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Abstract Farsesh barite in the central part of Iranian Sanandaj-
Sirjan zone is a sample of epigenetic hydrothermal mineraliza-
tion in dolomitized limestone, which provides appropriate
chemicophysical conditions making the passage of mineral-
bearing fluids possible. Barite veins may range from a few
centimeters to 2 m in thickness that increases downward. The
microthermometry measurements obtained from more than 30
fluid inclusions show relative homogenization temperatures
ranging from 125 to 200 °C with an average of 110 °C for
Farsesh barite deposits. The mean salinity measured proves 16
times as much as weight percentage of NaCl for barite. Coex-
istence of liquid- and vapor-rich fluid inclusions in barite
minerals may provide an evidence of boiling in ore veins.
Moreover, occurrence of bladed calcite, high-grade ore zones,
and presence of hydrothermal breccia are all consistent with
boiling. Thermometric studies indicate that homogenization
temperatures (Th) for primary and pseudosecondary fluid in-
clusions in barite range from 125 to 200 °C with an average of
1,100 °C. The δ34S values of barite also lie between 8.88 and
16.6 %. The relatively narrow spread in δ34S values may
suggest uniform environmental conditions throughout the min-
eralization field. Thus, δ34S values are lower than those of
contemporaneous seawater, which indicates a contribution of
magmatic sulfur to the ore-forming solution. Barite is marked
by total amounts of rare Earth elements (REEs) (6.25–
17.39 ppm). Moreover, chondrite-normalized REE patterns of

barite indicate a fractionation of light REEs (i.e., LREEs) from
La to Sm, similar to those for barite from different origins. The
LaCN/LuCN ratios and chondrite-normalized REE patterns re-
veal that barite in Farsesh deposit is enriched in LREEs com-
pared with heavy rare Earth elements (HREEs). Similarity
between Ce/La ratios in barite samples and those found in
deep-sea barite supports its marine origin. Lanthanum and Gd
exhibit positive anomalies, which are common features of
chemical marine sediments. Cerium shows a negative anomaly
in most samples inherited from the negative Ce anomaly of
hydrothermal fluid that is mixed with seawater at barite precip-
itation. The available data including tectonic setting, host rock
characteristics, REE geochemistry, and sulfur isotopic compo-
sitions may support a hydrothermal submarine origin for
Farsesh barite deposit.
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Introduction

The major constituents of barite are Ba2+ and S in its oxidized
state SO42−. Although Ba and Sr are relatively abundant and
widely distributed elements in Earth crustal rocks (Faure 1998),
most naturally occurring fluids are undersaturated with respect
to barite (Chow and Goldberg 1960; Church and Wolgemuth
1972; Monnin et al. 1999; Rushdi et al. 2000; Ehya 2012;
Zhang et al. 2013). Thus, for barite to precipitate, interaction
between distinct sources of Ba and SO4 is necessary. Regarding
barite, saturation should also be maintained for preserving the
mineral after precipitation. Hydrothermal barite precipitates
from Ba-rich fluids formed in association with hydrothermal
volcanic activity ascending from depth and mixing with sea-
water near the seafloor. Extensional faults and fractures may
direct hydrothermal fluids upward onto the seafloor, where they
mix with seawater, the primary source of SO4 for barite
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precipitation. The main Ba source for hydrothermal fluids is
due to oceanic or continental rocks’ leaching driven by heat
from magmatic activity. Hydrothermal leaching of pelagic
sediments enriched in Ba is another potential source of Ba for
these fluids (Murchey et al. 1987). Barite solubility decreases
during the lowering of pressure at any temperature, and with
decreasing temperature, below 100 °C (Hanor 2000). It further
makes barite precipitation from hydrothermal solutions possi-
ble. The geochemistry of the hydrothermal fluid, as well as size
and composition of barite deposit, is determined by the type
and amount of host volcanic rocks and the sediments through
which the fluid has passed (Hanor 2000). Hydrothermal fluid
temperature is further distinguished in different environments
where “hydrothermal” barite forms. Barite can precipitate from
low-temperature (<120 °C) hydrothermal fluids around “warm
springs” at the seafloor. Barite may also precipitate at average
temperatures (150 to 250 °C) in hydrothermal settings of
continental margins where fluid circulation due to high heat
flow is common (Hein et al. 2007; and references therein). This
mode of precipitation occurs at the seafloor near hydrothermal
plumes and forms chimneys and mounds. It may also occur
within the sediments as dispersed crystals in basement fractures
at oceanic back-arc basin spreading centers, fracture zones, and
volcanic arcs (e.g., East Pacific Rise 1 N, Huheey et al. 1993;
Tonga arc, south-west Pacific, Stoffers et al. 2006; the Kurile
and western Aleutian Island arcs, north-west Pacific, Glasby
et al. 2006; Okinawa andMariana Troughs, Japan (Luders et al.
2001; Noguchi et al. 2011). Barite deposits are widely distrib-
uted in Iran. Approximately, 100 small barite deposits/
prospects occur throughout Iran with a total barite reserve of
roughly 10 million tons (Ghorbani 2002). The largest barite
deposits are found in the central Alborz and central Iran zones,
hosted by dolomitic and volcano sedimentary rocks. Barite
mineralization has already been studied in several works (Mar-
tin et al. 1995; Torres et al. 2003;Wagner et al. 2005; Taghipour
et al. 2010; Feng and Roberts 2011; Ehya 2012; Zhang et al.
2013).

Farsesh barite deposit is located about 45 km southeast of
Aligoudarz in Lorestan Province, southeastern Iran. The pres-
ent work, however, offers the first detailed investigation into
barite mineralization in Farsesh barite deposit through isotopic
composition, rare Earth elements, fluid inclusion studies,
along with field observations, to understand the conditions
of barite formation.

Geological setting

Iran is geologically complex (Fig. 1) and located in the middle
of the Alpine-Himalayan mountain system. The geology, par-
ticularly the tectonic evolution of Iran, was greatly influenced
by the development of the Tethys region. The tectonic events
that affected the Iranian plate were caused by the opening and
closing of the Paleo-and Neo-Tethys Oceans (Berberian and

King 1981; Stöcklin 1977). It is believed that the opening of
the Paleo-Tethys Ocean in northern Iran has occurred during
the Ordovician-Silurian period, followed by the northward
subduction of its oceanic crust beneath the Turan plate in Late
Devonian and Late Triassic-Jurassic collision between the
Iranian microcontinent and Turan plates (Stampfli 2000;
Natalin and Şengör 2005). Following the closure of the
Paleo-Tethys Ocean, construction of the Neo-Tethys oceanic
crust in southern Iran and its later subduction below the central
Iran plate took place during late Jurassic to Cretaceous
(Mohajjel et al. 2003; Richards et al. 2006).

Continuous subduction resulted in the consumption of the
Neo-Tethys oceanic basin following the collision of the Iranian-
Arabian plates during the Oligo-Miocene (Stöcklin 1977;
Berberian and King 1981; Stampfli 2000). Therefore, based on
the differences in the crustal characteristics and the age of base-
ment consolidation, Iran is divided into three major structural
units including from south to north: (1) the Zagros folded belt; (2)
central Iran and the AlborzMountains; and (3) the south Caspian
depression and the Kopehdagh mountain range. These major
zones are subdivided into subzones based on differences in
structural style, age, and intensity of deformation, as well as
age and nature of magmatism (Davoudzadeh 1997) (Fig. 1).

Farsesh region is located in Sanandaj–Sirjan tectono-
metamorphic belt at the western margin of the Iranian central
zone (Fig. 1) (Stöcklin 1977). A simplified geologic map of
Farsesh area is shown in Fig. 1. The order of rock units from
the oldest to youngest is as follows: metamorphic rocks in-
cluding marble, weathered dolomite, and acidic-basic meta-
volcanic rocks (Precambrian-Cambrian); black shale with thin
bands of sandstone and limestone (middle-late Devonian);
Dolomitic limestone (carboniferous); and andesite-dacite vol-
canic sedimentary sequence and limestone (Eocene).

As a result, Eocene volcano sedimentary units are
disconformably overlain by a red to brown, terrigenous unit
of the Oligocene age. This unit is composed of conglomerate
with intercalations of sandstone (Lower Red Formation).

The sequence is intruded by numerous acidic to intermedi-
ate volcanic tuffs of post-Eocene age of Farsesh barite in
southeastern Aligoudarz. Igneous activity that occurred in
Sanandaj-Sirjan metamorphic belt during Cenozoic period is
due to the still continuous convergence of Afro-Arabian and
Iranian plates (Stöcklin 1977).

Barite veins cut the dolomite and limestone units
(Fig. 2a, b) and range from minute veinlet only a few centi-
meters in size to large veins more than 300 m long. The
thickness also varies from a few centimeters up to 2 m. They
trend in east-northeast and west-southwest, dipping steeply
(65–800°) to the southeast.

Barite veins are composed of barite, quartz, and opaque (Fe-
Ox) minerals (Fig. 2c–f). Barite is a predominant mineral and
may comprise 90 % of the mineral constituents. There are two
generations: an early large euhedral to subhedral generation of
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crystals showing two perpendicular sets of cleavage and a later
generation of anhedral crystals associated with quartz and
opaque filling the interstitial spaces or cracks in the first gen-
eration. Quartz may form up to 30 % of total mineral constit-
uents in some veins (Fig. 2c, d). It occurs as anhedral interstitial
crystals replacing the edges of barite crystals and reflecting its
later origin. Opaque minerals are dominated by Fe oxides
(magnetite and specularite) with minor sulfides and a few
disseminations of Au (Fig. 2e, f). Barite veins are associated
with silicification of the host rocks in the form of secondary
quartz, kaolinitization, and sericitization of the plagioclase.

Results and discussion

Sulfur isotopes

Sulfur isotopic data from barite deposits are useful for identi-
fying the sources of sulfate and geochemical processes that act

upon sulfate prior to its precipitation as barite. Variations in
sulfur isotope compositions in natural systems result from
different chemical exchange reactions and can be enhanced
by bacterial reduction of sulfate (Hoefs and Sywall 1997; Seal
et al. 2000). Sulfur isotopic signatures of marine and evapo-
rated sulfate minerals have changed throughout geological
time, providing a record of secular variations in seawater
sulfate (Claypool et al. 1980). The δ34S values of six samples
from Farsesh barite deposit ores are shown in Table 1.

The S isotopic composition analyses were performed by
EA-IRMS. Tin capsules containing reference or sample ma-
terial plus vanadium pentoxide catalyst were loaded into an
automatic sampler fromwhich they were dropped in sequence
into a furnace held at 1,080 °C and combusted in the presence
of oxygen. These tin capsules flash combustion and increase
the temperature in the region of the sample to ∼1,700 °C. The
combusted gases are then swept in a helium stream over
combustion catalysts (tungstic oxide/zirconium oxide) and
through a reduction stage of high-purity copper wires to

Fig. 1 Main tectonic elements of Iran and location of the simplified geologic map of the Farsesh barite deposit (modified after Stöcklin 1977)
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produce SO2, N2, CO2, and water. Then, water is removed
using a Nafion™ membrane. Sulfur dioxide is resolved from
N2 and CO2 on a packed GC column at a temperature of
45 °C. The resultant SO2 peak enters the ion source of the
IRMSwhereupon it is ionized and accelerated. Gas samples of
different mass are separated in a magnetic field, and

simultaneously measured on a Faraday cup universal collector
array. The analysis was based on monitoring of m/z 48, 49,
and 50 of SO+ produced from SO2 in the ion source. The
reference material used for analysis was IA-R061 (iso-analyt-
ical working standard barium sulfate, δ34S-CDT=+20.33‰).
IA-R025 (iso-analytical working standard barium sulfate,

Fig 2 Ore occurrences and BSE images of Farsesh deposit. a, b Barite veins hosted by dolomitized limestone; c, d barite with calcite and silica; e, f
occurrences of barite with Fe-Ox
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δ34SV-CDT=+8.53 ‰), IA-R026 (iso-analytical working
standard silver sulfide, δ34SV-CDT=+3.96 ‰), and IA-
R061 were used for calibration and correction of the 18O
contribution to the SO+ion beam. Working standards are
traceable to NBS-127 (barium sulfate, δ34S-CDT=+20.3 ‰)
and IAEA-S-1 (silver sulfide, δ34SV-CDT=−0.3 ‰).

Analytical results show that δ34S ranges from 8.88 to
16.6 ‰. Although Farsesh deposit is hosted by limestone
and dolomite, they were formed epigenetically. When the S
isotope results are compared with those of younger source
materials, they are isotopically lighter than those of the Perm-
ian to Tertiary seawater sulfate δ34S=10–22 ‰ (Claypool
et al. 1980) or barite from active hydrothermal vents, for
instance, (δ34S=22 ‰) for barite from Mariana (Kusakabe
et al. 1990). Although sulfur isotopic values in Farsesh deposit
are lighter than those of Precambrian and Cambrian seawater
(31 ‰) on the evaporitic sulfur isotope curve (Claypool et al.
1980), they are alsomuch lighter than those of the Silurian and
Devonian seawater (23–24 ‰). Light δ34S values of Farsesh
barite samples are inconsistent with δ34S values of stratiform
barite deposits from the Iglesiente-Sulcis mining district in
Sardinia. The latter appear to be of epigenetic character
(Cortecci and Frizzo 1993) and from late Proterozoic to lower
Cambrian marine barite deposits of Liulin in Quinling Region
and Xinghuang in Jiangnan Region of south China (Wang and
Li 1991; Maynard and Okita 1991), deposited in a deep,
poorly oxygenated, and tectonically active marine basin
(Clark et al. 2004). The δ34S values of Farsesh barite are
heavier than those of Hüyük barite (a mean δ34S value of
29.60‰), located in Sultandağ Region of the western Taurus
mountains, assumed as stratiform barites with sedimentary
and diagenetic features and their sulfate ions supplied from
coeval seawater (Ayhan 2001).

As shown in Fig. 3, values of barite from Farsesh are
consistent with those of contemporaneous seawater. The
δ34S values of barites (8.8–16.6 ‰) are lower than isotope
values of contemporaneous seawater (22.0 ‰; Paytan et al.
2002). The δ34S values of barite from high-temperature hy-
drothermal vents at modern volcanic arcs and back-arc basins
match the value of modern seawater sulfate (21‰; Rees et al.
1978). On the other hand, Paytan et al. (2002) found modern
marine barites of hydrothermal origin showing sulfur isotope
values either equal to or lower than those of modern seawater.

These hydrothermal barites formed when the circulating sea-
water leached Ba from the oceanic crust, then interacting and
mixing with the sulfate-rich seawater (Kusakabe et al. 1990).
Hydrothermal barite with very low values of δ34S (mean
10.1 ‰), compared with seawater, was also reported by
Goodfellow and Blaise (1988) from Middle Valley at the
northern end of the Juan de Fuca Ridge. These low δ34S
values were interpreted as suggesting the derivation of a
considerable sulfur proportion in the barite obtained from
oxidation of dissolved H2S or precipitated sulfide
(Goodfellow and Blaise 1988). Thus, hydrothermal barites
display a sulfur isotopic ratio equal to or lower than that of
seawater depending on the relative contribution of magmatic
sulfur derived from oxidation of H2S (Hannington and Scott
1989). Lower values of δ34S in barite from Farsesh deposit, if
compared with those of seawater, are permissive of a similar
process. Therefore, the sulfur involved in the formation of
barite was not only exclusively derived from seawater sulfate,
but also had a contribution of sulfur probably derived from
magmatic H2S oxidation.

Fluid inclusion studies

Sampling and methodology

Fluid inclusions were studied in doubly polished wafers of
hydrothermal barite less than or equal to 150-μm thickness.
Over 30 inclusions were measured for homogenization tem-
perature (Th) and salinity determination. Homogenization
temperatures (Th), as well as first-ice melting (Te) and last
ice-melting (Tm ice) temperatures, were measured to obtain
reliable data for microthermometry. Temperature determina-
tions were performed three times for each inclusion.
Microthermometry studies were conducted at the Department
of Geology, Tarbiat Modarres University, Tehran, Iran. The
stages were calibrated with a series of synthetic fluid inclu-
sions of known compositions. The accuracy is ±10 °C on
freezing. Salinities of liquid-rich fluid inclusions were calcu-
lated from the measured last ice-melting temperature using the
equation offered by Hall et al. (1988).

Types and features of inclusions

As shown in Fig. 4a–d, three inclusion types were identified
based on the number of phases observed at room temperature,
degree of filling, and phase variations observed during the
heating-freezing experiments: (I) liquid–vapor (L-V)
(Fig. 4a, b), (II) liquid only (L) (Fig. 4c), and (III) vapor-only
(V) inclusions (Fig. 4d). Type І and type ІІ inclusions are two-
phased (i.e., vapor and liquid). Type І inclusions are essentially
vapor-rich and two-phased. They can be found in clusters or

Table 1 Sulfur isotope
geochemistry from bar-
ites for Farsesh deposit

Sample no. δ34S (‰)

Far-S1 10.69

Far-S2 8.88

Far-S3 14.5

Far-S4 13.42

Far-S5 16.61

Far-S6 13.23
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sometimes isolated. These occurrences suggest a primary ori-
gin (Roedder 1984). In many cases, inclusions appear to con-
tain one phase (e.g., vapor) at room temperature, although some
involve a considerable amount of liquid. Type І inclusions
contain a negative crystal shape and are usually small.

Type ІІ inclusions are liquid-rich and two-phased, demon-
strating slightly higher significant degree of filling than type І
inclusions. The degree of filling may range from 0.3 to 0.6
(type І) and 0.5–0.9 (type ІІ). Type ІІ inclusions are considered
primary, round, and faceted with an average size of 5*3 μm.

Fig. 3 Comparison on sulfur
stable isotopes of the Farsesh
barite deposits and other
geological environments

Fig. 4 Petrography and type of fluid inclusions from Farsesh barite deposit
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Typically, inclusions less than 1 μm are not suitable for
microthermobarometric measurements.

Type ІІІ inclusions are variable in size from 4*3 to
20*5 μm, having a relatively regular shape. In some cases,
they occur in regular shapes as negative crystals. Type ІІІ
inclusions occur as primary isolated inclusions, either along
secondary or pseudosecondary trails. The degree of filling is
0.75–9.2.

Microthermometric measurements

Microthermometric analysis was conducted on primary and
pseudosecondary LV fluid inclusions. Some secondary type
ІІІ inclusions show a metastable ice in the absence of a vapor
phase throughout the cooling of the first ice-melting occurred
between −19 and −0.2 °C, indicating maximum salinities of
4–21 equiv.wt% NaCl, with an average of 16 wt.% NaCl
(Fig. 5). Fluid inclusions with low salinity may indicate
mixing of barite-bearing fluids and meteorite water.

Homogenization temperature data were analyzed for the
inclusion hosted in barite minerals. Moreover, homogeniza-
tion temperatures of fluid inclusion range from 125 to 200 °C
with an average of 110 °C for barite. The stacking histogram
clearly illustrates the frequency of homogenization tempera-
ture (Fig. 6) of 170 °C dominated by liquid-rich inclusions.
There is no correlation between the size of inclusions and
homogenization temperatures (Th). This shows that the results
of homogenization temperature are more reliable, indicating
the temperature of mineralization.

Homogenization temperatures versus salinity data for pri-
mary inclusions in barite minerals are plotted in Fig. 7. To
understand the characteristics of hydrothermal fluids at
Farsesh deposit, results have been compared with those of a
few selected epigenetic hydrothermal barite deposits
(Gultekin et al. 2003; Göke and Bozkaya 2008; Fuquan
et al. 2006). High-salinity and high-temperature values of

inclusions indicate a hydrothermal fluid of probable magmatic
derivation circulated in Farsesh deposit (Arribas et al. 1995).
The relatively high salinity (around 4–21 equiv. wt% NaCl),
low-temperature 125–200 °C inclusions may be the result of
episodic mixing of deep-saline brines of probable magmatic
derivation with meteoric low-salinity fluids (Roedder 1984;
Hedenquist et al. 1985; Arribas et al. 1995; Hill et al. 2000).
The majority of Farsesh samples show salinity greater than 10
equiv.wt% NaCl. Moreover, with the exception of a few
samples, most of them are homogenized between 150 and
200 °C. These inclusions in barite have some characteristics
similar to epithermal barite mineralization. The relatively low-
salinity and low-temperature inclusions are considered indic-
ative of mixing magmatic and meteoric fluids.

In fluid inclusion types I, II, and III identified at Farsesh,
there are different ranges of homogenization temperature and
salinity (Fig. 9). Some type I inclusions have high homogeni-
zation temperatures, low-salinity values, and highly variable
vapor/liquid ratios. The relationship between homogenization,
temperature, and salinity of type I inclusions is not straight-
forward (Fig. 9), probably reflecting that these inclusions were
trapped under boiling conditions. Specifically, in a single
sample, the inverse relationship between Th and salinity is
consistent with the boiling fluid process and steam loss.

The fluid related to epithermal mineralization at Farsesh is
probably represented by type II inclusions. This fluid type is
also partly responsible for hydrothermal alteration. The high
salinity (from 11.6 to 17.5 equiv.wt% NaCl) and lower tem-
peratures (from 142 to 167 °C) of type II inclusions record the
late-stage hydrothermal fluid responsible for barite deposition.
The low vapor-phase-bearing inclusions in barite crystals may
suggest a deficiency that these inclusions are probably trapped
close to boiling conditions (Fig. 9). On heating, high homog-
enization temperatures measured in type I inclusions of barite
(from 171 to 200 °C, averaging 181.75 °C) (Figs. 8 and 9)
indicate that these barites are related to magmatic type.

Fig. 5 Fluid inclusion salinities
within barite minerals from
Farsesh deposit
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Geochemistry of rare Earth elements

Because of their unique geochemical characteristics, rare
Earth elements (REEs) play a major role in understanding
chemical evolution and material sources of hydrothermal
fluids. Results of REE analysis are shown in Table 2. These
results were normalized using the average C1 chondrite abun-
dance of Boynton (1984). Such normalization is more com-
monly used in literature for studying REE distribution in
barite. La and Gd anomalies were calculated as (La/
La*)CN=LaCN/(3PrCN–2NdCN) and (Gd/Gd*)CN=GdCN/
(0.33SmCN+0.67TbCN), respectively. On the other hand, to
discriminate between real and apparent Ce anomalies (Bau
et al. 1996; Shields et al. 2004; Ehya 2012), (Ce/Ce*)SN and
(Pr/Pr*)SN ratios were calculated as CeSN/(0.5LaSN+0.5PrSN)
and PrSN/(0.5CeSN+0.5NdSN), respectively. The suffix “SN”
refers to the normalization of concentrations against the stan-
dard Post-Archean Australian Shale (PAAS; McLennan

1989). Most barite deposits in continental and deep water
may indicate lower total REE concentration and positive Eu
anomalies.

The REE patterns of normalized chondrite for barite sam-
ples are shown in Fig. 10, where the data have a similar pattern
indicating that their formation has been through the same
process; they have been enriched in LREEs and depleted in
HREEs. Light rare Earth element (LREE) patterns in barite
may help to determine depositional environments due to var-
iations of LREE behavior in different hydrothermal environ-
ments (Guichard et al. 1979). REE substitution in barite
structure causes LREE concentration in barite, because their
ionic size is more similar to that of Ba2+ when compared with
heavy rare Earth elements (HREEs) (Guichard et al. 1979).
LREE data for barite, especially LaCN/CeCN, have been used
to support biogenic sources for barite in some deposits in
China (Wang and Li 1991) and in Nevada (Jewell and Stallard
1991). The LaCN/LuCN ratios of barite range from 3.05 to 47

Fig. 6 Homogenization
temperatures of fluid inclusions
analyzed during this study

Fig. 7 Compression of
homogenization temperature (Th)
versus salinity for primary fluid
inclusions contained in Farsesh
barite with other barite deposits
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(Table 2). These ratios also indicate that barite is LREE-
enriched relative to HREE. Since seawater has a typical
LREE-depleted pattern, the LREE-enriched patterns observed
in some marine precipitates result from a deposition in those
marine environments with large inputs of hydrothermal vent
fluids (Chen et al. 2006). Therefore, regardless of crystallo-
graphic limitations for HREE substitution in barite lattice, the
LREE-enriched patterns of barite samples may reflect the
probable existence of active hydrothermal vents near the place
where barite was deposited.

The Ce/La ratios in barites were recognized by Guichard
et al. (1979) as a discriminating factor to distinguish between
marine and terrestrial barites. The Ce/La ratios in deep-sea
barite are less than 1 and similar to those of seawater, while
this ratio in terrestrial (vein) barite is greater than 1 and similar
to that for basic rocks and clays (Guichard et al. 1979). The
samples of barite analyzed here, which display Ce/La ratios
ranging from 0.28 to 0.53 with an average of 0.41 (Table 2),
are similar to marine barite. Furthermore, all the samples
display (La/La*)CN and (Gd/Gd*)CN above unity, i.e., the

features that are considered as those in marine chemical sed-
iments regardless of their ages (Alexander et al. 2008).

Fluvial and continental shelf LREE waters characteristical-
ly show no pronounced depletion of Ce relative to other REEs.
However, in oxygenated deep-ocean waters, the preferential
removal of Ce results in a large negative anomaly (Guichard
et al. 1979). The pattern is promoted by preferential scaveng-
ing of Ce from the water column by hydrothermally produced
Mn and Fe oxides. It may result in hydrothermally influenced
seawater with a negative Ce anomaly more extreme than that
of which can be found elsewhere in seawater (Klinkhammer
et al. 1983). Cherts from continental margin, together with
pelagic and ridge-proximal depositional environments, have
distinct LREE signatures independent of diagenetic modifica-
tion (Murray 1994). The distinctive feature is the behavior of
Ce relative to neighboring light LREEs (e.g., La, Pr, and Nd).
Following the usage of Murray (1994), these behaviors are
expressed as LaCN/CeCN, normalized against the “North
American shale composite” of Gromet et al. (1984). The Ce/
Ce* values in the open seawater and related deposits are less

Fig. 8 Salinity versus
homogenization temperatures
(Th) plot of different types of fluid
inclusions

Fig. 9 Trend plot of the
increasing or decreasing salinity
along with temperature reduction
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than 1 and, in most cases, less than 0.5 (Shimizu and Masuda
1977; Elderfield 1988; Ding and Zhong 1996; Ehya 2012).
This ratio for barite from Farsesh deposit ranges from 0.24 to
0.46, with an average of 0.35. Therefore, it appears likely that
the negative Ce anomalies in these samples are inherited from
seawater at their precipitation time. Hence, very low Ce
anomalies of the studied barites provide further evidence that
hydrothermal processes significantly contribute to their
formation.

The Y/Ho ratio of seawater is more elevated (Y/Ho=101;
Bao et al. 2008) than its chondritic ratio (Y/Ho=28;
McDonough and Sun 1995). The hydrothermal vent fluids
associated with mid-ocean ridges and back-arc basins have Y/
Ho ratios ranging from 51 to 160 (Douville et al. 1999; Bao
et al. 2008).

The Y/Ho ratios in hydrothermal vent fluids are not
primarily controlled by mixing with seawater, but by the
REE+Y (REY) uptake from them onto Fe, Mn-

oxyhydroxides through coprecipitation with the particulate
matter and scavenging (Bao et al. 2008). On the other hand,
the REY patterns of chemical precipitates may differ from
those of contemporaneous seawater due to the exchange
effects between the REY scavenging particles and seawater,
or the presence of detrital aluminosilicates (Alexander et al.
2008). For example, seafloor Fe-Mn crusts and Fe-
oxyhydroxides precipitated from terrestrial spring water
(Bau et al. 1998) display REY patterns in which Y/Ho ratios
are lower than those of the host fluids (Alexander et al.
2008). This Y-Ho fractionation was attributed by Bau et al.
(1996, 1998) to preferential adsorption of Ho relative to Y
on Fe-Mn particles. The barite from Farsesh deposit exhibits
Y/Ho ratios (8–25.8) considerably lower than those of sea-
water, hydrothermal vent fluids, and even chondrite. There-
fore, subchondritic Y/Ho ratios of barite samples may reflect
the negligible preferential adsorption of Y over Ho in barite
lattice.

Table 2 Trace and rare Earth element composition (ppm) of barite samples analyzed

Sample FS-12 FS-13 FS-26 FS-28 FS-29 FS-34 FS-41 FS-42 FS-43 FS-45

Rb 0.3 0.3 0.3 0.4 0.1 0.2 0.1 0.3 0.2 0.3

Sr 21,000 10,000 15,100 17,600 11,200 19,700 17,800 14,300 14,500 12,700

Zr 1.2 1.8 1.7 1.9 1.4 1.5 1.3 0.9 1.56 2.1

Y 1.3 2.1 3.1 1.6 1.2 1.7 1.5 1.4 1.6 1.8

Hf 1.2 0.9 1.23 0.9 1.85 1.67 1.4 1.5 1.4 0.9

Ta 2.6 1.9 2.1 3.1 2.9 1.6 2.8 3.4 2.9 2.7

la 18.1 15.3 17.6 15.4 19.2 17.6 15.4 16.3 15.4 19.2

Ce 8.1 8.1 7.6 4.6 7.6 4.9 5.9 7.5 6.4 8.5

Pr 0.32 0.41 0.51 0.21 0.36 0.45 0.64 0.84 0.42 0.71

Nd 0.45 0.41 0.51 0.42 0.51 0.62 0.31 0.42 0.51 0.43

Sm 0.26 0.31 0.43 0.29 0.31 0.43 0.31 0.29 0.42 0.31

Rb 0.84 0.71 0.82 0.81 0.64 0.76 0.81 0.71 0.76 0.81

Eu 2.15 2.31 3.25 3.26 3.14 2.67 3.2 2.67 3.35 3.17

Gd 1.75 1.54 1.76 1.81 1.64 1.72 1.64 1.82 1.64 1.79

Ga 0.05 0.04 0.04 0.04 0.03 0.029 0.054 0.06 0.04 0.05

Ho 0.15 0.2 0.12 0.13 0.15 0.17 0.15 0.15 0.2 0.17

Tb 0.19 0.18 0.18 0.16 0.19 0.18 0.18 1.21 0.21 0.19

Er 0.25 0.34 0.22 0.26 0.34 0.28 0.25 0.25 0.28 0.24

Tm 0.04 0.04 0.042 0.05 0.4 0.038 0.05 0.04 0.04 0.037

Yb 0.16 0.11 0.13 0.19 0.09 0.04 0.19 0.11 0.09 0.14

Lu 0.04 0.04 0.05 0.4 0.5 0.6 0.4 0.4 0.05 0.05

∑REE 32.85 30.04 33.26 28.03 35.10 30.49 29.48 32.77 29.81 35.80

Ce/La 0.45 0.53 0.43 0.30 0.40 0.28 0.38 0.46 0.42 0.44

Y/Ho 8.7 10.5 25.8 12.3 8.0 10.0 10.0 9.3 8.0 10.6

LaCN/LuCN 47.00 39.73 36.56 4.00 3.99 3.05 4.00 4.23 31.99 39.89

(LaCN/LuCN)* 9.17 5.66 5.24 13.20 8.66 6.31 3.38 2.73 5.76 3.86

(GdCN/GdCN)* 18.06 13.90 11.90 16.52 14.78 11.69 14.64 31.57 11.90 15.88

(CeSN/CeSN)* 0.40 0.46 0.37 0.27 0.35 0.24 0.31 0.36 0.36 0.37

(PrSN/PrSN)* 0.63 0.82 1.05 0.68 0.74 1.28 1.74 1.78 1.00 1.35
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There is little data in the literature concerning the signifi-
cance of Y/Ho ratio of barite. Thus, it is not possible to
evaluate the importance of this ratio as a discriminating feature
for barite from different origins. The barite from vein- and
metasomatic-type of Duboki Vagan deposit in Bosnia pos-
sesses Y/Ho ratios of 3.44 and 5.21 (n=2) (Jurković et al.
2011). These ratios are slightly lower than those of barite from
Farsesh deposit, indicating that terrestrial (vein) barite has
apparently lower Y/Ho ratios than marine barite.

Most barite deposits possess chondrite-normalized REE
patterns with Eu anomaly (Bernd and Paul 1996). In barite
samples, Eu anomaly indicates minor differences due to eval-
uation of hydrothermal ore-bearing fluids with different tem-
peratures. This difference is probably the result of mixing two
fluids with different temperatures and oxygen fugacity, which
is consistent with the data from microthermometry studies.
Minor element contents of barite-rich rocks generally illustrate
low Mn, Pb, and Zn concentrations and locally elevated Cu
(0.3 wt.%), Au (0.5 ppm Au), Sb (26 ppm), and As content
(38 ppm) (Table 2). Exceptionally high Sr values of barite-rich
rocks are due to Sr2+ substitution in barite.

Origin and genetic model of Farsesh barite

Barite in submarine hydrothermal systems occurs as two
principal end-member types: Submarine volcanic hydrother-
mal deposits directly associated with volcanic rocks, and
sedimentary exhalative (sedex) deposits, mostly showing little
spatial relationship with igneous rocks (Hanor 2000). In
volcanic-hosted deposits, barite occurs in the ones with low
concentrations of sulfides. In both ore types, Ba is leached
from the source rocks in the oceanic crust by convective
circulation of seawater (Hanor 2000). Supporting features
for a submarine hydrothermal origin of barite in Farsesh

deposit are the following: (1) The presence of dark-colored
fossiliferous and carbonaceous strata within the footwall and
hanging-wall rock units reveal that barite deposition has oc-
curred in a marine sedimentary environment; (2) at the time of
footwall rocks deposition, volcanic processes were active in
sedimentary basin as evidenced by the presence of tuffs and
lavas within the Eocene rocks; (3) open-space filling textures
of barite and calcite reveal the deposition of these minerals by
hydrothermal activities; (4) low∑REE concentrations, LREE-
enriched chondrite-normalized REE patterns, extremely low
Ce anomalies, low Ce/La ratios, and positive La and Gd
anomalies of barite are commonly considered as particular
features of marine precipitates (including barite) deposited
from hydrothermally influenced seawater (Guichard et al.
1979; Jewell and Stallard 1991; Chen et al. 2006; Alexander
et al. 2008; Jurković et al. 2011); (5) sulfur isotope data are
also consistent with deposition of barite from hydrothermal
fluid entrained in seawater; and (6) studying the fluid inclu-
sion of Farsesh mineralization may put constraints on the
origin and evolution of the ore-forming fluid. Highly variable
liquid–vapor ratios in primary fluid inclusions hosted by barite
with two modes of 150 to 250 °C indicated that the barite was
deposited from more heated fluids under boiling conditions.
Igneous heat source in basement rocks may still prove the
hydrothermal origin of Farsesh barite. It seems likely that the
ore solutions that arrived in pulses and episodic nature of
hydrothermal processes are supported by paragenetic
evidence.

Based on these features, it is suggested that there were
active submarine hydrothermal vents in Sanandaj-Sirjan zone
during late Eocene. The hydrothermal fluids escaping from
the vents carried sufficient barium to precipitate barite locally.
As in the case for barite deposits associated with volcanic
rocks, hydrothermal fluids acquired barium during the

Fig 10 Plot of rare Earth
elements (REEs) normalized to
C1 chonderite McDonough and
Sun (1995)
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circulation of seawater in underlying volcanic source rocks.
Barite deposition occurred on the seafloor where ascending
hydrothermal barium-bearing fluids encountered sulfate-
bearing marine waters in a manner similar to that found in
modern analogs on the ocean floor.

The source of barium is important in developing a genetic
model for Farsesh deposit. It is proposed that the presence of
100-ppm Ba in the formational waters is enough for a large
amount of barite deposition (Kesler 1977). The albitization and
diagenetic destruction of K-feldspar, mica, and clay in shale
can release sufficient amounts of Pb, Zn, F, and Ba into the ore
fluids of hydrothermal deposits (Liaghat et al. 2000). Clay
mineral maturation and dewatering of shale may also provide
Mg for dolomitization (Ghazban et al. 1994), and the liberated
Ca+2 during dolomitization is consumed at barite formation. It
should be noted that basinal brines are not generally rich in
barite. Therefore, in most barite deposits, igneous activities can
increase barite concentration of basinal brines (Ruiz et al.
1985). Based on the model presented here, a large-scale fluid
flow through sedimentary rocks occurred in Farsesh deposit.
On the deposit scale, mineralization tends to occur in breccias,
and solution-collapse features are formed during the faulting
process. Brecciation and faultingmake the upwardmigration of
ore fluids possible. The ore solutions had a remarkable ability
to dissolve carbonate rocks. In the studied area, the NW-SE

trending faults control the heat flux and act as channel ways for
hot fluids. Heat may have been locally generated from deep-
seated intrusions or volcanic flows, forcing the overlying pore
fluids into convection. The leaching of some elements from
andesitic rocks through alteration processes may increase the
concentration of elements in the ore fluids (Fig. 11). Barite
hydrothermal veins in the studied area contain at least 500 ppm
Ba (Latifi 2000). It seems highly probable that some barites are
originated from the phlogopite and biotite in igneous rocks
(Valenza et al. 2000). The ore fluids do not rule out the
possibility of a small magmatic component, or a higher tem-
perature exchange between ore fluids and igneous rocks. How-
ever, if magmatic fluids were present, they might well mix with
the formational water before reaching the site of ore deposition.
The wide range of salinity is explained by mixing with mete-
oric water. Sulfur isotopic measurements of barite with high
δ34S values, alongside fluid inclusion data, show that these
fluids do not resemble magmatic ones.

Conclusion

Mineralization at Farsesh deposit in Aligoudarz region is
hosted by Permian dolomitized limestone. The paragenetic

Fig. 11 Scheme of
mineralization at Farsesh deposit.
Basinal brine expulsion and
deposition of barite ore along
faulted and brecciated zones by
hot mineralizing solutions
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sequence indicates that mineralization is entirely epigenetic.
The mineralizing fluids are forced from orogens and squeezed
out of the basin by crustal thickness and convergence in the
studied area during Cenozoic orogeny. Fluid inclusion data
indicate that the boiling that occurred at Farsesh deposit may
have been an important mineralization mechanism for Ba.
Coexisting liquid-rich and vapor-rich fluid inclusions in barite
minerals may provide ample evidence for boiling in the ore
veins. Mixing between magmatic water fluids and meteoric
water has also been significant for ore deposition in Farsesh.
In chondrite-normalized REE patterns, an LREE fractionation
trend from La to Sm is similar to that reported for different
types of barite. The chondrite-normalized REE patterns and
LaCN/LuCN ratios reveal that barites are enriched in LREE
compared with HREE. The Ce/La ratios as well as positive La
and Gd anomalies are similar to those of marine precipitates
and provide evidence to support a marine origin for barite.
Negative Ce anomalies were probably inherited from hydro-
thermal fluid entrained in seawater at barite precipitation time.
The δ34S values of barites are lower than those of contempo-
raneous seawater, suggesting the involvement of magmatic
sulfur derived from oxidation of H2S in barite-forming solu-
tions. Sulfur isotope values of barites indicate that they resem-
ble the isotope compositions of barite formed from hydrother-
mal vents in modern volcanic arcs. Tectonic setting, host rock
characteristics, REE geochemistry, and isotopic sulfur com-
positions are compatible with a submarine hydrothermal ori-
gin for barite in Farsesh deposit. Barite on the seafloor that has
been formed from the ascending hydrothermal barium-
bearing fluids encountered the seawater. Sulfate was derived
from sulfate-bearing marine waters with the contribution of
magmatic sulfur.
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