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Abstract In the earth sciences modeling, a great deal of
uncertainty is associated with interpretation of subsurface
data. Drilling borehole is one of the best tools for subsur-
face exploration and data gathering. Uncertainty of ore
reserve modeling can be reduced by intelligent design of
complementary drillings between the primary boreholes.
This paper introduces a new method for determination of
number, as well as directional and dimensional properties
of such additional drillings based on ore value and objec-
tive functions, by applying an interval threshold concept.
The proposed method is verified in Choghart iron deposit,
central Iran. After calculations of descriptive statistical
parameters, followed by geostatistical stages such as
variography, anisotropy modeling, and kriging estimation
of Fe (iron) and P (phosphorus) variables are performed.
Thresholds commonly separate data sets into two classes
by a sharp boundary and assigning samples to these
indicators involve uncertainty. Instead of point threshold,
an interval threshold with fuzzy membership function was
implemented. Interval threshold is applied to determine
indicators by considering Fe and P grades of kriging
(soft) outputs. On the basis of one threshold for Fe and
two thresholds for P, six classes of combination indicators
of Fe and P were generated. Indicator-weighted average
(IWA) and class membership degrees (CMD) for each

block (sample) were measured by interval thresholds. Fe
and P preference functions were defined for modeling of
positive, neutral, and negative values (behaviors) in differ-
ent ranges of grades. Ore value function is defined as a
function of CMD, preference degrees, and weight factors
for Fe and P grades. Finally, multiplicative equation of the ore
value function and kriging variance is computed as objective
function. Given large amounts of the objective function, four
vertical and a single-directional drilling along with approxi-
mate length, priority of locations, azimuth, and dip angles of
drillings are the final output of this method.

Keywords Geostatistics . Interval threshold .

Complementary drillings . Membership and preference
functions . Ore value and objective functions . Choghart iron
deposit

Nomenclature
C Class
CMD Class membership degree
Fe Iron element
Gi Grade of variable (%)
G(μi) Equivalent grade of membership degree
I( ) Indicator of variable
I( , ) Joint indicator of variables
IWA Indicator weighted average
P Phosphorus element
P( ) Preference function of variable
Wi Weight factor of objective function
μi Fuzzy membership degree
(σobk

2 )i Ordinary block kriging variance of variable
σ2
obk Average of ordinary block kriging variance

σ2
obk Normalize of ordinary block kriging variance

average
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Introduction

In subsurface modeling, several elements such as decision
making with imperfect or incomplete data, the importance of
the geological setting, and data play an important role in
uncertainty modeling (Caers 2011). A major part of uncertain-
ty is dependent on the distribution of subsurface geological
and related parameters, resulting from limited samples
(Wingle 1997). Increasing accuracy of modeling justifies
complementary samples, but in order for these samples to be
useful, they should not provide unnecessary and repetitive
information. One of the main approaches for designing opti-
mal sampling is geostatistical error management, which is
used in many disciplines, such as mining, meteorology, geol-
ogy, hydrology, soil science, ecology, and environmental sci-
ence (Myers 1997). Kriging is an efficient geostatistical spatial
interpolation method, which gives an unbiased estimation of
the random variable with minimum variance (Juang et al.
2008; Lin et al. 2008). The geostatistical estimator, kriging,
produces two corresponding values for each estimation: esti-
mated grade and kriging estimation error (Hassanipak and
Sharafodin 2004). At unsampled locations, kriging estimation
error can be thought of as simply an optimally weighted
average of the observations of the surrounding sampled loca-
tions (Juang et al. 1999). One approach to geostatistical error
management is to minimize the kriging variance that could be
reduced by drilling in areas of high error values. The kriging
variance is a function of the sample pattern, sample density,
the numbers of samples, and their covariance structure.
It can be applied for evaluating the accuracy of estima-
tion, selecting new input design samples, and global
optimization of computer simulations. However, the
kriging variance is independent of data values under
the stationary spatial process, which this assumption is
often violated in practice (Armstrong 1994; Delmelle
2011). The complementary boreholes are ranked one at
a time or a set of them is selected based on minimizing
the average kriging variance and the number of com-
plementary boreholes. These techniques have been ex-
tended by simulation and optimization algorithms (Chou
and Schenk 1983; Gershon et al. 1988; Szidarovszky
1983; Van Groenigen et al. 1999).

Data, which is commonly used in the mining evaluation to
determine grade values in the large parts of a mineral deposit,
can be obtained through core sampling. Grade distribution of a
reserve can be estimated from the data, by kriging. Drilling the
optimal additional boreholes can lead to improvement in the
quality of grade estimation and the obtained geological infor-
mation. Based on multiplicative function of grade, error, and
thickness; complementary drillings are selected in regions
associated with higher estimated productivity and subsequent-
ly higher estimated grade, ore thickness, and estimation error
(Hassanipak and Sharafodin 2004).

The indicator approach was introduced by Journel (1983)
to estimate the spatial distribution of ore and waste zones.
Journel (1987, 1989) presents comprehensive literature re-
view of the indicator approach. Thresholds (cutoffs) transform
general variables into indicator variables. Indicator variables,
which are used to convert qualitative data into quantitative
data by assigning a value of 1 or 0, based on the presence or
absence of a qualitative feature, or determining the position of
a value relative to the selected thresholds (Sinclair and Black-
well 2002). The indicators are implemented to characterize
structural analysis of the grade spatial distribution at various
thresholds (Vann and Geoval 2003; Vann et al. 2002). The
transformed distribution is binary, and so does not include
extreme values (Glacken and Blackney 1998; Vann et al.
2002).

Fuzzy sets play an essential role in the solution of realistic
problems and the realm of decision analysis, which are ap-
plied in many disciplines: artificial intelligence, computer
science, control engineering, decision theory, expert systems,
logic, etc. (Zimmermann 2001). The fuzzy set theory can
provide a calculus for handling the incompleteness, impreci-
sion, uncertainty, and vagueness of the information in data-
base (Zadeh 2008). Since the grade estimation involves error
and point threshold sharply separates data into two classes,
applying fuzzy interval thresholds rather than sharp (point)
thresholds is recommended.

In the present study, both the fuzzy terminology indicator
weighted average (IWA) and class membership degree
(CMD) are utilized to transform thresholds from crisp number
to fuzzy number. IWA represents the fuzzy indicator value of
each block based on interval threshold with fuzzymembership
function. CMD determines the membership degree of each
block allocating to a distinct class. Fuzzy interval thresholds
are implemented to calculate the membership degree of each
class by determining IWA in a three-dimensional space. In this
way, to obtain the objective function, the preference functions
for each ore iron (Fe) and gangue phosphorus (P) variables
have been determined and kriging variance is multiplied by
their weights.

The preference function is a kind of value function that is
applied to transform grade to the relative value of ore iron (Fe)
and gangue phosphorus (P) variables based on different
thresholds. Ore value is calculated by the sum of multiplying
CMDs with preference function outputs for Fe and P vari-
ables. The objective function is a multiplicative function of
kriging variance with the ore value which is the basis for
complementary boreholes designing.

Description of the problem and offering solutions

Subsurface modeling requires sufficient information from ex-
ploration drilling. However, this process often faces two
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challenges. First of all, if the number of holes is more than
what is needed, part of the gathered data will be redundant,
leading to budget waste. On the other hand, if the number of
holes is less than what is needed, part of the required infor-
mation might be missing, which in turn would result in an
inaccurate model.

To resolve the problem, this paper presents a novel method
for designing an optimal complementary drilling scheme be-
tween the primary drilling network. The proposed method
calculates the optimal layout of complementary drillings in a
three-dimensional space by applying high objective function
values, which are related to ore values and kriging variances.
This paper briefly describes all the required steps to design a
complementary drillings scheme (Fig. 1).

Step 1 Data preparation: After entering the input data,
which relate to Fe and P variables from boreholes,
statistical summary parameters and the probability
distribution of variables are calculated.

Step 2 Geostatistical modeling: The semivariograms are
calculated for Fe and P variables in different direc-
tions. Anisotropy model is identified followed by
directional variography. Kriging is used for predic-
tion of these variables in three-dimensional space,
considering the search space according to anisotrop-
ic variogram models.

Note. Based on the measure of deviation from
stationarity, two approaches can be considered. In
the homogeneous space, the mean behavior of the

entire area represents a spatial variation with assum-
ing local stationarity of the neighboring data sam-
ples. In the heterogeneous space, the study area is
divided into an optimal number of zones to separate-
ly model spatial statistics of each zone, and merge
the results of these zones by considering the type of
inter-zone relationships (boundaries) (Wingle 1997).
In the heterogeneous case, the number of zones,
confine of each zone, and type of boundary between
zones (sharp, gradational or fuzzy) are determined
using geological database. Then, the data samples
are assigned to corresponding zone and all steps of
the geostatistical modeling (variography, anisotropy
modeling, and zonal kriging) are separately comput-
ed for each zone (estimation unit).

Step 3 Interval threshold: Thresholds for input data are
defined and converted to interval thresholds by using
fuzzy membership functions. IWA is used to calcu-
late the average value of the indicators with different
levels of membership degrees.

Step 4 Ore classification: Blocks are classified based on one
threshold for Fe and two thresholds for P (there are
two classes for Fe and three classes for P). Combining
the existing conditions for Fe and P (indicator Fe and
P) generates six classes.

Step 5 Functional modeling: Interval threshold approach is
applied on the kriging estimation of Fe and P vari-
ables, and then preference functions of these vari-
ables transform grade to a definite scale and express

Fig. 1 Flowchart of proposed method for designing a complementary drillings scheme
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how an increase or decrease in grade translate into the
value fluctuation. Ore value for each block is calcu-
lated by a multiplicative function of preference out-
put by its corresponding membership degree. The
objective function consists of two sub-objectives
(maximizing ore value and kriging variance) to locate
the positions having high ore and information values.

Step 6 Designing drilling layout: 3D poles with high objec-
t i ve func t ion va lues a re cand ida t e s fo r

complementary drillings; each pole centroid poten-
tially suggests one vertical drilling and the hypothet-
ical line will intersect the pair of pole centroids rep-
resent a potential directional borehole. The layout of
the feasible complementary borehole map with coor-
dinates, azimuth, and dip parameters is defined based
on limitations in length and dip of boreholes. The
length and drilling priority of these boreholes are
determined by surveying of objective function along
drilling axis.

Case study: Choghart iron deposit

The Choghart iron deposit, the most famous iron mine of
Central Iran, is selected as the case study for the proposed
method. The Choghart apatite-bearing iron oxide deposit (55°
28′ 2″ E, 31° 42′ 00″ N) is located in the Bafq mining area,
125 km southeast of the city of Yazd (Fig. 2). There are more
than 80 identified magnetic anomalies in the Bafq mining
area. Choghart is the biggest and the most valuable deposit
of its type explored so far in this area (Moor and Modabberi
2003).

Geology of Choghart

The geometry of the Choghart ore-body is roughly vertical,
asymmetric, and pipe-shaped. The basement of Choghart
deposit contains metamorphosed Precambrian continental

Fig. 2 Location of Choghart iron deposit in the Bafq mining area of Iran

Fig. 3 Geological map of Choghart deposit (Moor and Modabberi 2003)
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Chapedony Complex and Morad Series that are overlain by
volcano-sedimentary units of Eocambrian Esfordi Formation.
Different types of volcanic (intrusive and extrusive alkali
rhyolites) and metamorphous rocks occur in the vicinity of
the deposit. A major component of intrusive rocks is syenitic,
but pyroxenite, gabbro, and even granitic patches are also
recognized. The intrusive assemblage is encircled by alkali
rhyolites (Moor and Modabberi 2003).

Structural features played an important role in the forma-
tion of magnetite-apatite deposits. Existing faults lead to a
northwest-southeast alteration, displacements, and brecciation
of the Choghart deposit. The lower part of this deposit mainly
contains massive magnetite accompanied by ancillary min-
erals which include apatite, pyrite, alkali amphiboles (mainly
actinolite and tremolite), calcite, talc, quartz, monazite,
davidite, and allanite. Magnetite and apatite are respectively
the most abundant ore and gangue at Choghart. The
magnetite-apatite and magnetite-silicate ores are the most
and least abundant ore types, respectively.

The Choghart iron deposit is classified into different groups
according to 45 % threshold for Fe and 1 % and 10 %
thresholds for P, respectively: (1) high-grade ore, non-
oxidized and low phosphorus; (2) high-grade ore, oxidized
and low phosphorus; (3) high-grade ore, non-oxidized and
high phosphorus; and (4) high-grade ore, oxidized and high
phosphorus (Asghari et al. 2009; Moor and Modabberi 2003;
Samani 1988). The geological map of Choghart deposit is
presented in Fig. 3.

Data sets

The first step in data modeling is studying the elemen-
tary statistical parameters. Descriptive statistics are
usually used for reviewing and explaining the major
features of a data set quantitatively. The statistical
summary parameters of Fe and P in the Choghart
deposit are presented in Table 1, including maximum,
minimum, mean, mode, median, standard deviation
(SD), skewness, kurtosis, and 25 and 75 percentiles.
Statistical results show that Fe and P mean values are
58 and 0.46 %, respectively. Variation between maxi-
mum and minimum values of variables for these data
shows a wide range. Histogram of data shows that Fe
and P variables are not normally distributed. The nor-
mal score transformation was applied on the original
data to make the transformed data normally distributed.
Figure 4 shows the probability mass function of these
variables, using the histogram in the form of the orig-
inal data and data transferring into standard normal
distribution.

One hundred thirty-seven vertical and directional bore-
holes, with an irregular drilling network, were bored in the
Choghart deposit area. Fe and P are variables in a given data
set in the isotopic case (i.e., data is available for each variable
at all core sampling points). Figure 5 demonstrates the pattern
of exploratory boreholes network and distributions of Fe and
P in a three-dimensional space.

Table 1 Descriptive statistical characteristics of Fe and P variables

Variables Maximum Minimum Mean Mode Median SD Skewness Kurtosis 25 % 75 %

Fe 70.30 5.59 58.014 65.4 61.42 10.156 −2.1 5.12 54.98 64.4

P 23.68 0.00 0.4633 0.001 0.810 1.0008 7.26 111.86 0.03 0.41

Fig. 4 a Fe and P original data histogram, b Fe and P standard normal distribution data histogram
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Geostatistical approach

Geostatistical methods are sets of tools that are applied
to characterize the spatial variation of regional variables
for reserve estimation, classification, simulation, and
design of optimal sampling strategies (Hassanipak and
Sharafodin 2004). Geostatistical techniques provide the
spatial distribution of the variable at unsampled loca-
tions, and uncertainty in terms of variance of the con-
ditional distribution. The characterization and evaluation

of this spatial variability, is found through calculating
the variogram model fitting, anisotropy modeling and
geostatistical estimation, such as kriging (Deutsch and
Journel 1998; Goovaerts 1997; Sinclair and Blackwell
2002).

Variography

Variogram can be applied in kriging within each of the geo-
logical units based on composite data (Keogh et al. 1995). An

Fig. 5 Location of boreholes and grade distribution in different depth of boreholes a Fe, b P

Fig. 6 Variograms and fitted models for Fe in: a major direction, b semi-major direction, c minor direction, and P in: a major direction, b semi-major
direction, c minor direction
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experimental semivariogram for an interval lag distance class
h is represented by Eq. (1):

γ hð Þ ¼ 1

2N hð Þ
XN hð Þ

i¼1

Z xþ hð Þ−Z xð Þ½ �2 ð1Þ

where h denotes the lag distance that separates pairs of
points; the quantity γ(h) is known as the semivariance
at lag h, Z(x) denotes the random variable at the loca-
tion x; Z(x+h) denotes the random variable at the loca-
tion (x+h); and N(h) represents the number of pairs
separated by the lag distance h (Deutsch and Journel
1998; Webster and Margaret 2007). Due to the volume
variance effect, borehole samples need to be composited
to an equal length. With regard to modeling of spatial
s t r u c t u r e , t h r e e - d im e n s i o n a l e x p e r i m e n t a l
semivariograms of Fe and P were computed for 24
directions, using composite data. For both variables,
exponential semivariogram models are fitted in the di-
rections having maximum range and the strongest spa-
tial continuity. These models have the best fits to the
empirical semivariogram. The nugget effect of the Fe
model is larger than that of P and the semivariogram
range of P model is larger than Fe. Figure 6 shows

experimental semivariograms with fitting models for Fe
and P variables.

Anisotropy modeling

Due to the significant role of anisotropy in the estimation
process, it should be modeled as accurately as possible
(Hassanipak and Sharafodin 2004). In Choghart iron deposit,
the geological formations with various rock units and struc-
tural features caused the anisotropy of grade distributions. The
semivariograms calculated for various directions are used to
obtain dimensional and directional properties of the anisotro-
py ellipsoid and demonstrate the existence of anisotropy and
what form it takes. These estimation stages provide a basis for
interpreting the causes of spatial variation and for identifying
some of the controlling factors and processes (Hekmat et al.
2013; Myers and Journel 1990; Webster and Margaret 2007).
In this research, experimental three-dimensional
semivariograms were computed in 24 directions based on
directional parameters of geological structure and deposit,
then the anisotropy factors are defined as the ratio of major
range to semi-major range and ratio of major range to minor
range. The anisotropy ellipsoids of Fe and P variables are
modeled with anisotropy factors, azimuth, plunge, and dip
of major range (Table 2). For these variables, search volume

Table 2 Anisotropy ellipsoid
parameters of Fe and P variables Parameter Anisotropy factor (major/semi-major) Anisotropy

factor (major/minor)
Azimuth Plunge Dip

Fe 1.403 1.941 171.94 27.51 8.88

P 1.782 1.939 220 36.112 4.86

Fig. 7 3D block modeling of grade spatial distribution a Fe, b P
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represents an almost horizontal ellipsoid with an anisotropy
factor (major to minor axis) of about 1.9. Fe and P major axis
orientations are 172° and 200°, respectively.

Ordinary kriging of ore variables

A modified kriging procedure named ordinary kriging was
applied. Kriging is used to estimate two values: (1) the value
of a random variable at unsampled locations, and (2) the
related estimation error (Olea 2009; Webster and Margaret
2007). The estimated value of Z at a block V (Z*(V)) is given
by the weighted average of N values of Z (Eq. 2):

Z* Vð Þ ¼
XN
i¼1

λiZ xið Þ ð2Þ

where the kriging weights (λi) sum to 1. Based on non-bias
constraints and minimization of the estimation variance, the
ordinary block kriging variance (σobk

2 ) is given by Eq. (3):

σ2
obk ¼ 2

Xn

i¼1

λiγ xi;Vð Þ−
Xn

i¼1

Xn

j¼1

λiλ jγ xi−x j
� �

−γ V ;Vð Þ ð3Þ

where γ xi;Vð Þ is the average semivariance between data
points xi and block V, and γ V ;Vð Þ is the average semivariance
within V, the within-block variance (Deutsch and Journel
1998; Oliver 2010; Webster and Margaret 2007). The con-
struction of directional variogram models determines the an-
isotropic ellipsoids which in turn use in the ordinary kriging
estimation of the Fe and P variables. Grid dimensions in 2D
space were limited by ranges of variograms in two perpendic-
ular directions along a 2D grid (anisotropy modeling) and
boreholes layout. The third dimension of the grid (block

Fig. 8 3D block modeling of indicators (classes spatial distribution) a Fe, b P

Fig. 9 Histogram of variables with side ranges around threshold a Fe, b P

8182 Arab J Geosci (2015) 8:8175–8195



thickness) is related to mine planning conditions and the ore
and waste vertical thickness distributions (Badel et al. 2011;
Hekmat et al. 2013). Using this method, the three dimensions
of blocks were determined as 20 m×20 m×12.5 m. Figure 7
shows the three-dimensional spatial distribution of Fe and P
variables.

Using thresholds of grades to classify deposit

There are different geostatistical techniques that provide ore
spatial distribution using a cutoff grade (Vann and Geoval
2003). Geoscience data (such as geological observations and
drill core grades) may be interpreted into indicators which are
interpolated by geostatistical methods (Marshall and Glass
2012). Fe and P are the most abundant ore and gangue elements
at Choghart, respectively, and thresholds of grades were defined
for both of the elements. Based on the thresholds, only three
values for classes (positive, neutral, or negative) may occur. In
Choghart mine, Fe grade is classified with one threshold, 45 %;
the Fe quantities with more than 45 % have positive values and

Fe quantities with less or equal to 45 % have neutral values. P
grade is classified with two thresholds, 1 and 10 %; the P
quantities with more than 10 % are positive and P quantities
with less or equal to 1 % are neutral. P quantities between 1 and
10 % or equal to 10 % are negative. Choghart mine experts
consider a rock with P grade more than 10 % as a valuable
phosphorus bearing deposit. Figure 8 shows the three-
dimensional distribution of Fe and P classes. The indicators of
Fe and P, (I(Fe), I(P)) are defined by Eq. (4):

I Feð Þ ¼ 1 Fe≤45
2 Fe > 45

�
ð4:1Þ

I Pð Þ ¼
1 P≤1
2 1 < P≤10
3 P > 10

8<
: ð4:2Þ

Fuzzy interval threshold definition

Fuzzy set theory is one of the theories which is applied to
reason and make rational decisions in an environment of
imperfect information. The fuzzy approach can be considered
as a tool to present approximate solution of real problems in an
efficient way (Zadeh 2008; Zimmermann 2001). A point
threshold results in two classes separated by the threshold
value as a crisp boundary. However, since error in grade
estimation is inevitable, it is necessary to choose a fuzzy
interval threshold. We did this by defining fuzzy membership
functions instead of a point threshold. A triangular fuzzy
number μi (based on the linear relationship between grade
and membership degree) was selected for modeling the inter-
val threshold. Triangular fuzzy number (TFN) has a simple
form, yet a high justification membership function and it is
most commonly applied in different branches of science such
as geosciences (Demicco and Klir 2004; Taboada et al. 2006).

The lower and upper limits of the fuzzy interval threshold
are determined based on equal data percentage frequency

Fig. 10 Threshold membership function for defining interval threshold a Fe, b P

Fig. 11 Schematic of calculation indicator weighted average by interval
threshold
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through both sides of the threshold in a histogram. In this paper,
membership functions of Fe and P are determined by 5% of the
data frequency both the lower and upper limits of the threshold,
but if the percentage of data frequency is lower than (5 %), the
upper limit extends to the maximum of data (Fig. 9). The lower
and upper limits of membership around each threshold for both
variables are calculated. The decision maker can be modified
the percentage of data frequency (lower and upper limits) with
regard to conservative and fuzziness degrees.

Computing the fuzzy measures IWA and CMD

To define fuzzy interval, membership degree at the exact value
of threshold equals 1, and decreases to 0 along the lower and
upper limits that could be calculated from equal percentage
frequency in the histogram. Figure 10 shows the interval
threshold membership function of Fe defined by parameters
[42.46; 45; 47.20] and for P defined by parameters [0.85; 1;
1.22] and [6.56; 10; 22.5]. If the data distributions around both

limits of cutoff grade are similar, the lower and upper limits
will be equal. Interval threshold membership functions of Fe
and P are computed by Eq. (5):

μFe ¼
1−

45−Feð Þ
2:54

42:46 < Fe≤45

1−
Fe−45ð Þ
2:20

45≤ Fe < 47:2

8><
>: ð5:1Þ

μP ¼

1−
1−Pð Þ
0:15

0:85 < P≤1

1−
P−1ð Þ
0:22

1≤P < 1:22

1‐
10−Pð Þ
3:44

6:56 < P≤10

1−
P−10ð Þ
12:5

10≤P < 22:5

8>>>>>>>>><
>>>>>>>>>:

ð5:2Þ

The fuzzy interval threshold provides the interval indica-
tors for membership degrees (α-cuts) 0.25 to 1 with interval

Fig. 12 Histogram of indicator weighted average value, a Fe, b P

Fig. 13 3D block modeling of indicator weighted average value spatial distribution a Fe, b P
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0.25. Indicator weighted average (IWA) presents the fuzzy
indicator value of each block based on interval threshold and
membership degree. Figure 11 schematically displays how
IWA was calculated for each interval threshold and this can
be generalized for each variable with different numbers of
interval thresholds. IWA is calculated by the sum of multipli-
cation the indicator values and theirs corresponding member-
ship degrees divided by the sum of membership degrees. The
values of IWA for two consecutive classes (Cj, and Cj+1), n
membership degrees (α-cuts), and corresponding grades
(G(μi)) for each threshold are computed using Eq. (6):

IWA G μið Þ½ �C j

C jþ1
¼

Xn

i¼1

μi � I G μið Þ½ �

Xn

i¼1

μi

; C j≤ IWA G μið Þ½ �C j

C jþ1
≤C jþ1

ð6Þ

For cases with more than one point (sharp) threshold, the
interval threshold with corresponding grade thresholds is gen-
eralized around each point threshold. Figure 12 shows the
histogram of IWA values for Fe and P variables. Three-
dimensional presentation of IWAvalues for Fe and P variables
that were produced from fuzzy boundary instead of the sharp
boundary in the transition zone between two classes (Fig. 13).
The lower and upper limits of membership have a direct effect
on the propagation of the transition zone.

Class membership degree (CMD) is linear change of the
membership degree of each block based on its grade; also ore
value is introduced as a linear function of the grade. Hence,
the linear relationship is considered between ore value and
CMD. In addition, the triangular fuzzy number can be defined
CMD value with linear changing of membership degree ver-
sus grade. The outputs of IWA have two probable forms:
positive integer or rational number between two consecutive
positive integers. If IWA is a positive integer (Cj, or Cj+1 class

Fig. 14 Variation of membership degree for classes versus grade a Fe, b P

Fig. 15 Relation between class membership degree and grade for different class a Fe, b P
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value), the membership degree of this class (CMD) will be
equal 1 and the membership degree of other classes will be
equal 0. If IWA is a positive rational number (between Cj, and
Cj+1 class values), the membership degrees of two consecutive
positive integer class are computed by considering the relative
closeness of rational number two to integers within a range of
0 to 1 (Eq. 7). Figure 14 shows membership degree of each
class for different grades of Fe and P.

CMD ¼ C jþ1−IWA G μið Þ½ �C j

C jþ1
C∈C j

IWA G μið Þ½ �C j

C jþ1
−C j C∈C jþ1

(
ð7Þ

Whenever the CMD varies from 0 to 1, we can
compute equivalent grade of each CMD for Fe and P
variables with pseudo-defuzzification functions, which
are the conversion and interpretation of the membership
degrees of the fuzzy number into a specific decision or
numerical value in the normalized space. These func-
tions are defined based on the complement of fuzzy
interval threshold. If CMD of the sample equals to 1,
output grade of pseudo-defuzzification functions and
output grade of kriging will be equal (Eq. 8). The

relation between CMD and grades of Fe and P is
presented in Fig. 15.

GFe CMDð Þ ¼
45−2:54� CMDð Þ 0 < CMD < 1; C∈1
45þ 2:2 CMDð Þ 0 < CMD < 1; C∈2
G Primaryð Þ CMD ¼ 1

8<
: ð8:1Þ

GP CMDð Þ ¼

1−0:15� CMDð Þ 0 < CMD < 1; C∈1
1þ 0:22� CMDð Þ 0 < CMD < 1; C∈2; 1 < IWA G Mið Þ½ � < 2
10−3:44� CMDð Þ 0 < CMD < 1; C∈2; 2 < IWA G Mið Þ½ � < 3
10þ 12:5� CMDð Þ 0 < CMD < 1; C∈3
G Primaryð Þ CMD ¼ 1

8>>>><
>>>>:

ð8:2Þ

Two CMD values occurred in the area of one interval
threshold and a corresponding grade is generated for
each class in this threshold. When we face more than
one threshold, two CMD values are studied and the
other CMD values are zero. For this case, second and
third classes of P are calculated based on the second
interval threshold of P and the first CMD value equals
to 0. Figure 16 compared kriging output values with

Fig. 17 Schematic illustration for defining six classes based on I(Fe, P) Fig. 18 Cross plot of P versus Fe for six classes

Fig. 16 Cross plot of kriging and IWA outputs for different classes a Fe, b P
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IWA outputs (Eqs. (8.1) and (8.2)) of Fe and P for
different classes.

Classifying ore deposit based on fuzzy thresholds

With reference to Eqs. (5.1) and (5.2), for one threshold for Fe
and two thresholds for P, there are two classes for Fe and three
classes for P. Combining the existing conditions for Fe and P
(indicator (Fe, P)) generates six classes as shown in Eq. (9)
and class values increase from first class to sixth class
(Fig. 17). In Fig. 18, the cross plot of Fe and P variables is
presented the distribution of mentioned six classes, although
the set of variables is not intrinsically correlated. The spatial
distribution of six classes is presented by block model in
Fig. 19. The six classes are described as follows:

& 1st class includes the neutral value of Fe and negative
value of P.

& 2nd class includes the neutral value of Fe and neutral value
of P.

& 3rd class includes the neutral value of Fe and positive
value of P.

& 4th class includes the positive value of Fe and negative
value of P.

& 5th class includes the positive value of Fe and neutral
value of P.

& 6th class includes the positive value of Fe and positive
value of P.

I Fe; Pð Þ ¼

1 Fe≤45 and 1 < P≤10
2 Fe≤45 and P≤1
3 Fe≤45 and P > 10
4 Fe > 45 and 1 < P≤10
5 Fe > 45 and P≤1
6 Fe > 45 and P > 10

8>>>>>><
>>>>>>:

ð9Þ

In order to determine the CMD of each of these six
classes, we used multiplicative functions of correspond-
ing CMD values of Fe and P, with the assumption that

Fig. 19 3D view of spatial distribution of six classes

Arab J Geosci (2015) 8:8175–8195 8187



CMD for Fe and P are independent. Figure 20 shows a
three-dimensional distribution of the membership de-
grees of the blocks to each class from 1 to 6. For any

samples (blocks), six terms of CMD were computed by
Eq. (10), however, the quantity of these CMD may be
zero or non-zero.

Fig. 20 3D presentation and spatial distribution of membership of each class
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CMDð Þ1 ¼ CMDð ÞFe 1ð Þ � CMDð ÞP 2ð Þ
CMDð Þ2 ¼ CMDð ÞFe 1ð Þ � CMDð ÞP 1ð Þ
CMDð Þ3 ¼ CMDð ÞFe 1ð Þ � CMDð ÞP 3ð Þ
CMDð Þ4 ¼ CMDð ÞFe 2ð Þ � CMDð ÞP 2ð Þ
CMDð Þ5 ¼ CMDð ÞFe 2ð Þ � CMDð ÞP 1ð Þ
CMDð Þ6 ¼ CMDð ÞFe 2ð Þ � CMDð ÞP 3ð Þ

ð10Þ

Functional modeling of Fe and P variables

For each criterion, the preference function translates the dif-
ference between the evaluations obtained by two alternatives
into a preference degree varying from zero to one (Behzadian
et al. 2010). The Preference functions of Fe and P are defined
based on ore value fluctuation for different thresholds. These
functions transform the grade into the preference degree with-
in a range of 0 to 1, using coefficients 0.01. The Fe preference
function (P (GFe)) has neutral behavior in a range of [0 %;
45 %] and positive value within a range of (45 %; 100 %], the
value of which preference function increased from 0.45 to 1
with a constant slope. Neutral part of P preference function (P
(GP)) occurs within a range of [0%; 1%] and this function has
a negative value within a range of (1 %; 10 %] and positive
value within a range of (10 %; 100 %]. Eq. (11) presents the
preference function of Fe and P variables.

P GFeð Þ ¼ 0 GFe≤45
0:01� GFe 45 < GFe≤100

�
ð11:1Þ

P GPð Þ ¼
0 GP≤1
−0:01� GP 1 < GP≤10
0:01� GP 10 < GP≤100

8<
: ð11:2Þ

These preference functions represent different status
(positive, neutral and negative) of relative grades and
preference degree from each other. In this case, the

preference function is determined based on the exact
values instead of the value differences and thresholds
are determined in the real data domain. Figure 21 shows
preference functions of Fe and P variables.

Ore value function

The output of IWA provides CMD and related grades. The
preference degrees of Fe and P grades (P (GFe), P (GP)) of
each sample (block) was calculated and multiplicative func-
tions of CMD in preference degree for Fe and P grades were
applied in class i (Eq. 12).

Fe value ¼
X2

i¼1

CMDð ÞFe ið Þ � P GFe ið Þ
� �

P value ¼
X3

i¼1

CMDð ÞP ið Þ � P GP ið Þ
� �

ð12Þ

In the next stage, weight factors were calculated for
Fe and P variables based on the ratio of Fe specific
gravity to P specific gravity (because all calculations
were performed by volume of block) and the ratio of
economic price of Fe to economic price of P (Annels
1996; Rogers and Kanchibotla 2013; Soltani and
Hezarkhani 2011). In Choghart mine, the ore value
function can be designed based on Fe and P economic
values. Finally, ore value was measured by the sum of
multiplication Fe weight factor in Fe value and multi-
plicative P weight factor in P value (Eq. 13). The 3D
spatial variation of ore value is shown in Fig. 22.

Ore value ¼ W Fe � Fe valueð Þ þW P � P valueð Þ ¼ 0:6747

� Fe valueð Þ þ 0:3253� P valueð Þ
ð13Þ

Fig. 21 Definition of preference functions of both variables for ore value determination
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Fig. 22 3D views, a ore value function distribution, b region with large
amounts of ore value function, c poles of locations with large amounts of
ore value function, d average kriging variance (σ2

obk for Fe and P, e

objective function distribution, f four poles locations with regard to
large amounts of objective function

8190 Arab J Geosci (2015) 8:8175–8195



Objective function definition

Two concepts were applied in designing complementary dril-
lings. First, large amounts of ore value function were used and
centroid of poles (3D center of mass of those large amounts) was
selected as a candidate position for complementary drillings.
Two poles were selected using this approach (Fig. 22c). Second,
ore value function with a kriging variance as a criterion of
estimation error was considered. Kriging variance can be used
as a criterion for choosing complementary samples (Brus and
Heuvelink 2007; Chou and Schenk 1983; Gao et al. 1996;
Hossein Morshedy and Memarian 2015; Sinclair and
Blackwell 2002; Van Groenigen et al. 1999). Ordinary
block kriging variance (σobk

2 ) of each one of Fe and P,
as well as their average kriging variance (σ2

obk) was

calculated. This average was normalized (σ2
obk) within

a range of [0; 1] according to Eq. (14).

σ
2

obk ¼
σ2
obk

� �
Fe þ σ2

obk

� �
P

2
ð14:1Þ

σ
2

obk ¼
σ
2

obk−Min σ
2

obk

� �

Max σ
2

obk

� �
−Min σ

2

obk

� � ð14:2Þ

The complementary drilling locations were designed
on the basis of improving the accuracy of reserve esti-
mation and covering the region with high value of the
objective function. As a consequence, objective function

was defined by multiplying two factors, namely kriging
variance and ore value function, as shown in Eq. (15):

Objective function ¼ σ
2

obk � Ore value function ð15Þ

This objective function with two sub-objectives (maximiz-
ing kriging variance and ore value) is capable of locating the
positions having high ore and information values. Figure 22
illustrates a three-dimensional view of ore value function and
large amounts of it and a three-dimensional distribution of the
objective function. It also shows the location of poles with the
high objective function values.

Designing complementary drillings based on distribution
of the objective function outputs

Based on the second concept of the objective function, four
poles with larger objective function selected as the candidate
and the (x,y,z) coordinates of the poles were extracted (Table 3).

Table 3 Coordinate of selected poles by objective function criteria

Coordinate pole x y z

1 4640 8300 1055

2 4860 8040 1025

3 4780 8240 845

4 5000 8180 845

Fig. 23 a Designing vertical
drilling based on pole centroid. b
Designing directional drilling
based on relation of two pole
centroids

Table 4 Investigation of status, dimensional and directional properties
of ten possible alternatives

Parameters
cases

Pole or poles
crossing

Azimuth Dip Status Alternative

1 1 0 90 Feasible 1

2 2 0 90 Feasible 2

3 3 0 90 Feasible 3

4 4 0 90 Feasible 4

5 1, 2 139.8 5 Infeasible –

6 1, 3 113.2 54 Feasible 5

7 1, 4 108.4 29 Infeasible –

8 2, 3 338.2 39.9 Infeasible –

9 2, 4 45 42.3 Infeasible –

10 3, 4 105.3 0 Infeasible –
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It is important that we explain two remarks concerning the
vertical and directional complementary drillings scheme, con-
sidering the coordinates of pole centroids as presented in
(Fig. 23):

(i) Vertical drillings: each pole centroid referred to one po-
tential drilling site. Drilling length was calculated by
Euclidean distance from pole’s centroid coordinates to

corresponding earth surface coordinates and drilling an-
gle was equal to 90°. In this research, four vertical dril-
lings were selected (Fig. 23a).

(ii) Directional drillings: the hypothetical line will intersect
double pole centroids representing the potential drilling
axis with dip angle (β) and length (L) parameters of
drilling, which are displayed in Fig. 23b. There are
different cases of double poles, but many of these

Fig. 24 Defining drilling length, using objective function and it’s changes along drilling length
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alternatives are infeasible and not economically justifi-
able in such mining exploration cases (because of the
large drilling length or smaller than 50° drilling dip).

Difference of the objective function is a suitable tool to
model objective function fluctuation along drilling axes. Ac-
cording to the ascending trend and the local maximum of the
objective function, the zero value of objective function differ-
ential and the acceptable domain of each drilling length, the
optimal length of drillings can be defined (Fig. 24).

In order to define the priority of feasible exploration dril-
lings, cumulative objective function was used along the length
(hypothetical axis) of drilling and cumulative objective func-
tion versus length of drilling is plotted in Fig. 25. Maximizing

the cumulative objective function in the acceptable domain of
each drilling length determined the priority of drillings.

The output of this objective function for five complemen-
tary boreholes is shown in Table 5; the dimensional and
directional parameters of boreholes are listed with correspond-
ing priority.

Figure 26 shows how an arrangement of five extra drillings
between the primary drillings led to a reduction in estimation
error and improved the accuracy of the category and reserve
estimation.

Discussion

The proposed approach (IWA) was compared with indi-
cator kriging (IK), which is a popular geostatistical
classification method for evaluating the performance of
IWA. IK model of Choghart mine was applied to clas-
sify and estimate the probability of Fe and P variables
in the mentioned six classes. The confusion matrix is
used as the most commonly applicable technique to
assess the accuracy of classification analysis. In this
matrix, each row represented the instances in an actual
class, while each column represented the instances in an
estimated class (Aytaç and Barshan 2004; Zapata et al.
2010). As the accuracy measure of classification, correct
classification rate (CCR) was calculated by summing the
correct decisions given along the diagonal of the con-
fusion matrix and dividing this sum by the total number
of tests (Mitchell 2012). The confusion matrices are
calculated for the six classes of Choghart deposit based
on the classification outputs of IK and IWA method.

Fig. 25 Priority of five feasible alternative drillings with applying
cumulative objective function

Table 5 The collar and survey properties of proposed boreholes with
higher priority

Parameters
alternative

Collar Azimuth Dip Length Priority

x y z

1 4640 8300 1148 0 90 130 2

2 4860 8040 1180 0 90 240 1

3 4780 8240 1171 0 90 435 3

4 5000 8180 1182 0 90 480 5

5 4580 8325 1144 113.2 54 450 4

Fig. 26 Arrangement of five designed extra drillings between primary
drillings network
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Overall, taking into consideration the two vertical and
directional drilling strategies, ten variations may arise.
The dip and length of each case were determined.
However, only five alternatives from ten cases have
commercial justification (considering the constraint dip
>50°) and hence were defined as feasible. In directional
drilling, the objective function was modeled along the
borehole axis (Table 4).



The CCRs for IK and IWA method are determined
0.622 and 0.756, respectively. With respect to the mis-
classification error, the ore reserve is affected by the
economic effect of ore loss and ore dilution. The eco-
nomic impact of ore loss is the income lost when ore is
sent to the waste dumps and never recovered. The
dilution economic effect is imposed on the extra cost
of mining and processing waste that is treated as ore. In
IK method, the ore loss and ore dilution percent are
20.6 and 17.2 %, while these values for IWA method
decrease to 9.4 and 15, respectively. In Fig. 27, the
normalized confusion matrices are shown for IK and
IWA methods. The lower value of misclassification error
and higher value of accuracy (CCR) proves that IWA
has better classification performance than IK.

Summary and conclusions

Designing complementary drillings between primary
drilling network normally use to increase the accuracy
of ore reserve modeling and classification. The main
goal of this paper was presenting a new method for
determining the number, as well as directional and di-
mensional properties of complementary drillings based
on ore value and objective functions, using an interval
threshold concept.

In the Choghart iron deposit of central Iran, kriging esti-
mate of Fe and P variables undergo the interval threshold
approach by fuzzy membership function instead of point
threshold. Based on interval thresholds, IWA and CMD for
each block (sample) were computed. Six classes were totally
generated, resulting in the existence of one threshold for Fe
and two thresholds for P. This study showed that the IWA
method has better performance than IK for data classification.

Fe and P preference functions were capable of modeling
positive, neutral, and negative values in different ranges of
grades. Ore value function depended on CMD values, prefer-
ence degrees, and weight factors of Fe and P variables. Ob-
jective function was defined as a multiplicative function of ore
value function and estimation error. Based on large amounts
of the objective function, five feasible alternative drillings
(four vertical and a single directional) were proposed and their
location, dip and azimuth, approximate length and their prior-
ity were determined. This process can be applied to improve
designing of complementary exploration drillings, for any
mineral reserve, with any number of variables and conditions.
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