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Abstract The late Neoproterozoic gabbro/diorite intrusion
(~11.7 km?) at Sheikh El-Arab area represents the only mafic
exposure in the basement rocks of Katharina province of
central Sinai largely occupied by granitoids and their volcanic
equivalents. The field relations indicate that the intrusion is
younger than the lower unit (630—615 Ma) of the volcanics
and clastics of the Rutig Formation, and older than the sur-
rounding granodiorites of Sheikh El-Arab and Rahaba
(~610 Ma) plutons. It is not affected by regional metamor-
phism or ductile deformation, but recorded petrographic
uralitization/amphibolitization signature. It is composed chief-
ly of pyroxene-hormblende gabbro, diorite, and quartz diorite.
The chemical composition of the mafic minerals indicated that
the suite was derived from calc-alkaline magma.
Geochemically, the studied rocks are characterized by enrich-
ment of LILE relative to HFSE and LREE relative to HREE.
The gabbros are notably low in total REE (38-56 ppm) with
(La/Yb),=2.7-4.8, while the dioritic rocks are high in >REE
(142-161 ppm) with high (La/YD),, values (12.5-15.8); both
are characterized by the absence of Eu anomaly, their Eu/Eu*
ratios are close to unity (0.93—1.11). The studied intrusion
evolved from mafic mantle magma into different types by
assimilation fractional crystallization process (AFC) and/or
gradual decrease in oxygen fugacity. The initial magma cor-
responds, most probably, to pyroxene-hornblende gabbro and
the crystallization of hornblende was ascribed by slight H,O
increase in magma after crystallization of near-liquidus
clinopyroxene with high Ca content (Woy4, s,) and Ca-rich
plagioclase (Angy g3). The intrusion is related to the later calc-
alkaline substage of post-collisional tectonic setting.
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Introduction

The basement rocks of Sinai are located in the northernmost
outcrops of the Arabian-Nubian Shield (ANS) (Fig. 1). The
Shield is a prominent example of juvenile crustal province of
Neoproterozoic age (1000-540 Ma) (e.g. Bentor 1985; Stern
1994; Johnson and Woldehaimanot 2003). It is the northern
part of the East African Orogen, which is viewed as a collage
of island arc complexes accreted during the closure of the
Mozambique Ocean between East and West Gondwana
(Kroner 1985; Stern 1994; Meert 2003; Jarrar et al. 2003;
Stoeser and Frost 2006).

In Sinai, the ANS juvenile crust comprises the island arc
complexes (IAC) of pre-collisional stage (~820-740 Ma) and
formed of metamorphosed volcano-sedimentary rocks, para-
and orthogenesis, associated with migmatites and amphibo-
lites. This is followed by the collisional stage (~670—630 Ma)
characterized by the presence of variably deformed calc-
alkaline granodiorites, diorites, and gabbros. The Dokhan
Volcanics, the mollase sediments, together with mostly unde-
formed calc-alkaline granitoids, quartz diorites and minor
gabbros (~630-590 Ma), and alkaline/peralkaline A-type
granites and their equivalent volcanics (~610-580 Ma), are
formed during late- to post-collisional stage of the ANS crust
evolution (e.g. Stern and Hedge 1985; Stern 1994; Beyth et al.
1994; Abdel-Rahman 1995; Jarrar et al. 2003; Moussa et al.
2008; Be’eri-Shlevin et al. 2009a; Eyal et al. 2010; Farahat
et al. 2011). Recently, however, Eyal et al. (2014) recorded
shift of ages of similar stages in the northeastern and southern
areas of Sinai.

The Neoproterozoic gabbroic rocks constitute one of the
distinctive rock units in the Precambrian basement of Egypt.
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Fig. 1 Simplified geological map of late Neoproterozoic rocks in south Sinai showing the location of the study area (modified after Eyal et al. 1980).
Inset shows the location of Sinai in the northernmost ANS, along with Neoproterozoic exposures of eastern Africa and western Arabia

Previous studies on these rocks created controversy on their
age, origin, and tectonic environment. This controversy exists
as a result of the differences in their classification. Basta and
Takla (1974), Taklaetal. (1981, 2001), Takla (2002) classified
these gabbros into older and younger gabbroic suites. The
older suite (Older Gabbros) is ophiolitic metagabbros, while
the younger suite (Younger Gabbros) is unmetamorphosed,
alkali and calc-alkali mafic-ultramafic intrusions of post-
tectonic intraplate setting. Bentor (1985) related the gabbroic
rocks of the Arabo-Nubian Massif to four phases: the oceanic,

@ Springer

island arc, calc-alkaline batholithic, and final alkaline phase.
El-Gaby et al. (1988, 1990) and El-Gaby (2007) differentiated
these gabbros into (1) ophiolitic metagabbros with tholeiitic
affinity, (2) intrusive subduction-related calc-alkaline region-
ally metamorphosed gabbros (=metagabbro/diorite com-
plexes) which intruded the island arc metavolcanics and
metasediments, and (3) tholeiitic olivine gabbro and related
rocks intruded at the late cordillera stage. All the above-
mentioned classifications negate the presence of ophiolitic
mafic-ultramafic assemblages in Sinai. However, several
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Fig. 2 Geologic map of the gabbro/diorite intrusion at Sheikh El-Arab area, central Sinai (modified after Eyal et al. 2013)

authors interpreted some mafic-ultramafic complexes in south
Sinai as fragments of an ophiolitic sequence. The criteria
given for their interpretation cannot be substantiated.

Soliman (1996) described Gebel Sheikh El-Arab itself as

diorite-granodiorite complex, younger than the gabbro/diorite
complex exposed to the north and separated from it by Wadi

Table 1 Modal composition of

gabbro/diorite intrusion of Sheikh ~ Rock type Sample  Qz Pl K-feld  Amp  Cpx Bt Chl  Opaques
El-Arab area

Py-Hb gabbro 11 - 5842 - 1731 1301 680 112 335

12 - 56.58 - 2510 833 633 077 283

13 - 5751 — 2083 1225 6.3 083  3.19

14 - 5434 - 31.06 645 483 181 332

15 - 5959 - 2555 431 712 062 281

16 - 5049 - 3717 6.08 3.65 061 292

Diorite 17A 5.05 68.73  2.01 1192 222 748 103 263

17B 3.64 70.81  0.99 1297 232 556 0.66  3.04

Qz-diorite 1 7.44 6583 2.8 1288  1.14 487 155 372

2 8.72 63.90  3.84 9.49 1.92 6.04 288 321

3 9.48 64.96 142 1375 095 498 095 351

4A 8.62 66.64  1.63 11.09 186 6.05 0.70  3.40

4B 9.32 67.87  1.80 8.51 1.35 633 090  3.89

4C 8.92 7002  1.42 7.19 1.83 560 122 3.82

4D 8.99 68.65 188 1003 125 564 042 314

4E 8.61 69.34 191 8.32 3.11 454 048  3.68

7.70 6836 225 9.44 2.89 520 128  2.89

10.19  69.94  1.62 7.04 1.62 6.02 111 245
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S “3IS22=8953SE Nasb. At the intersection between Wadi Nasb and Wadi
Rahaba, the gabbro/diorite rocks intruded mafic-ultramafic
E oo oo oog T rocks; the latter, interpreted to represent fault-bounded frag-
T2 KE8EERISAEs=T & £ ; fault sli frocks originall
Sw fggesoasdzsoos ments of oceanic crust or fault slivers of rocks originally, were
intrusive-extrusive complexes. Soliman (op. cit.) regarded all
st 888588z the ab tioned rock Ider than the Rutig volcani
8% %Z8358385553 e above-mentioned rock types older than the Rutig volcanics
e Feeeemean—mee and volcanoclastics. In addition, questionable geochemical
.- data were given for only three samples of mafic-ultramafic
82 8685232328 %'0 rocks. They have 50.10-56.65 wt.% SiO,, 3.56-4.25 wt.%
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to the east of Wadi Rahaba formed of uralitized gabbro and
W8 BUDOTVELIOS Z.% hornblendite. It intruded the Older granitoids (calc-alkaline
S 2gsgodzsdszeyd tonalite-granodiorite association) with sharp contacts, and in
o G O e 00 et o e o0 turn, intruded by Younger granites (calc-alkaline to alkaline
82 8IFTS=F8ERSBE 5 granodiorite to alkali-feldspar granites). The uralitized
S NoooSS—~Sen—oS o< .
gabbros are composed of cumulus augite (45 %) and hyper-
- e O MO~ n sthene and plagioclase (40 %) with subordinate hornblende
<t © NOOoO —un<tTaoondada > — o .
Sw Tds2zC-Sscess and quartz. The hornblendites are composed of cumulus horn-
blende (62 %) and plagioclase (30 %) with minor pyroxene,
s = 5 % g g § = § § § § E o biotite, and quartz. Their parental magma is tholegtlc in nature
SR eSS SiSelSS< and was mostly generated and emplaced in continental crust
and tends to be formed by a transitional compression-
extension regime dominated from the final arc stage to active
v OGN Ot T continental margin. The above-mentioned petrographic no-
Sx EISTISSSasScsSs menclature contradicts the IUGS classification. The petroge-
- netic aspects of the Rahaba intrusion as given by Abdel-Karim
el Ts8g8VSELYzsT (2013) are difficult to accept as the transitional compression-
S5 =&8338fsS3ss8sSs extension regime in Sinai extending from ~740 to ~610 Ma.
- The present study deals with the geological, petrographical,
oS ERQRISz2LanT mineralogical, and geochemical characteristics of the gabbro/
S~ e noaftoxSac P L . . .
S8 ©c—-—cSSc—-SaddsS= diorite intrusion at Gebel Sheikh El-Arab area (central Sinai)
E in order to explain its tectonic setting and petrogenesis. In
=] E % © é § 74 g § § E s addition, the new data presented here will determine if these
S ©$-cSc-Sd-cS= gabbro/diorite rocks are related as previously thought to the
o | 2 older metagabbro/diorite complexes or to the younger
< T+ 9O % OO = o T S ) K
T, FBEILERIEELESE 2| E gabbros. Also, the data, together with the previously pub-
3 lished ones concerning gabbroic rocks in south Sinai, may
6 Goo—wmovomemD | = shed light on its evolution.
S N NI~ — N <N — O Ooen | 5}
S g —noaa =9 8|2
en el
> o | E o
OO —gwanEYTYT oL | 2 Geologic setting
O\\OMM\DU‘)NNMMOOVNNO'D T
Q\ONYW“.Q‘\!‘\!Q"’.O\.‘*.QE .g
@ o | B The oldest basement rock units in Katharina province include
c2fongugoagmaanT | & remnants of older metavolcanics and metasediments of un-
S egIn—mce—-ngaa—c | R . . .
SR ENcSS3 S-S m—S3= A known age. A younger tectonomagmatic cal-alkaline phase in
=) § - Eﬂ the province is characterized by vast intrusion of weakly to
2o B82S 8RR RCR EO 2 non-deformed calc-alkaline plutons and volcano-sedimentary
g Q[\*QW\QNQ‘“.‘EQ‘*.O\.‘*O.E < . i . . i
g|lergreceee~com—oS = succession (Rutig Formation). The calc-alkaline magmatic
: ; e L 2 < phase is separated from the overlying alkaline magmatic phase
21Ss E 7= E: mele S g’ SSus % by Hamad Abadu unconformity and Katharina Group. The
CRRE=] . . .
B8z & latter constitutes a stratified sequence of pyroclastics,
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Table 5 Representative microprobe analyses of biotites of the studied intrusion

Py-Hb gabbro  Diorite
SiO, 3584 3633 36.86 36.57 3649 3676 3627 37.13 36.70 3637 3632 3551 3651 3526 3524
TiO, 3.71 3.94 2.96 2.68 3.03 2.68 267 2.10 1.96 224 2.73 1.20 213 1.10 1.04
AlLO; 14.09 1370 1553 1532 1512 1532 1531 1572 1577 1582 1505 16.19 15.09 1826 18.75
FeO 19.52 1899 1830 1825 1841 1845 1791 1794 17.83 1778 18.05 17.71 17.70 17.13 17.04
MnO 0.20 0.22 0.14 0.24 0.19 0.14 021 0.17 0.18 0.20 0.18 0.20 0.20 0.16 0.17
MgO 1296 1244 1149 1214 1157 1225 1221 1224 1229 11.83 1236 12.59 12.51 1277 12.84
CaO 0.04 0.13 0.06 0.11 0.05 0.07 0.03 0.01 0.04 0.00 0.03 0.04 0.04 0.09 0.04
Na,O 0.12 0.16 0.13 0.11 0.19 0.11 0.16 0.12 0.16 0.13 0.20 0.09 0.14  0.08 0.12
K,O 8.80 8.45 8.88 8.87 8.91 870 891 9.13 9.01 9.31 8.84 8.58 845 887 8.98
P,0s 0.01 0.00 0.13 0.01 0.03 0.02 0.01 0.00 0.04 0.00 0.00 0.05 0.02 0.05 0.00
Total 9529 9436 9448 9430 9399 9450 93.69 9456 9398 93.68 9375 92.17 92.79 93.77 9422
Number of cations on the basis of 22 oxygens
Si 5495 5595 5630 5.608 5621 5618 5.595 5662 5631 5613 5602 5554 5662 5400 5370
AlY 2505 2405 2370 2392 2379 2382 2405 2338 2369 2387 2398 2446 2338 2.600 2.630
AV 0.039 0.080 0423 0375 0364 0375 0377 0485 0481 0488 0336 0.536 0416 0.693 0.735
Ti 0428 0456 0340 0309 0351 0308 0310 0241 0226 0.260 0317 0.141 0.248 0.127 0.119
Fe** 2503 2446 2337 2341 2372 2358 2311 22838 2288 2295 2328 2317 2295 2194 2172
Mn 0.026 0.029 0.018 0.031 0.025 0.018 0.027 0.022 0.023 0.026 0.024 0.026 0.028 0.021 0.022
Mg 2962 2856 2616 2776 2657 2791 2808 2.782 2.811 2722 2842 2936 2892 2916 2917
Ca 0.007 0.021 0.010 0.018 0.008 0.011 0.005 0.002 0.007 0.000 0.005 0.007 0.007 0.015 0.007
Na 0.036 0.048 0.038 0.033 0.057 0.033 0.048 0.035 0.048 0.039 0.060 0.027 0.042 0.024 0.035
K 1.721  1.660 1730 1735 1.751 1.696 1.754 1.776 1764 1.833 1.740 1.712 1.672 1.733 1.746
Total 15722 15596 15.512 15618 15585 15.59 15.64 15.631 15.648 15.663 15.652 15.702 15.60 15723 15.753
Fe/Fe + Mg 0.46 0.46 0.47 0.46 0.47 046 045 045 0.45 0.46 0.45 0.44 044 043 0.43

ignimbrites together with typical rhyolitic flows of alkaline/
peralkaline affinity. The younger alkaline magmatic phase
comprises riebeckite granite, monzonite, syenite,
syenogranite, and perthite granite.

The Sheikh El-Arab area lies at about 15 km to the south-
east of Saint Katharina town. The area is characterized by
moderate to high relief terrain and dissected by numerous
structurally controlled wadis; namely Wadi Nasb, Wadi
Wa’ara, Wadi Zera, and Wadi Rahaba. Gebel Sheikh El-
Arab itself is formed of granodiorite pluton surrounded by
gabbro/diorite rocks exposed in an area of about 11.7 km? and
delineated by latitudes 28° 26’ 14" to 28° 27’ 33" N and
longitudes 33° 59’ 00" to 34° 02’ 27" E (Fig. 2). The contact
between the studied gabbro/diorite suite and its country rocks
are sharp. This suite is generally undeformed and shows no
signs of metamorphism. Volcanic and clastic xenoliths of
Rutig Formation are included in the gabbro/diorite intrusion.

The investigated gabbro/diorite intrusion crops out as five
small masses separated by old alluvial fans and alluvium
deposits. Amphibole granodiorite of Sheikh El-Arab pluton
and biotite granodiorite of Rahaba pluton (610 Ma; Moreno
et al. 2012) intruded the southern parts of the gabbro/diorite
masses. The northern parts were intruded by both the Nakhila
microdiorite as well as quartz monzonite and quartz syenite of
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Katharina Outer Ring dyke. The westernmost gabbro/diorite
mass intrudes the volcanics and clastics of the lower unit of
the Rutig Formation (~630-615 Ma; Be’eri-Shlevin et al.
2011).

Field study showed that the intrusion is heterogeneous
comprising gabbros and dioritic rocks; the latter are exposed
in small area relative to the gabbros. The contact between the
gabbro and dioritic rocks is hardly discerned in the outcrop,
only slight color variation can be recognized.

The investigated gabbro/diorite suite is a Neoproterozoic
intrusion that was emplaced prior to 610+5 Ma (Moreno et al.
2012), most probably related to the post-collisional calc-alka-
line suite, even without direct geochronological data yet. The
available U-Pb zircon data (Be’eri-Shlevin et al. 2011; Samuel
et al. 2011) show that in Katharina province the emplacement
of the lower unit of the Rutig Formation, truncated by the
studied gabbro/diorite rocks, lasted from 630 to 615 Ma.

Petrography
Following the IUGS recommendation (1989), the studied

intrusion is lithologically classified into gabbro and diorite.
The average An content of the plagioclase in the former is
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Table 6 Representative microprobe analyses of Fe-Ti oxides of the studied intrusion
Py-Hb gabbro Qz-diorite
Magnetite Ilmenite Ilmenite
SiO, 0.02 0.04 0.04 0.04 0.02 0.11 0.04 0.18 0.02 0.00 0.05 0.04 0.02
TiO, 0.26 0.06 0.03 0.12 0.16 0.10 0.08 48.48 48.73 46.43 48.23 48.05 46.44
ALO; 0.05 0.10 0.11 0.13 0.14 0.11 0.12 0.02 0.01 0.00 0.03 0.03 0.02
FeO 90.17 92.55 92.12 91.57 91.83 91.59 91.89 4391 46.10 48.52 45.80 46.12 47.74
MnO 0.07 0.00 0.02 0.05 0.00 0.06 0.02 3.68 3.02 2.60 2.85 3.03 275
MgO 0.00 0.00 0.05 0.01 0.00 0.05 0.00 0.04 0.18 0.25 0.25 0.13 0.26
CaO 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.56 0.00 0.02 0.01 0.03 0.03
Na,O 0.01 0.02 0.02 0.02 0.00 0.03 0.00 0.01 0.09 0.01 0.05 0.03 0.03
K>,0O 0.02 0.00 0.02 0.00 0.00 0.00 0.02 0.03 0.00 0.01 0.00 0.00 0.01
P,05 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
Total 90.61 92.77 92.46 91.94 92.17 92.07 92.18 96.91 98.15 97.84 97.27 97.48 97.30
Number of cations on the basis of 4 oxygens for magnetite and of 3 oxygens for ilmenite
Si 0.001 0.002 0.002 0.002 0.001 0.004 0.002 0.005 0.001 0.000 0.001 0.001 0.001
Al 0.002 0.005 0.005 0.006 0.006 0.005 0.006 0.001 0.000 0.000 0.001 0.001 0.001
Ti 0.008 0.002 0.001 0.004 0.005 0.003 0.002 0.945 0.938 0.924 0.936 0.932 0.900
Fe** 1.980 1.989 1.988 1.984 1.982 1.980 1.987 0.100 0.120 0.152 0.123 0.133 0.199
Fe?* 1.006 1.003 0.999 1.003 1.005 1.001 1.003 0.852 0.867 0.855 0.865 0.861 0.830
Mn 0.002 0.000 0.001 0.002 0.000 0.002 0.001 0.081 0.066 0.058 0.062 0.066 0.060
Mg 0.000 0.000 0.003 0.001 0.000 0.003 0.000 0.002 0.007 0.010 0.010 0.005 0.010
Ca 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.016 0.000 0.001 0.000 0.001 0.001
Na 0.001 0.002 0.002 0.002 0.000 0.002 0.000 0.001 0.005 0.001 0.003 0.002 0.002
K 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000
Total 3.001 3.003 3.002 3.004 2.999 3.001 3.002 2.004 2.004 2.001 2.001 2.002 2.004
Xusp 2379 2.322 2.329 2.343 2337 2.339 2.337
Xiim 1.557 1.538 1.589 1.551 1.548 1.547

greater than 50 % and is represented by pyroxene-hornblende
gabbro. The dioritic rocks are differentiated into diorite and
quartz diorite (quartz>5 %). The most remarkable feature in
all the rock types is the development of secondary amphibole

~ S0

Sio

54 T

52

48 -

46 -

ALO,

Fig. 3 Si0,-Al,05 discrimination diagram of clinopyroxenes in the
studied intrusion (Le Bas 1962)

(e.g., actinolite) either as uralite after pyroxene (uralitization)

or at the expense of primary amphibole (amphibolitization).
Pyroxene-hornblende gabbro is fine- to medium-grained

and possesses hypidiomorphic granular texture. The mineral

ALO,

2 R e
20+ Peraluminous -
15} Calc-alkaline s
V'S

10 Alkaline ]

......... L b

55 15 25
FeO'

Fig. 4 FeO, vs. Al,O; biotite discriminant diagram for the analyzed
biotites in rocks of the studied intrusion (Abdel-Rahman 1994)
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Table 7 (continued)

Qz-diorite

Diorite

Py-Hb gabbro

Rock type

4B 4C 4D 4E

4A

12 13 14 15 16 17A 17B

11

1.50
0.23
1.51

0.20

1.62
0.24

1.46
0.21
1.22
0.18

1.78
0.26
1.57
0.19

1.27
0.18
1.07
0.12

1.42
0.21
1.46
0.19

Er

Tm

1.54
0.23

Lu

161.66
0.95

142.98
0.93

145.48

1.11

56.25
1.04
3.79
1.73
3.34

46.05

38.28

1.0

REE
(Ew/Eu*),

0.92
4.76
1.87
4.08

1

14.73
3.45

12.48
3.15

15.82
3.16

68
76

2.

(La/Yb),

1.

(La/Sm),

12.77

10.77

13.96

2.34

(Ce/Yb),

constituents (Table 1) are plagioclase (50-59 vol%), amphi-
bole (17-37 vol%), pyroxene (4—13 vol%), biotite (3—7 vol%)
and opaques (~3 vol%). Others are chlorite and epidote.

Plagioclase occurs as large tabular crystals that may reach
4 mm in length, usually with albite and albite-Carlsbad twin-
ning. Most of these plagioclase crystals exhibit alteration to
epidote and sericite. Amphibole is commonly of green color
exhibiting pleochroism variable in green; i.e., yellow green,
olive green to dark green and is mainly actinolite-tremolite,
replacing primary clinopyroxene. Clinopyroxene occurs as
subhedral crystals uncommonly display simple twinning. It
is mainly decomposed to secondary amphibole around its
margin. The opaque Fe-Ti oxides are represented by homoge-
neous magnetite as discrete euhedral crystals; rare fine grains
of ilmenite are recorded.

Diorite and quartz diorite more or less have the same
texture, habit and characteristics of the essential minerals.
However, quartz content is higher in quartz diorite (7—
10 vol%) than in diorite (3—5 vol%). Both contain few (1—
4 vol%) subhedral to anhedral K-feldspar occur between
plagioclase. Diorite and quartz diorite are holocrystalline,
mainly equigranular hypidiomorphic of medium-grained size.
The modal compositions of both rock types are plagioclase
(64-71 vol%), amphibole (7-13 vol%), biotite (47 vol%),
clinopyroxene (1-3 vol%), and opaques (2.5—4 vol%).
Secondary phases are chlorite and epidote.

The plagioclase occurs as subhedral tabular crystals
displaying albite and albite-Carlsbad twinning and is partly
altered to sericite. Hornblende is anhedral with bluish green to
light yellow pleochroism and partly replaced by actinolite and
Fe-Ti oxides. Quartz occurs as interstitial grains with sutured
outlines and shows undulatory extinction. Biotite co-exists
with amphibole and forms discrete anhedral to subhedral
crystals and crystal aggregates. Pyroxene is a minor consistent
and exhibits marginal alteration to secondary amphibole
(uralitization). The opaque minerals are represented by homo-
geneous subhedral ilmenite grains.

Mineral chemistry

Chemical composition of essential minerals was determined
by electron probe microanalysis (EPMA) using CAMERA
SX 100 instrument under operating conditions of 15 kV and
20 nA. Suitable synthetic and natural standards were applied
for calibration. The analyses were carried out at the Institute of
Mineralogy, Claustal University, Germany. The raw data were
processed through Minpet Software after Richard (1995) for
the calculation of the given structural formulae.

Representative microprobe analyses of essential mineral
phases from the investigated rocks are given in Tables 2, 3,
4,5, and 6.
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Feldspars

Feldspars were analyzed from pyroxene-hornblende gab-
bro and dioritic rocks (diorite and quartz diorite). The
analyzed feldspars in the pyroxene-hornblende gabbro
are represented mainly by bytownite; while in the diorite
are andesine. In quartz diorite, both plagioclase and
alkali-feldspar are present. Plagioclase is mainly oligo-
clase and the alkali-feldspar is almost pure orthoclase with
rare anorthoclase.

Pyroxenes

All pyroxenes of the pyroxene-hornblende gabbro and diorite
are clinopyroxenes with very narrow compositional range
from diopside to augite according to the classification of
Morimoto (1988). The majority of the analyzed
clinopyroxenes plot in the subalkaline field on the SiO, vs.
Al,O3 diagram of Le Bas (1962) (Fig. 3).

Amphiboles

The amphiboles of the pyroxene-hornblende gabbro and the
dioritic rocks are primary and secondary amphiboles. Primary
amphiboles are high in TiO, and all contain >0.1 Ti p.fu.
(Girardeau and Mevel 1982), whereas secondary amphiboles
have low TiO,, contain <0.1 Ti p.f.u. According to the clas-
sification of Leake (1997) all analyzed amphiboles are calcic,
primary amphiboles in the pyroxene-hornblende gabbro are
magnesio-hornblende and tschermakite, while secondary am-
phiboles in both gabbro and diorite are actinolite and
magnesio-hornblende. In the dioritic rocks, the rare primary
amphiboles are magnesio-hornblende.

Biotites

Biotites were analyzed from the gabbros and dioritic
rocks. They have a restricted compositional range.
Biotite composition reflects the composition of the parent
magma (Abdel-Rahman 1994). According to the classifi-
cation of Abdel-Rahman (op. cit.), the analyzed biotites
are similar to those of calc-alkaline suites having moder-
ate enrichment of MgO with FeO*/MgO=1.8. The FeO*/
MgO ratios of biotites range between 1.33 and 1.59 with
an average of 1.46, which is nearly similar to that of calc-
alkaline biotites. On the Al,O3 vs. FeO, biotite discrimi-
nation diagram, the analyzed biotites plot also in the field
of calc-alkaline suite (Fig. 4).

Fe-Ti oxides

Fe-Ti oxides were analyzed from the pyroxene-hornblende
gabbro and quartz diorite. The analyzed Fe-Ti oxides include
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magnetite and ilmenite. Primary magnetite is characteristically
abundant in gabbros, whereas it is nearly absent in dioritic
rocks and only occurs as fine grains at expense of decomposed
ferromagnesium silicates. Magnetite analyzed from pyroxene-
hornblende gabbro has low TiO, contents (0.03—0.26 %). The
ulvospinel contents in the magnetite, calculated according to
Stromer (1983), are below 2.4 mol%. End-member compo-
nents (Xj, and Xj,em,) of ilmenite are calculated according to
Stromer (1983). The analyzed ilmenite is nearly pure ilmenite
(0.90-0.94 % mole ilmenite) and enriched in MnO content
(2.60-3.68 wt.%) relative to the magnetite.

Geochemical characteristics

Eighteen samples representing the different lithologies of
gabbro/diorite intrusion at Sheikh El-Arab area (6 gabbro, 2
diorite, and 10 quartz diorite) were selected for major and
trace element chemical analyses. Major oxides compositions
and Ba, Co, Nb, Ni, Sr, Y, and Zr were analyzed using
inductively coupled plasma-emission spectrometry (ICP-
ES). The remainder of trace elements and the rare earth
elements (REE) were determined using inductively coupled
plasma-mass spectrometry (ICP-MS) following a lithium
metaborate/tetraborate fusion and nitric acid digestion of a
0.2 g sample. All analyses were determined at ACME
Analytical Laboratories Limited, Vancouver, Canada. Loss
on ignition (L.O.I.) was determined by heating powdered
samples for 50 min at 1000 °C. The analytical precision, as
calculated from duplicate samples is better than +1 % for the
major elements and +5 % for most trace elements.

Chemical analyses of representative rock samples are
given in Table 7. The studied rocks have a wide range of
composition. Pyroxene-hornblende gabbro contains 45—
49 wt.% Si0O,, diorite contains about 55 wt.% SiO,, while
quartz diorite contain 58—60 wt.% SiO, (Fig. 5). The

Na,O+K,O

Si0,

Fig. 5 TAS diagram for the studied rocks (Cox et al. 1979); adopted by
Wilson (1994). The dividing /ine between alkalic and subalkalic magma
series from Miyashiro (1978)
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Fig. 6 MgO vs. major and selected trace elements plots

gabbros have the highest contents of Fe,O3, MgO, CaO,  compositional trends of the studied intrusion are consistent
Cr, Co, and V. Variation diagrams (Fig. 6) show that  with their mineralogical compositions. Fe,O5, CaO, Cr,
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Fig. 6 (continued)

Co, and V covary with MgO while SiO,, TiO,, Na,O,
K,0, P,Os, Ba, Rb, Sr, Nb, Zr, and Y antivary with
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MgO. The variation trends imply that fractionation crys-
tallization has a prominent role in the evolution of the
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Fig. 7 (Si0,-MgO) vs. (Al,O3/TiO,) classification diagram for the
studied gabbros (Middlemost 1997)

studied rocks. The increase of Sr and decrease of CaO with
increasing differentiation index suggest that fractionation of
mafic minerals (e.g., pyroxene and amphibole) greatly pre-
dominated over plagioclase (Whalen 1985). This is consistent
with the positive correlation of SiO, with Sr (partitioned in
plagioclase) which indicate that plagioclase was of minor
importance as a crystallizing phase during the fractional crys-
tallization. It is to be noted here that the more evolved member
of the suite (dioritic rocks) has exceptionally higher TiO,
contents than the gabbros. This can be attributed either to

SiO

Fig. 8 SiO; vs. K, classification diagram with the boundary lines after
Le Maitre (IUGS 1989) and Rickwood (1989). IAC light gray; CA1 dark
gray Medium-K; CA2 dark gray High-K; AL black High-K and
shoshonitic series
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Fig. 9 NMORB-normalized spider diagram showing comparison of
element distribution for the average of studied gabbros with basalts from
different tectonic settings (Condie 1997)

the possibility of simultaneous assimilation of the country
rocks and fractional crystallization, or to the gradual decrease
of the oxygen fugacity during the evolution of the suite. The
decrease of the oxygen fugacity may explain the near absence
of magnetite in the more evolved member where ilmenite
becomes the predominant opaque phase.

Major- and trace element discriminant diagrams have de-
veloped for the recognition of basaltic rocks from various
tectonic settings. Although strictly applicable only to volcanic
rocks, such methods can provide constrains for our plutonic
rocks. Most of the analyzed gabbros define a transitional trend
between the calc-alkaline and tholeiitic affinity on the AFM
diagram (not shown), while the diorites and quartz diorites
have clear calc-alkaline affinity. However, on the (SiO,-MgO)
vs. Al,O5/TiO, diagram introduced by Middlemost (1997) to
separate subalkalic basic and intermediate rocks into tholeiitic
and calc-alkaline lineages (Fig. 7), all the analyzed gabbros
have calc-alkaline nature.

The classification diagram of SiO, vs. K,O (Fig. 8)
with the boundary lines after Le Maitre (IUGS 1989) and
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Fig. 10 Chondrite-normalized REE patterns for the studied gabbro/dio-
rite suite
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Rickwood (1989) was recently used by several authors
(e.g., Abu Anbar 2009; Be’eri-Shlevin et al. 2009a, b;
Eyal et al. 2010; Azer et al. 2012) to differentiate between
pre-, syn- and post-collisional plutonic rocks including
mafic ones in south Sinai. The gabbro, diorite and quartz
diorite are mostly high-K, i.e., they are related to post-
collisional intrusions of late calc-alkaline batholithic stage
(CA2) (e.g., Be’eri-Shlevin et al. 2009a; b; Eyal et al.
2010).

The NMORB-normalized rocks, using the normalizing
values of Pearce (1983; cited in Rollinson 1993), are shown
in Fig. 9. The studied rocks show enrichment of large-ion
lithophile elements (LILEs—K, Rb, Ba) over the high field
strength elements (HFSEs—Nb, P, Zr, Ti, Y) with a Nb
negative anomaly, which is a characteristic feature of
subduction-related magmas (discussed below).

The REE concentrations of six samples (Table 7) nor-
malized to the chondrite values of Sun and McDonough
(1989) are shown in Fig. 10. The pyroxene-hornblende
gabbro is notably low in total REE (38.28-56.25 ppm),
and about 15-22 times chondrite with (La/YDb),=2.68-
4.76 and is characterized by the absence of Eu anomalies,
its Eu/Eu* ratios are mostly close to unity (0.92—-1.04).
The analyzed samples of diorite and quartz diorite are
high in total REE (145.48 and 142.98-161.66 ppm, re-
spectively) and about 57 and 5663 times chondrite with
remarkably high (La/Yb), values of 15.82 and 12.48—
14.73 and accompanied by absence of noticeable Eu
anomalies (Eu/Eu*=1.11 and 0.93-0.95). The REE pat-
tern of the gabbros is characterized by moderately frac-
tionated pattern, while the dioritic rocks show strongly
fractionated pattern.

Discussion

In south Sinai, the metamorphic complexes were intruded
by calc-alkaline (CA) and alkaline (AL) magmas. The
calc-alkaline magmatism is considered as syn- to late
orogenic (El-Gaby et al. 1990; Essawy et al. 1997; Azer
2007). In view of recent geochronological studies, Be’eri-
Shlevin et al. (2009a, b, 2011) subdivided the CA rocks
into an older suite (CAl) including variably deformed
syn- to late-collisional deformed plutons and associated
volcanic rocks (650—625 Ma) and a younger, post-
collisional suite (CA2) ranges in age from 625 to
590 Ma and is represented by slightly deformed or unde-
formed plutons of granodiorite and monzogranite accom-
panied by minor mafic-ultramafic and dioritic intrusions.
The AL magmatism (610-580 Ma) includes alkaline to
peralkaline felsic and rare intermediate and mafic plutons
together with bimodal dyke swarms. The AL magmatism
is associated with the tectonic transition to extensional
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regime. Eyal et al. (2010) indicated that CA and AL
magmatism occurred at 635-590 Ma and 608-580 Ma,
respectively.

The gabbro/diorite pluton at Sheikh El-Arab area, in-
truded by the Rahaba granodiorite (610 Ma; Be’eri Be’eri-
Shlevin et al. 2009a), is most probably related to post-
collisional calc-alkaline suite, even without direct geo-
chronological data yet. The intrusion enclosed xenoliths
of variably sheared and foliated metasediments and vol-
canics of the lower unit of Rutig Formation (ca. 630-
615 Ma; Be’eri-Shlevin et al. 2011). It is undeformed
and unmetamorphosed, but subjected to late-magmatic
and subsolidus alteration. This is consistent with the view
that the onset of calc-alkaline post-collisional magmatism
occurred at ~620 Ma in the western Feiran-Solaf area and
at ~610 Ma at the eastern Kid area (Eyal et al. 2014). The
mafic-intermediate intrusion at Gebel Sheikh El-Arab area
contains volcanic and clastic xenoliths of Rutig Formation
and intruded the calc-alkaline syntectonic granodiorite,
therefore it is regarded as post-collisional (post-tectonic
setting) intrusion. It was emplaced, most probably, at a
late stage of calc-alkaline magmatism. Generally, the post-
collisional plutons are undeformed and post-date accretion
and the beginning of the inferred orogenic collapse
(Blasband et al. 2000), and thus they are regarded as
batholithic, post-collisional intrusions. Importantly, El-
Gaby (2007) pointed out that after the accretion event,
the amount of tholeiitic basalts decrease drastically among
the associated calc-alkaline volcanics. Likewise the
amount of tholeiitic gabbros decreases relative to the
associated cal-alkaline plutonic rocks. This may explain
the transitional trend between calc-alkaline and tholeiitic
character for the studied gabbros on some variation dia-
grams (e.g., AFM and Y-Zr diagrams).

Late-magmatic alteration

Many primary minerals in the studied suite display evidence
of complex late-magmatic and subsolidus reactions. These
transformations are particularly noticed in the gabbros where
for example the pyroxene of the pyroxene-hornblende
gabbros is frequently decomposed to secondary amphibole
around their margin (uralitization). In addition, secondary
amphibole (actinolitic hornblende) is developed at the ex-
pense of primary hornblende (amphibolitization) in all rock
types of the suite. Subsolidus saussuritization of plagioclase is
manifested by their replacement by clinozoisite and zoisite
having low pistacite mole fraction (Ps=0.01-0.04) (Johnston
and Wyllie 1988). Chloritization of ferromagnesian minerals
is distributed in the studied rocks.

The petrographically recorded late-magmatic alteration
signature of the studied rocks must be evaluated in order to
consider that the given mineralogical and chemical data are
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still meaningful. The elemental variation diagrams of the  to some extent the degree of alteration processes. Generally,
mobile LILE and the relatively immobile HFSE can furnish from the variation diagrams of Y or Zr against K, Ba, Rb, and
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Fig. 12 Chondrite-normalized REE plots of the studied diorites and NW
Sinai diorites (El-Sayed 2003)

Sr (Fig. 11, a-h), it is evident that evolution fractionation trend
can be traced from the pyroxene-hornblende gabbro to the
diorite then to the quartz diorite. Only Ba deviates from the
given trends with respect to both Zr and Y. However, the
overall trends suggest that the alteration did not significantly
modify their original chemical compositions. Therefore, the
chemical composition of the suite can approximately reflect
their source characteristics.

Tectonic setting

Field relations of gabbro/diorite suite at Sheikh El-Arab area
reveal that the rocks are undeformed and unmetamorphosed.
This indicates post-collisional characteristics for the intrusion
where it intruded syntectonic granodiorite. The chemical char-
acteristics that were not severely affected by alteration refer to
the high-K calc-alkaline nature. This is consistent with the
view that the post-collisional magmatic stage through the
ANS commenced with the emplacement of high-K calc-alka-
line intrusions (Bentor 1985; Stoeser and Camp 1985; Stern
and Abdelsalam 1998; Moghazi et al. 1998; Moghazi 2002;
Jarrar et al. 2003; Eyal et al. 2010). Thus, the studied intrusion

e
%

Mg/(Mg+Fe“+Mn),,, ...
e
~

0.6

0.5 (—).6 0.7
Mg/(Mg+Fe'+Mn)

amphibole

Fig. 13 Geothermometry using coexisting primary amphibole-pyroxene
pairs (Perchuk 1970; in Urlych et al. 1976)
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belongs to the post-collisional batholithic calc-alkaline late
stage (CA2) lasted in south Sinai from ~619 to 592 Ma
(Eyal et al. 2010). The post-collisional tectonic setting is also
evidenced from the chemical composition of mafic minerals
(clinopyroxene and biotite) where they are of subalkaline
character similar to those of post-orogenic gabbroic rocks in
south Sinai (Abu Anbar 2009; Azer and El-Gharbawy 2011;
Azer et al. 2012). The dioritic rocks of the studied post-
collisional intrusion have comparable contents of REE and
their patterns are rather identical with post-collisional dioritic
rocks of NW Sinai (Fig. 12) (El-Sayed 2003) with similar
average values of (Eu/Eu*), (0.99 and 0.93) and (La/Yb),
(14.3 and 12.3).

Primary magma and crystallization conditions

The petrographic and geochemical studies revealed that the
intermediate-mafic rocks at Gebel Sheikh El-Arab area are
comagmatic and underwent fractional crystallization. The
gabbros have higher Mg# values (av. 64.43) than the diorites
(av. 53.35) and quartz diorites (av. 52.72). High Wo contents
(41.73-51.69) of the clinopyroxenes indicate that these min-
erals of the analyzed gabbros are near-liquidus crystallization
products of water-bearing basaltic magmas (Sisson and Grove
1993). This is accompanied by the presence of anorthite-rich
plagioclase (Angg g3) suggesting a liquid composition that
was high in Al and H,O and low in Na (Sisson and Grove
op. cit.). The crystallization of hornblende was occurred by
increasing H,O in magma after crystallization of
clinopyroxene and Ca-rich plagioclase. Thus, the gabbro/
diorite rocks were the products of low pressure fractional
crystallization process from gabbroic parent magma.

The gabbros at Gebel Sheikh El-Arab area have low Nb (1—
4 ppm), Zr (20-39 ppm) and Y (5-11 ppm), geochemically
similar to subduction-related setting (Pearce 1983), since sub-
duction is not considered plausible in the post-collisional
tectonic setting in south Sinai, the subduction signature for
the studied rocks may be due to partial melting of lithospheric
mantle enriched during a previous subduction event in the
ANS (Friz-Topfer 1991; Stein et al. 1997; Be’eri-Shlevin et al.
2009a; Eyal et al. 2010; Azer et al. 2012).

The variation diagrams of the analyzed rocks show in-
crease of Fe,O3, CaO, Cr, Co, and V with the increase of
MgO, while TiO,, Na,O, K,O, Ba, Rb, Sr, Nb, Y, and Zr
decrease. These trends indicate that fractional crystallization
of mafic magma is the main process controlling the magma
evolution; simultaneous assimilation and/or gradual decrease
in oxygen fugacity accounted to the observed variation.

The field relations, mineralogy and geochemistry of the
studied gabbro/diorite intrusion indicate its similarity to the
calc-alkaline post-collisional gabbro/diorite intrusions and be-
longing to the second calc-alkaline substage (late substage) of
Eyal et al. (2010). These post-collisional calc-alkaline mafic
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intrusions have slightly positive €Nd(T) values ranging from
+2.4 to +4.5 indicating that the source was probably depleted
lithospheric mantle with minor crustal component (Eyal et al.
2010).

The coexisting clinopyroxene and primary amphibole in
pyroxene-hornblende gabbro and diorite yields approximate
crystallization temperatures around 1000—1050 and 800 °C,
respectively, using the diagram given by Perchuk (1970; in
Urlych et al. 1976) (Fig. 13).

In sum, the gabbro/diorite suite at Sheikh El-Arab area
is related to the later calc-alkaline substage of post-
collisional tectonic setting. It is not related to the mafic-
ultramafic suite as previously thought (cf. Soliman 1996;
Abdel-Karim 2013).

Conclusion

The gabbro/diorite intrusion at Sheikh El-Arab area represents
the only mafic exposure in the basement rocks (mainly gran-
itoids and their volcanic equivalents) of central Sinai. The
intrusion is undeformed and unmetamorphosed, but experi-
enced uralitization and amphibolitization. Field relations indi-
cate that the intrusion postdates the lower unit of the volcano-
sedimentary succession of the Rutig Formation and predates
the surrounding rocks related to the late phase of calc-alkaline
magmatism or to the alkaline Katharina outer ring dike.
Pyroxene-hornblende gabbro, diorite, and quartz diorite are
the main rock types of the studied intrusion.

Mineralogically, bytownite and andesine represent the pla-
gioclase of the analyzed gabbros and diorites, respectively.
Oligoclase and orthoclase are the main feldspars in the quartz
diorite. Diopside-augite represents the clinopyroxenes of the
studied rocks and their compositions indicate the subalkaline
nature of their parent magma. Both primary and secondary
amphiboles are present. Biotites have restricted compositional
range and are similar to that of calc-alkaline biotites. The
analyzed magnetite has low TiO, content, and the ilmenite is
nearly pure ilmenite and enriched in MnO content.

Geochemically, the studied gabbro/diorite suite is high-K
and is related to post-collisional tectonic setting. The
subduction-related signature for the studied rocks is most
probably due to the partial melting of a lithospheric mantle
enriched during a previous subduction event in the ANS. The
whole series of the studied rocks were the products of frac-
tional crystallization process from gabbroic parent magma,
accompanied by assimilation and/or gradual decrease in oxy-
gen fugacity during their evolution.

From initial mafic magma, the crystallization of horn-
blende was caused by H,O increase in magma after crystalli-
zation of near-liquidus clinopyroxene having high Ca content
(Wo4,_52) and Ca-rich plagioclase (Angg_g3).

Several geochemical lines of evidence suggest that the main
process that controlled the evolution of the gabbro magma was
mainly fractional crystallization. The systematic compositional
variations are revealed by the variation diagrams of the suite.
Total REE abundances increase from the least evolved gabbro
(38-56 ppm) to the most evolved dioritic rocks (143—162 ppm)
can also be explained in terms of fractional crystallization. The
REE data for both the gabbros and diorites indicate that this
fractionation could have been extensive for the diorites as their
REE patterns are highly fractionated relative to the gabbros.
The higher Mg# in gabbros (61-67) relative to dioritic rocks
(51-55) argues in favor of fractional crystallization as the
dominant process in magma evolution. The rocks of the suite
are characterized by low Ni contents (66—116 ppm), low Mg#
(51-67) variable and wide range of Cr contents (113-305 ppm)
consistent with their derivation from upper mantle with subse-
quent modification by fractional crystallization. The depleted
HREE contents in the suite suggest the presence of residual
garnet in the mantle source.

Petrographically, the investigated rocks exhibit
hypidiomorphic texture with no apparent layering and lack
cumulate texture. Geochemically, they lack positive Eu anom-
alies and have relatively high incompatible element contents.
These rocks may thus be considered to represent near-liquidus
compositions rather than cumulates, derived from melting of
depleted upper mantle source.

The studied intrusion contains volcanic and clastic xeno-
liths of the older Rutig Formation indicating its high level of
emplacement. Crystallization temperatures are between 1000
and 1050 °C for the gabbros and 800 °C for the diorites. The
intrusion is related to the later calc-alkaline substage of post-
collisional tectonic setting. It is not related to the mafic-
ultramafic suite as previously thought.
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