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Abstract This paper presents new attempts to explore the
dependency of some key geotechnical properties of soils such
as compaction characteristics, hydraulic conductivity, and soil
shear strength to their index properties and performance of
developed models to predict these properties. To do this, a
database of 580 data sets was compiled including the results of
grain size distribution, Atterberg limits, compaction, and per-
meability, measured at different levels of compaction degree
(90 to 100 %) as well as consolidated-drained triaxial com-
pression tests. Dependency of each geotechnical property to
their index parameters was investigated using an Evolutionary
polynomial regression method, to develop prediction models
based on the collected database. Investigation of the perfor-
mance of the developedmodels indicates that these models are
capable of predicting these soil properties with a confidence
interval of 95 %. Parametric analyses were also performed on
the developed models.

Keywords Compaction characteristics . Hydraulic
conductivity . Shear strength . Evolutionary polynomial
regression

Introduction

In geotechnical engineering practice, soils are rarely
used in their natural compaction state, and to meet

different geotechnical criteria, they should often be
compacted. Compacted soil is widely used in landfills
liners and waste impoundments, to cap new waste dis-
posal units and to close old waste disposal sites because
of its relatively low cost, accessibility, durability, high
resistance to heat, and other factors (Wang and Huang
1984).

Almost all the regulatory agencies in the world re-
quire that compacted soil liners and covers be designed
to have a hydraulic conductivity of less than or equal to
a specified maximum value. According to the US Envi-
ronmental Protection Agency Regulation, Brazilian Stan-
dard (NBR 13896-1997), and German Standards,
compacted clay liners are required to have conductivity
of 10−7 cm/s or less; however, the Chinese Ministry of
Construction has specified a permeability of 10−8 cm/s
or less for this purpose (Du et al. 2009).

For a successful design and construction of
compacted soil liners and covers, not only the hydraulic
conductivity but also factors including chemical compat-
ibility, construction method, slope stability and bearing
capacity, and subsidence phenomenon should be taken
into consideration as well as environmental factors such
as desiccation, and the development and execution of a
construction quality assurance plan (Daniel 1984;
Oakley 1987; EPA 1988; Elsbury et al. 1990; Daniel
and Benson 1990). In Fig. 1, different instabilities in
compacted soil liners in landfills can be observed
(Dixon and Jones 2005).In practice, design engineers
traditionally require that soil liners be compacted within
a specified range of water content and to a minimum
dry unit weight. According to Hermann and Elsbury
(1987), this minimum value is 95 % of γdmax from
standard Proctor compaction (ASTM D-698) or 90 %
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of γdmax from modified Proctor compaction (ASTM
D-1557). The range of acceptable water content for soil
liners and covers might typically be about zero to four
percentage points wet of standard or modified Proctor
optimum (Fig. 2).

The shape of the acceptable evolved empirically from
construction practices applied to roadway bases, struc-
tural fills, embankments, and earth dams. The specifica-
tion is based primarily upon the need to achieve a
minimum γd for adequate strength and limited com-
pressibility. Soil liners are compacted wet of optimum
because wet-side compaction minimizes hydraulic con-
ductivity due to the change in the texture of soil
(Bjerrum and Huder 1957; Lambe 1951; Mitchell
et al. 1965; Boynton and Daniel 1985).

Fig. 1 Potential failures modes occurred in soil liners, after Dixon and Jones (2005)

Fig. 2 Traditional method for specification of acceptable water contents
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Daniel and Benson (1990) analyzed the results of
Mitchell et al. (1965) and Boutwell and Hedges
(1989) to investigate this traditional approach for
the design of compacted soils liners. They concluded
that the traditional approach did not address the
geotechnical requirements of compacted soil liners,
properly.

In Fig. 3a which is drawn based on the results of
Mitchell et al. (1965), the significant portion of the
superimposed acceptable zone on the contours of hy-
draulic conductivity yielded a hydraulic conductivity of
more than 10−7 cm/s which is stated as a criterion for
the design and construction of compacted soil liners. In
Fig. 3b, the contours of hydraulic conductivity and
shear strength are superimposed on the acceptable zone
for 95 % of γdmax and water content 0–4 % wet of
optimum (Boutwell and Hedges 1989). However all
w–γd points contained within the acceptable zone corre-
spond to test specimens with a hydraulic conductivity of
less than 10−7 cm/s, but the shape and boundaries of the
acceptable zone in this figure correlate with neither the
hydraulic conductivity nor the shear strength. Besides
this, as can be observed, the variation in shear strength
in the acceptable zone is dramatic which could cause
considerable deficiencies in the performance of
compacted soil liners.

Based on the results of these analyses, Daniel and
Benson (1990) proposed a new approach for design
and construction compacted soil liners. According to
this method, the compaction curve of the soil based on
the compactive effort used in the field or a range of

compactive efforts should be developed. Permeability
tests are carried out to determine the hydraulic con-
ductivity of each compacted specimen. The w–γd re-
lationship should be re-plotted with different symbols
used to represent compacted specimens that had hy-
draulic conductivities meeting the design criteria.
However, the acceptable zone is modified based on
other considerations, e.g., shear strength, interfacial
friction with an overlying geomembrane, shrink/swell
considerations, concern over cracking when settlement
occurs, concern for constructability, or local practices
(Fig. 4).

Fig. 3 Evaluation of traditional method to design compacted soil liners based on hudraulic conductivity and shear strength a Mitchell et al. (1965); b
Boutwell and Hedges (1989)

Fig. 4 Developing acceptable zone for design of compacted soil liners based
on hydraulic conductivity and shear strength (Daniel and Benson 1990)
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This method was further developed by Daniel and
Wu (1993) to design and construct compacted soil
liners in arid regions considering the shrinkage to have
minimum desiccation cracks in liners. Although the
proposed method by Daniel and Benson (1990) and
Daniel and Wu (1993) is very precise and efficient,
developing an acceptable zone is not an easy task,
especially in the early stages of earthworks when the
correct source of soil should be chosen among several
different sources.

Performing laboratory tests to develop an accepted
zone for design and construction of compacted soil
liners is very time consuming especially in the case of
permeability tests on samples with high portions of clay
content. Because of these difficulties, using models
which are capable of reasonable prediction of geotech-
nical properties of soils based on their index properties
is of interest to geotechnical engineers. Correlation be-
tween compaction characteristics of soils and their index
properties has been the subject of many investigations
based on these properties of soils; some judgments
could be made for the hydraulic conductivity and shear
strength of soils.

Rowan and Graham (1948), Davidson and Gardiner
(1949), Turnbull (1948), Jumikis (1946), Ring et al.

(1962), Ramiah et al. (1970), Nagaraj (1994), etc. are
among the researchers who tried to relate compaction
characteristics of soils to index properties such as spe-
cific gravity and Atterberg limits (liquid limit, plastic
limit, shrinkage limit, and plasticity index) and some
factors related to their grain size distribution.

Similar models have been developed to estimate hy-
draulic conductivity of soils based on some of their
basic properties. Researchers including Hazen (1911),
Zunker (1930), Carman (1937), Burmister (1954),
Michaels and Lin (1954), Olsen (1962), Mitchell et al.
(1965), Wang and Huang (1983), Koltermann and
Gorelick (1995), Boadu (2000), Chapuis (2004), Sinha
and Wang (2008), and Cote et al. (2011) among others
have tried to predict the hydraulic conductivity of soils
from some factors related to the grain size distribution
of the soil, Atterberg limits, and density of soils; how-
ever, the impact of soil’s structure and texture and

Table 1 Descriptive statistics of the input variables used in the model developments

Parameter Gc (%) S1 (%) S2 (%) S3 (%) Sc
a (%) Cc

b (%) D10 (mm) D50 (mm) LL (%) PL (%) Gs γ (kN/m3) Cdc (%)

Minimum 0 0 0 3 1 1 7.50E−04 1.20E−03 0 0 2.42 14.115 90

Maximum 67 42 49 77 63 84 6.00E−03 1.90E+01 495 47 3.02 21.542 100

Mean 7.1 11.8 16.7 15.9 18.4 30.5 1.08E−03 2.29E−01 64.4 24.6 2.70 17.64 95

Standard deviation 11.4 8.7 9.5 9.9 12.3 15.8 6.89E−04 1.53E+00 82.9 9.6 0.06 1.52 4.04

a Silt content
b Clay content
c Compaction degree

Table 2 Descriptive statistics of the output variables

Parameter MDD (kN/m3) OMC (%) Ka (cm/s) φ (degree)

Minimum 12.43 4.66 1.28E−08 19

Maximum 22.80 37.17 5.36E−04 35.27

Mean 17.43 16.96 4.97E−06 27.49

Standard deviation 1.88 4.94 4.34E−05 3.26

a Permeability

Table 3 Data sources used to compile the database

Reference No. of cases

Permeability Wang and Huang (1984) 112

Kayadelen et al. (2009) –

Mousavi et al. (2011) –

UFBA 43

Compaction Wang and Huang (1984) 57

Kayadelen et al. (2009) –

Mousavi et al. (2011) –

UFBA 263

Friction angle Wang and Huang (1984) –

Kayadelen et al. (2009) 77

Mousavi et al. (2011) 10

UFBA 33
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definitely the type of permeant can increase the
uncertainty in the prediction of hydraulic conductivity.

As opposed to the latter two geotechnical properties,
several studies have been carried out to predict the
shear strength of soils based on their basic properties.
Kayadelen et al. (2009) used artificial neural network
(ANN), Genetic Programming (GP), and Adaptive
Neuro Fuzzy (ANFIS) methods to predict the φ′ value
of soils from their index properties and Mousavi et al.
(2011) used GP and orthogonal least squares algorithm
(OLS) to present a correlation between the internal
friction angle and the physical properties of soils such
as fine and coarse content, density, and liquid limit.
Sezer (2013) used nonlinear multiple regression
(NMR), neurofuzziness (NF), and ANN methods to
predict the shear strength of soil (Tizpa et al. 2014).

Database

A database with 595 data sets was compiled, in which
155 data sets were used for modeling the permeability,
320 data sets for modeling maximum dry density
(MDD) and optimum moisture content (OMC), and
120 cases for modeling effective friction angle of shear-
ing. The database includes test results performed on
different types of soils; therefore, the results of this
research should be valid for all types of soils.

For each data set, the permeability, OMC, MDD,
compaction degree, friction angle, and soil index
properties (grain size curve, Atterberg limits, and spe-
cific density) were available. However, a soil type
index (STI) was introduced to take into account the
classification of the soil (USCS) in modeling the

Fig. 5 Typical flow diagram for
EPR procedure (Rezania et al.
2008)
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compaction characteristics. The STI values were spec-
ified according to the following sequence: GW(1),
GP(2), SW(3), SP(4), GM(5), SM(6), GC(7), SC(8),
ML(9), CL(10), MH(11), and CH(12). In the cases of
mixed classifications (e.g., CL-ML), STI was calcu-
lated as the average value of the individual classifi-
cations. Table 1 gives the descriptive statistics of the
input variables used for the model developments. Al-
so, the variation ranges of the output parameters are
summarized in Table 2. Note that the gravel content
(Gc) was a coarse aggregate with a particle size
coarser than 4.75 mm and the grain size of sand
content (Sc) ranged from 4.75 to 0.075 mm. Sand
content includes coarse sand (S1) ranging from 4.75
to 0.6 mm, medium sand (S2) ranging from 0.6 to
0.2 mm, and fine sand (S3) ranging from 0.2 to
0.075 mm. Particles that ranged from 0.075 to
0.002 mm were classified as silt and particles smaller
than 0.002 were clay.

As presented in Table 3, the database was obtained from
different sources but mainly from the geotechnical engineer-
ing laboratory at the Federal University of Bahia (UFBA),
Brazil. Some other cases from Wang and Huang (1984),
Kayadelen et al. (2009), and Mousavi et al. (2011) were also
added.

Evolutionary polynomial regression

Evolutionary polynomial regression (EPR) is a data-
driven regression method that was developed by
Giustolisi and Savic (2006) based on evolutionary
computing. To avoid the problem of mathematical
expressions growing rapidly in length with time, in
EPR the evolutionary procedure searches for the ex-
ponents of a polynomial function with a fixed maxi-
mum number of terms. During one execution, it returns
a number of expressions with increasing numbers of
terms up to a limit set by the user to allow the
optimum number of terms to be selected (Ahangar-
Asr et al. 2011). In general, EPR is a two-stage meth-
od to construct symbolic models using polynomial
structures. In the first stage, EPR searches for expo-
nents of polynomial expressions by employing a genet-
ic algorithm (GA). In the second stage, numerical
regression is used to compute the constant values of
the previously selected terms by solving a least squares
(LS) problem. The general expression in EPR can be
formulated as:

y ¼
X
i¼1

n

F X ; f Xð Þ; aið Þ þ a0 ð1Þ

Where y is the computed vector of output and F is
an n-dimensional function. X is the matrix of inputs
and n is the number of input terms in the expression.
Also, f is a function defined by the user and ai is a
constant.

To apply the EPR procedure, the evolutionary
process starts from a constant mean of output values.
By increasing the number of evolutions, it gradually
picks up different participating parameters in order
to form equations describing the relationship between
the parameters of the system. The EPR procedure
stops when the termination criterion (the maximum
number of terms in the mathematical expression, the
maximum number of generations, or a particular al-

Training

Testing

Equality Line

95% Confidence Interval

Fig. 6 Comparison between the predicted values of MDD and the
actual data

Table 4 Performance of the EPR model for MDD

Output COD RMSE CRM

MDD Training 93 % 51.9 −0.004
Testing 94 % 47.1 0.005
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lowable error) is satisfied. Figure 5 shows a typical
flow diagram of the EPR procedure.

Performance analysis

Fitting parameters analysis

Different statistical approaches have been used to
evaluate the performance of the prediction models.

These parameters are the coefficient of determina-
tion (COD), root mean squared error (RMSE), and
coefficient of residual mass (CRM). Following
equations are the mathematical expressions of these
parameters:

COD ¼ 1−

Xn

i¼1
Mi−Pð ÞXn

i¼1
Mi−M̄

� � ð2Þ

Fig. 7 Parametric study results on the MDD prediction model
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Pi−Mið Þ2
n

s
� 100 ð3Þ

CRM ¼ 1−

Xn

i¼1
Pið ÞXn

i¼1
Mið Þ

ð4Þ

Where Mi and Pi are the measured and predicted values,

respectively,Mis the mean of the measured values, and n is the
number of samples. The RMSE is the variance of the residual
error and should be minimized when the outputs fit a set of
data. The case of a perfect fitting RMSE is zero. The lower the
RMSE is, the higher the accuracy of the model predictions.
The CRM represents the difference between the measured and

predicted values. The optimum value of CRM is zero. Positive
values of CRM indicate under estimation and vice versa.

Parametric analysis

For further verification of the EPR prediction models,
parametric analyses have been performed. The method
of parametric analysis is based on changing one predic-
tor variable at a time while the other predictor variables
are kept constant at the average values of their entire
data sets.

Parametric analysis investigates the response of the
predicted values from the EPR models to a set of
input data generated over the training ranges of the
minimum and maximum data. These variables are
presented to the prediction model and the output is
calculated. This procedure is repeated using another
variable until the model response is tested for all
input variables.

Results and discussions

EPR model for maximum dry density

Eight input parameters have been used in the EPR
model for maximum dry density (kN/m3) including
gravel content (Gc); coarse, medium, and fine sand
content (S1, S2, and S3); silt and clay content (Sc and
Cc); plastic limit (PL); and STI. The following EPR
model is obtained for predicting MDD:

MDD ¼ 1:11PL0:5−0:256PL−7:609� 10−6Sc
0:5Cc

2STI

þ 0:054S1
0:5S3

0:5 þ 0:0001Gc
2S2 þ 17:58

ð5Þ

Figure 6 shows the predicted values of MDD versus mea-
sured values for training and testing data sets. Among 320
measured data sets, 290 sets (90 %) have been used for
training and 30 sets (10 %) have been used for testing the
model. Table 4 also presents the performance of the EPR
prediction model.

Figure 7 presents the results of the parametric study
on the EPR MDD model. As is obvious from graphs,
increasing coarse content (gravel content and coarse,
medium, and fine sand content) increases the maximum
dry density of the soil. It is also coherent that the gravel
content has the greatest effect on the prediction of
MDD values. It can be seen that increasing fine content
(silt and clay) causes the MDD to decrease. Moreover,

Table 5 Performance of the EPR model for OMC

Output COD RMSE CRM

OMC Training 93 % 155.7 0

Testing 91 % 184.1 0.016

95% Confidence IntervalTraining

Testing

Equality Line

Fig. 8 Comparison between the predicted values of OMC and the actual
data
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MDD decreases as the plastic limit increases which
could imply greater fine content in the soil.

EPR model for optimum moisture content

Five input parameters have been used in the EPR model
for OMC including specific gravity (Gs), clay content
(C), PL, MDD, and STI. The obtained model from EPR
for prediction of OMC is:

OMC ¼ 0:0025PL2STI0:5 þ 0:0025C2 þ 32:82Gs

−0:229Gs2MDD−0:0006Gs2C PLð Þ−46:39
ð6Þ

Figure 8 shows a comparison between the results of
the EPR model and experimental data for both the
training and testing sets. Among the 320 measured data
sets, 290 sets (90 %) were used for training and 30 sets
(10 %) were used for testing the model. Table 5 also
presents the performance of the EPR prediction model.

Figure 9 presents the results of the parametric study of the
developed EPR model for OMC. As is clear from graphs,
increasing clay content which implies higher plastic limits
leads to higher values of OMC. However, it can be seen that
MDD and OMC are clearly dependent. By increasing the
maximum dry density, the OMC values decrease. Further-
more, Gs seems to have a minor effect on OMC values.

Fig. 9 Parametric study results on the OMC prediction model
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EPR model for permeability coefficient (K)

Four input parameters have been used in the EPR model for
the permeability coefficient (cm/s) including effective grain
size (D10), mean grain size (D50), plasticity index (PI), and
compaction degree (Cd) expressed in percent. D is referred to
effective grain size to mean grain size of soil. The following
EPR model is obtained for predicting the permeability:

Log k ¼ −0:00051Cd2−0:263PI0:5−1:629D0:5 þ 5:76� 10−6

D PIð ÞCd2−0:0001D PI2
� �þ 0:0286

ð7Þ

Figure 10 shows a comparison between the results of the
EPRmodel and experimental data for both training and testing
sets. Among the 155 measured data sets, 140 sets (90 %) were
used for training and 15 sets (10 %) were used for testing the
model. Table 6 illustrates the performance of the developed
EPR model for training and testing datasets.

Figure 11 presents the results of the parametric study of the
EPR permeability model. Figure 11a shows that by increasing
the dimensionless parameter of D10/D50, the permeability of
the soil increases. It is obvious that increasing the ratio of D10

to D50 implies uniform particle size distribution which causes
the permeability to increase. Figure 11b indicates that increas-
ing the compaction degree decreases the permeability of soil
due the reduction in the void ratio. As expected, increasing the
plasticity index also causes the permeability of the soil to
decline (Fig. 8c). Another aspect that is coherent from results
is that the plasticity index has the greatest effect on the
permeability of soils.

EPR model for angle of shearing resistance

Four input parameters were used to build the EPR model for
predicting the effective angle of shearing resistance. These
parameters are as follows: coarse-grained content (Cc), fine-
grained content (Fc), soil bulk density (γ), and shearing rate
(Sr). These important factors, representing the φ′ behavior,
were selected based on the literature review (Kayadelen et al.
2009; Mousavi et al. 2011). As expected, the main parameters
affecting the soil strength parameters should be the soil type
and soil density as well as the shearing rate at which the shear
tests are performed. The obtainedmodel for the effective angle
of shearing resistance is:

tanφ
0 ¼ 0:0084Fc Srð Þ þ 2:71� 10−5Fc γ2

� �
Sr0:5
� �

þ 0:021Cc0:5−0:154Fc0:5 Sr0:5
� � þ 0:572

ð8Þ

A comparison between the measured and predicted values
of φ' illustrates that the model described here provides highly
accurate prediction of the effective angle of shearing resis-
tance (Fig. 12). Table 7 illustrates the performance of the
developed EPR model for the training and testing datasets.
Note that among the 120 data sets, 105 sets were used for
training and 15 sets were used for testing the model.

Figure 13 shows the results of the parametric study on the
EPR effective angle of shearing resistance model. As expect-
ed, the results of the parametric study indicate thatφ′ increases
as the coarse content increases and decreases with increasing
fine content. As can be seen, the effective friction angle will
increase by increasing the soil bulk density.

Conclusion

The accurate determination of the geotechnical properties of
soil from their index parameters is of paramount importance in
the design of geotechnical structures. Because laboratory tests
to determine the MDD, OMC, permeability, and effective
friction angle are time consuming and expensive, it is desir-
able to develop models which are capable of predicting these
parameters. This paper presents prediction models which use

Fig. 10 Comparison between the predicted values of permeability coef-
ficient and the actual data

Table 6 Performance of the EPR model for permeability coefficient

Output COD RMSE CRM

Log K Training 90 % 55.5 −0.006
Testing 90 % 58.1 0.003
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evolutionary polynomial regression. A database of 533 data
sets was compiled. The database contains classification,
Atterbeg limits, compaction, permeability, direct shear, and
consolidated-drained triaxial compression test results which
were performed on different types of soils (SC, SM, SP, CL,
CH,ML, andMH). The database is obtained from tests carried
out in the geotechnical laboratory at the UFBA, Brazil, as well
as some experimental data from the literature.

The results of the prediction models have been compared
with the experimental data. Comparisons of the results dem-
onstrate that the developed EPR models provide highly accu-
rate predictions. In the EPR approach, there is no need to
preprocess, normalize, or scale the data. An intriguing feature

Fig. 11 Parametric study results of the permeability coefficient model against a D10/D50; b compaction degree; c plasticity index

95% Confidence IntervalTraining

Testing

Equality Line

Fig. 12 Comparison between the predicted values of effective friction
angle and the actual data

Table 7 Performance of the EPR model for effective friction angle

Output COD RMSE CRM

φ′ Training 91 % 103.9 −0.00037
Testing 88 % 103.7 −0.014
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of EPR is its ability to present more than one model for a
complex phenomenon. The best models are chosen based on
their performance on a set of data. For further verification of
the EPR prediction models, parametric analyses were
performed.
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