settlement problems for
many structures founded upon it. For this purpose, the col-
lapse potential of loess in Golestan Province was studied.
Loess is a fine-grained, clastic sedimentary rock primary of
Aeolian origin which covers nearly 10% of the Earth’s surface
(Heller and Evans 1995), and these soils are generally com-
posed of homogeneous and angular particles. The particles’
size is often similar to silt (50–90 %), and they are accompa-
nied by illite and sometimes sand. These sedimentations are
recognized by lack of stratification and homogeneous sorting
in field. Loess is classified into three groups: silt, clay, and
sand groups (Jinfeng et al. 2006). In engineering behavior,
loess soils are considered as problematic materials and the
collapse phenomenon is a common risk in this type of soil
(Sariosseiri and Muhunthan 2009). The collapsible soil is de-
fined as soil that is susceptible to a large and sudden reduction
in volume upon wetting. Collapsible soil deposits share two

* M. Khodabandeh
Khodabandeh@hut.ac.ir

T. Salehi
t.salehi@basu.ac.ir

M. Shokrian
mostafashokrian@stu.hut.ac.ir

A. Modirrousta
alirezamodirrousta@stu.hut.ac.ir

M. Heidari
heidari_enggeol@yahoo.com

1 Department of Geology Engineering, Buali Sina University,
Hamedan, Iran

2 Department of Electrical Engineering, Hamedan University of
Technology, Hamedan 65155, Iran

Arab J Geosci (2015) 8:9557–9567
DOI 10.1007/s12517-015-1894-4



main features; first, they are loose, cemented deposits, and
second, they are naturally quite dry (Day 2000). The collaps-
ible soil can withstand a large applied vertical stress with a
small amount of compression but then shows much larger
settlement upon wetting, with no increase in vertical stress
(Jennings and Knight 1975). Collapse behavior of soil can
yield disastrous consequences for structures unwittingly built
on such deposits. Unsaturated soil can experience significant
collapse under the following conditions (Mitchell 1993;
Rogers 1995; Fookes 1997):

& The soil has an open, potentially unstable and unsaturated
structure (high void ratio, low dry density, high porosity).

& A high enough value of external stress is applied to devel-
op a metastable condition.

& A high enough value of suction is available to stabilize
intergranular contacts whose reduction on wetting leads to
collapse of the soil.

& The interparticle bond strength is low.

Loess in Golestan Province with high thickness has cov-
ered more than 17% of the province area (Feiznia et al. 2005).
Numerous studies have been carried out on these soils, includ-
ing the effect of soil structure on behavior of loess (Gerard
et al. 2007), effect of intergranular cement on mechanical
strength of loess (Sariosseiri and Muhunthan 2009), influence
of climate and secondary changes (Derbyshire et al. 1997),
and study of the effect of physical characteristics on their
deformation properties (Reznik 2007).

Gorgan and its surrounding (northeastern part of Iran),
which suffered from collapsing for many years, was selected
as the application site of this study. Determining the potential
of collapsibility and estimating the collapse rates in loess soils
of Golestan Province on experimental test basis, particularly
for managing railway, roadway, and other civil structures in
the study area, requires a simple and effective assessment tool.
Artificial neural network has been shown to be quite effective
in estimating collapsibility (Salehi 2011).

A neural network is a massively parallel-distributed pro-
cessor made up of simple processing units called neurons,
which have a natural propensity for storing experimental
knowledge (Haykin 1999). Each neuron has a number of in-
puts and one output. It also has a set of nodes called synapses
that connect to the inputs, output, or other neurons. The mo-
tivation for the development of neural network technology
stems from the desire to develop an artificial system that could
perform Bintelligent^ tasks (Hayati and Shirvany 2007).

Learning a mapping between an input and an output space
from a set of input-output data is the core concern in diverse
real-world applications. Function approximation, which finds
the underlying relationship from a given finite input-output
data, is the fundamental problem in a vast majority of real-
world applications, such as prediction, pattern recognition,

data mining, and classification. Various methods have been
developed to address this problem, where one of them is by
using artificial neural networks.

In short, themain concern is tominimize the error function. In
other words, the principle objective of function approximation is
to enhance the accuracy of the estimate. There exist multiple
methods that have been established as function approximation
tools, where an artificial neural network (ANN) is one of them.
According to Cybenko (1989) and Hornik et al. (1989), there
exists a three layer neural network that is capable of estimating
an arbitrary nonlinear function f with any desired accuracy.
Hence, it is not surprising that ANNs have been employed in
various applications (Doulati Ardejani et al. 2013; Jodeiri Shokri
et al. 2013), especially in issues related to function approxima-
tion, due to their capability in finding the pattern within input-
output data without the need for predetermined models.

Therefore, in this paper, the collapse potential of loess soils in
Golestan Province is estimated by using neural networks.
Determining an appropriate architecture of the neural network
for a particular problem is an important issue, since the network
topology directly affects its computational complexity and gen-
eralization capability (Kisi and Uncuoglu 2005). But due to geo-
logical complexity,many variables (e.g., quantitative, semi-quan-
titative, qualitative) are involved in an engineering geology eval-
uation, and these variables have a highly nonlinear relation with
the evaluation results. Therefore, it is quite necessary and mean-
ingful to establish an engineering geology evaluationmethod that
can minimize artificial influences and deal with quantitative and
qualitative indexes. ANN is a new discipline. A comparison
study is also carried out to show the performance of three differ-
ent neural networks, multilayer perceptron (MLP), radial basis
function (RBF), and adaptive neuro-fuzzy inference system
(ANFIS), using different train algorithms and different sets of
parameters for each network. Finally, the best network with the
optimal parameters is presented.

The organization of this paper is as follows: the BMaterials
and methods^ details geological settings and study area, and
the BResults and discussions^ presents the design of neural
networks and numerical results. This section consists of three
subsections: one neural network is simulated, and correspond-
ing results are analyzed in each of these subsections. And the
last section is the BConclusion.^

Materials and methods

The geological setting

The study area

Golestan Province is located in following geographical coor-
dinates: lat. 38.15–36.30 (north); lang. 54.00–56.00 (east),
and the capital of this province is Gorgan. It is also surrounded
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byMazandaran, Semnan, and Khorasan provinces. The north-
eastern part of this province has a common border with the
Turkmenistan Republic. The Caspian Sea borders the north-
western corner of this. Golestan Province has a mild
Mediterranean climate in most of its regions. Golestan plain
is close to Turkmenistan desert with lacks of high mountains
and has a semi-desertic warm climate. Humid forest regions of
northern Alborz are extended to Minoodasht and Golestan
forests. Loess in Golestan Province has a high thickness (vary-
ing from 30 to 150 m) and covers more than 17 % of the
province area (388,000 ha) (Feiznia et al. 2005) .

This province is situated in two different structural domains.
The northern sector is part of Turan plate, and the southern part
belongs to Iranian plate. The Pliocene-Quaternary Loess of
Caspian Sea region is known as a sediment wind-refrigerator
(Andalibi 1994). According to recent studies (Salehi 2011),
loesses of Golestan Province have high sensitivity to the phe-
nomenon of water erosion. In terms of origin, loesses of this
area are divided into two brigades: East and West Caspian Sea
Loess. Loess of brigade East Caspian Sea has some minerals
such as quartz, calcite, feldspar, dolomite, mica, and clay with
sedimentary genesis, while loesses of brigadeWest Caspian Sea
have igneous origin due to the presence of minerals such as
hornblende, basalt, and volcanic ash (Fig. 1).

Based on sedimentology and geotechnical characteristics,
loess of this province is extended in the three regions 1, 2, and
3 (Fig. 2). This study is the outcome of experiments in seven
different zones of Golestan Province. This research aimed to
estimate the collapsibility potential of Golestan loess to pre-
vent from dangers and damages on structures founded upon
it (Table 1).

Characteristic properties of Golestan loess

Loess is an Aeolian sediment formed by the accumulation of
wind-blown silt, typically in the 20–50-μm size range, 20 %
or less clay and the balance equal parts of sand and silt that are
loosely cemented by calcium carbonate. It is usually homoge-
neous and highly porous and is traversed by vertical capil-
laries that permit the sediment to fracture and form vertical
bluffs (Donahue et al. 1977).

Golestan Province has an extent of 21,000 and 3880 km2 of
which at the northeast part of Iran is covered with loess de-
posits which originate from the south part of China. In the
aspect of dispersion, loesses can be divided into three areas.
The first area has an extent about 1380 km2 which consists of
mountainous and skirts part of the south. The second area with
an extent about 1540 km2 is located at the middle parts of the
field, and the third with an extent about 960 km2 consists of
the northern and border part of the province. This area mainly
consists of different thicknesses of loess deposits on formation
outcrops (Salehi 2011). These homogeneous, porous
loesses are also friable, pale yellowish brown or buff
in color, slightly coherent, very light and dry, typically
nonstratified, and often calcareous (sedimentary deposits
are composed largely of silt size grains that are loosely
cemented by calcium carbonate).

Golestan Province’s loess grains are angular with little
polishing or rounding and are composed of crystals of quartz,
feldspar, mica, and other minerals. Loess can be described as a
rich, dust-like soil. Some of the samples demonstrate a mac-
roscopic pore that is easily visible (Fig. 3). Soil erosion is one
of the most serious ecological and environmental problems in
Golestan Province’s loess. There are many kinds of land-
scapes in Golestan Province’s loess such as landslide, gully,
and subsidence. All of these landscapes are created by high
collapsibility (Salehi 2011).

Mechanism of collapse

Collapse is a typical feature of unsaturated rather loose and low
plastic soils, which are typical features of loess. Collapse is a
significant volume reduction observed when wetting an unsat-
urated sample under load. This phenomenon has been de-
scribed for a long time in arid regions. Jennings and Knight
proposed in 1957 the double-oedometer method and in 1975
the single oedometer test to estimate the amplitude of possible
collapse. Also, Gibbs and Bara proposed a simple collapse
criterion based on the dry density and the liquid limit in 1962.

The most common types of collapsible soil are as follows
(Mansour et al. 2008):

Table 1 The geological situation and climatic conditions of Golestan Province

Region Location Latitude Longitude Mean annual precipitationa (mm) Climate

Southern area (1) Seid-Miran 36° 82 54° 31 600–800 Humid

Aliabad 36° 92 54° 85 600–800 Moderate and humid

Agh-emam 37° 8 55° 12 600–800 Humid

Central area (2) Golestan dam (Bailar village) 37° 39 55° 11 300–400 Semiarid

Gonbad-Kalaleh 37° 3 55° 27 300–400 Semiarid

Northern area (3) Tangli 37° 4 54° 6 200–300 Arid

Alagol 37° 45 54° 70 200–300 Arid
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Fig. 1 Geotechnical zoning map of Golestan Province soils (Rezaei 2008)

Fig. 2 Extension of loess
deposits in Golestan Province:
Region 1: Seid-Miran, Aliabad,
Agh-emam; Region 2: Gonbad-
Kalaleh, Golestan dam; Region 3:
Alagol, Tangli
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& Alluvial (water deposited) and colluvial (gravity
deposited).

& Wind deposited (Aeolian) soils are fine sands, volcanic
ash tuffs, and loess.

& Residual soils formed by extensive weathering of parent
materials. For example, weathering of granite can yield
loose collapsible soil deposits.

As commented by Houston (1995), there are numerous
potential sources of water that can cause soil wetting until
created collapse phenomenon:

– Broken water lines, canals, and landscape irrigation
– Roof run-off and poor surface drainage
– Intentional and unintentional recharge
– Rising ground water table
– Damming due to cut/fill construction
– Moisture migration due to capillarity and protection from

the sun

Barden et al. (1973) gave three conditions to observe col-
lapse in a soil:

– An open potentially unstable partly saturated structure
– A high enough value of applied stress component to de-

velop a metastable condition
– A high enough value of suction (or other bonding

or cementing agent) to stabilize intergranular con-
tacts, and whose reduction on wetting will lead to
collapse

Collapsible soil deposits share two main features:

i. They are loose, cemented deposits.
ii. They are naturally quite dry.

Simple capillary forces have often been mentioned as a
possible binding agent. However, as stated by Barden, the
majority of collapsing soils involved the action of clay plates
in the bonds between the bulky sand and silt grains. Possible

effects of other chemical cementing agents like iron oxide or
calcium carbonate are also mentioned (Rogers 1994). Loess
soils have several bond factors such as clay mineral; carbonate
bonding (calcium carbonate agents) that could affect the
mechanism of hydroconsolidation. Thus, there is a large range
of lateral and vertical variations of hydroconsolidation in this
type of area.

Results and discussions

Neural networks analysis

The multilayer perceptron network

The most common neural network model is the multilayer
perceptron (MLP). This type of neural network is known as
supervised networks because they require a desired output in
order to learn. This success is primarily associated with its
ease of implementation and testing.

The goal of this type of network is to create a model that
correctly maps the input to the output using historical data so
that the model can then be used to produce the output when
the desired output is unknown. Therefore, an MLP network
can be seen as a very versatile interpolator that produces a set
of output values (output vector) for a given set of input values
(input vector), thus being able to mimic complex mappings
between input and output variables in situations where the
physical relationship linking these variables is difficult or even
impossible to obtain.

To achieve this, the MLP possesses a number of basic units
called neurons (Wasserman 1989; Cichoki and Unbehauen
1993). The fact that every single neuron applies a nonlinear
function to the sum of its weighted inputs makes the MLP
capable of representing complex functions. These weights
are modified during the training phase, whereby sets of input
vectors and their associated output vectors are sequentially
presented to the MLP. The modification of the weights is
automatically executed by the training algorithm so as to min-
imize the difference between a calculated output vector and
the corresponding desired output vector. MLP training is an
iterative procedure that possesses a few control parameters for
evaluating convergence and deciding when to stop iterations.
After the training phase is completed, all MLP weights have a
well-defined value that will not change in time (unless more
training iterations are performed). In this moment, the MLP is
ready for use in processingmode, where only input vectors are
presented to it.

One can conclude that in the MLP ANN, the number of
inputs, the number of hidden nodes, transfer functions, and
training methods affect the prediction performance and hence
need to be chosen carefully. The most important work in

Fig. 3 Macroscopic pore in the samples of the northern area
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building our soft computing-based collapse potential predic-
tion models is the selection of the input variables.

The network is implemented by using the MATLAB
Neural Networks Toolbox. The size of the input vector is
17×17 including the particle size factors (gravel percentage,
sand percentage, silt percentage, clay percentage), the physical
and mechanical properties (natural moisture content, void ra-
tio, dry density, degree of saturation, liquid limit, activity,
inverse the liquidity index), the chemical properties (calcium
carbonate), and other properties such as the type of sediment,
climate, age, precipitation, and vegetation (Appendix 1). The
size of the target vector is 1×17 in this structure which corre-
sponds to the collapse potential (Ic%) of 17 samples. Two
samples (samples 10 and 18) are also chosen to be used as
Bthe performance verification samples^ (17×2 inputs and 1×
2 targets) (Appendix 2).

Different train algorithms with various network structures
are implemented to achieve the best performance which is
denoted for the two noted samples, by the mean square error
(MSE ¼ 1

n∑
n
i¼1 bxi−xið Þ 2, wherebxi and xi are the estimated and

true values, respectively), the mean absolute percentage error

(MAPE ¼ 1
n∑

n
i¼1

bxi−xi
xi

���
���) , and the mean absolute error

(MAE ¼ 1
n∑

n
i¼1 bxi−xij j). The corresponding numerical results

are presented in Table 2. In all the simulations, the train ratio,
the test ratio, and the validation ratio are fixed at 70, 15, and
15 %, respectively.

One can see that the best performances are reached by the
Levenberg-Marquardt (LM) training algorithm (MSE=
6.3771×10−8, MAPE=0.0398%, MAE=1.9578×10−4),
using 5, 25, and 5 neurons, in the first and second hidden
layers and the output layer, respectively. The first hidden layer
performs with the hyperbolic tangent sigmoid transfer func-
tion, and the other two layers use the linear transfer function.
This training algorithm is more precise and let the neural net-
work working with a simpler structure and less number of
neurons (compared to other training algorithms).

The radial basis function network

The MLP network itself has certain shortcomings. Firstly, the
MLP tends to get trapped in undesirable local minima in order
to reach the global minimum of a very complex search space.
Secondly, training of the MLP is highly time-consuming, due
to the slow converging of theMLP. Thirdly, theMLP also fails
to converge when high nonlinearities exist. Thus, these draw-
backs deteriorate the accuracy of the MLP in function approx-
imation (Haykin 1999; Ahmad Fadzil et al. 2001; Zainuddin
and Evans 2003).

To overcome the obstacles encountered by using anMLP, a
radial basis function (RBF) network, which has been intro-
duced by replacing the global activation function in the
MLP with a localized radial basis function, has been found T
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to perform better than the MLP in function approximation
(Moody and Darken 1989; Broomhead and Lowe 1988).

The radial basis function network was first introduced by
Broomhead and Lowe (1988), which is just the association of
radial functions into a single hidden layer neural network. As
one can see, a RBF network is a standard network with inputs
and two layers, consisting of d input nodes, one hidden layer
consisting ofm radial basis functions in the hidden nodes, and
a linear output layer. There is an activation functionφ for each
of the hidden nodes that receives multiple inputs x!¼
x1;… ; xdð Þ and produces one output y. The size of the input
vector and the target vector, the train ratio, the test ratio, and
the validation ratio are the same as the last subsection. The
training performance goal is set to 1×10−20.

Simulation results show that the RBF network is even bet-
ter than the MLP network trained by LM algorithm. This
network is implemented with a maximum number of 20 neu-
rons, and the spread of the radial basis transfer functions is set
to 1.5. The best achieved performances are MSE=2.6631×
10−7, MAPE=0.1026%, and MAE=3.6490×10−4 (better
than all the simulated MLP networks except the one trained
by LM algorithm in Table 2).

The adaptive neuro-fuzzy inference system

An adaptive neuro-fuzzy inference system is a fuzzy Takagi-
Sugeno model put in the framework of adaptive systems to
facilitate learning and adaptation (Jang 1993). In adaptive
neuro-fuzzy inference system (ANFIS) architecture, the first
layer is formed by adaptive nodes that give the degree of fuzzy
membership of the input. The second computes firing
strengths of the associated rules. Neurons constituting the
third layer are fixed neurons and play a normalization role to
the firing strengths from the previous layer. The fourth layer is
adaptive that gives the product of the normalized firing level
and a first-order polynomial. Finally, the last layer presents a
summation of all incoming signals.

Two types of data are loaded in this network:

1. Training data: the size of the training data is 17×18, and
the last column corresponds to the output.

2. Testing data: the size of the testing data is 2×18, and the
last column corresponds to the output. This type consists
of the collected data of two samples which are chosen to
be used as Bthe performance verification samples.^

The subtractive clustering partition method is used for gen-
erating the fuzzy inference system (FIS). Four parameters are
set in this method:

& The range of influence: this variable is a vector of entries
between 0 and 1 that specifies a cluster center’s range of

influence in each of the data dimensions, assuming the
data falls within a unit hyperbox. Small values of this
parameter generally result in finding a few large clusters.
In this paper, the best performance is achieved for 1.0.

& The squash factor: this variable determines the neighbor-
hood of a cluster center, so as to quash the potential for
outlying points to be considered as part of that cluster. This
variable is between 1.0 and 2.0. In this paper, the best
performance is achieved for 2.0.

& The accept ratio: this factor sets the potential, as a fraction
of the potential of the first cluster center, above which
another data point is accepted as a cluster center. This
constant is between 0 and 1. In this paper, the best perfor-
mance is achieved for 0.9.

& The reject ratio: this factor sets the potential, as a fraction
of the potential of the first cluster center, below which a
data point is rejected as a cluster center. This constant is
between 0 and 1. In this paper, the best performance is
achieved for 0.85.

The following step is to choose how to train the FIS. In this
paper, the hybrid optimization method is used which is a com-
bination of least-squares and backpropagation gradient de-
scent method. Two membership functions are considered for
each input. The error tolerance is set to 1×10−2 and is reached
at the second epoch. The best achieved performance is
MAE=0.029185. The result is not good enough com-
pared to the two other neural networks, but as noted
before, the estimation is done in a very small number
of epochs (two epochs).

One can see that the MLP network trained by LM algo-
rithm performs better than the other networks in all the error
indexes. The RBF network also estimates the collapse poten-
tial better than the ANFIS network, and its estimation error
indexes are very close toMLP ones. The estimated %Ic by the
MLP network trained by different algorithms for the samples
10 and 18 is represented in Table 2.

Data analysis applied on neural networks

In this section, the simulated neural networks are the same as
the last section and their structures do not change.

The first case—related parameters suppression

In this subsection, the following inputs are omitted from sim-
ulations, as they are related to other important inputs (by equa-
tions (Salehi 2011) and/or by conditions):

– The degree of saturation (S) which is related to the natural
moisture content (w) by the following equation:

S⋅e ¼ Gs⋅w ð1Þ
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where e is the void ratio and Gs is the specific weight of
the soil.

– The dry density (γd) which is related to the void ratio (e) is
by the following equation:

γd ¼
Gs⋅γw
1þ e

ð2Þ

where γw is the water density.
– The liquid limit (ll) which is related to the inverse of the

liquidity index (li) by the following equation:

li ¼ w−Pl

ll−Pl
ð3Þ

where Pl is the plastic limit.
– The rainfall which is related to the natural moisture con-

tent (w) by conditions.
– The vegetation.

BThe performance verification samples^ are the same
(samples 10 and 18). The corresponding numerical results
are presented in Table 3. One can see that the RBF network
performs better than the other networks in all the error
indexes.

The second case—changing the numbers of train data and test
data

Until now, the size of the input vector was 17×17, and the size
of the target vector was 1×17. Two samples were also chosen

to be used as Bthe performance verification samples^ (17×2
inputs and 1×2 targets). But in this subsection, we will change
the noted sizes of input and test vectors (the performance
verification samples).

In the first step, 7 samples are chosen as the test
samples and thus 12 samples are used as the neural
networks inputs. The corresponding numerical results
are presented in Table 4. One can see that the MLP
network performs better than the other networks in all
the error indexes.

In the second step, 4 samples are chosen as the test
samples and thus 15 samples are used as the neural
networks inputs. The corresponding numerical results
are presented in Table 5. One can see that the MLP
network performs better than the other networks in all
the error indexes.

The third case—in-depth analysis of samples

As noted before, there are 19 samples of soil from seven zones
and the first sample of each region corresponds to a less deep
sample and the last sample is taken from the deepest depth
from the surface. So, in this subsection, we will analyze the
effect of choosing less deep samples or deepest samples as the
test data. Thus, 7 samples will be used as the test samples.

Therefore, in the first step, we choose the less deep samples
as the test data:

Table 3 The collapse potential estimation results using different neural
networks in the case of related parameters suppression

Type of neural network Best performance achieved

MSE MAPE (%) MAE

MLP (LM training algorithm) 8.2985×10−6 0.8449 0.0025

RBF 5.0812×10−6 0.4374 0.0016

ANFIS – – 0.080057

Table 4 The collapse potential estimation results using different neural
networks in the case of 7 test samples and 12 input samples

Type of neural network Best performance achieved

MSE MAPE (%) MAE

MLP (LM training algorithm) 0.0026 3.2395 0.0438

RBF 9.8983 14.4490 2.7201

ANFIS – – 0.055001

Table 5 The collapse potential estimation results using different neural
networks in the case of 4 test samples and 15 input samples

Type of neural network Best performance achieved

MSE MAPE (%) MAE

MLP (LM training algorithm) 2.5821×10−4 1.2326 0.0134

RBF 0.0017 3.9131 0.0328

ANFIS – 0.075051 –

Table 6 The collapse potential estimation results using different neural
networks in the case of the less deep samples as test data

Type of neural network Best performance achieved

MSE MAPE (%) MAE

MLP (LM training algorithm) 9.0253×10−4 1.5976 0.0244

RBF 0.0180 7.8948 0.0761

ANFIS – 0.066511 –
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The corresponding numerical results are presented in
Table 6. One can see that the MLP network performs again
better than the other networks in all the error indexes.

Now in the second step, the deepest samples are chosen as
the test data:

The corresponding numerical results are presented in
Table 7. One can see that the MLP network performs
again better than the other networks in all the error
indexes.

Conclusion

In this paper, the collapse potential prediction of loess soils in
Golestan Province is investigated. The estimation is carried
out by using three different neural networks, MLP, RBF, and
ANFIS. Simulation results and comparison studies are shown
to demonstrate the effectiveness and performance of our pro-
posed networks. Numerical results show that the best estima-
tion is achieved via the MLP network with Levenberg-
Marquardt backpropagation training algorithm, but the error
indexes in the RBF network are also very close to the MLP
network. The designed ANFIS is not suitable for this estima-
tion, because of its high MSE (subject to the other networks),
but operates in just two epochs, while the MLP network takes
six epochs to reach the best performance. Finally, the three
neural networks have been tested in different cases of data
sets; at first, five related parameters have been omitted and
simulations proved that the RBF network performs a little
better estimation of the collapse potential in this case.
Secondly, the numbers of train data and test data have been
changed in two ways and numerical results demonstrated that
the MLP network trained by LM algorithm achieves a better
estimation of the collapse potential than the RBF network. In
the last case, the test samples have been chosen at first, from
the less deep samples and then from the deepest samples.
Using the simulation results, one can conclude that the MLP
network trained by LM algorithm estimates the collapse po-
tential more precisely than the RBF network, but for some of

the test samples, the RBF networks possesses very close esti-
mations to the MLP ones.
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Appendixes

Appendix 1

Effective parameters of the study:

Input:

– Particle size (grain percentage)

& Gravel percentage (gravel %)
& Sand percentage (sand %)
& Silt percentage (silt %)
& Clay percentage (clay %)
– Physical-mechanical properties

& Natural moisture content (w)
& Void ratio (e)
& Dry density (g/cm3) (γd)
& Degree of saturation (S)
& Liquid limit (ll)
& Activity (A)
& Inverse of the liquidity index (1/li)
– Chemical properties

& Calcium carbonate (CaCO3)
– Other properties

& Type of sediment
& Climate
& Age
& Precipitation
& Vegetation

Outputs:

– Collapse potential

& Ic%

Table 7 The collapse potential estimation results using different neural
networks in the case of the deepest samples as test data

Type of neural network Best performance achieved

MSE MAPE (%) MAE

MLP (LM training algorithm) 2.6193×10−4 0.8183 0.0141

RBF 0.1095 13.3999 0.1948

ANFIS – – 0.055385
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