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Abstract Based on the two-dimensional renormalization
group model, which can consider the stress transfer mecha-
nism, in the present paper, the theoretical quantitative correla-
tion between the threshold of the crack damage stress (σcd)
and the uniaxial compressive strength (σucs) was constructed.
The results indicate that the normalized quantity σcd/σucs
decreases as the shape parameter m increases, and that it
gradually tends towards a constant horizontal asymptote that
is ~0.82. In addition, the experimental results of σcd/σucs
obtained in previous studies using different rock types were
analyzed. From this analysis, it was found that the over-
all average and the standard deviation of σcd/σucs for low-
porosity rock samples is ~0.80 (±0.10), whichwould appear to
be approximately consistent with the theoretical solution. This
preliminary study indicates that the normalized quantity σcd/
σucs might be an intrinsic property of low-porosity rocks and
thus could be regarded as a potential indicator for the failure
prediction of laboratory-scale rock samples.
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Introduction

Generally, rock samples subjected to a uniaxial compression
will manifest the typical mechanical responses shown in
Fig. 1a. Classic works indicate that the failure process can
be subdivided into five stages: (1) crack closure, (2) elastic
deformation, (3) crack initiation and stable crack growth, (4)

Crack damage and unstable crack growth, and (5) failure and
post-peak behavior (Bieniawski 1967a, b; Brace et al. 1966;
Lajtai and Lajtai 1974; Martin 1993; Xue et al. 2013). For a
clearer presentation, the post-peak region is not depicted in
Fig. 1a. There exist three stress thresholds prior to failure, i.e.,
the crack closure stress σcc, crack initiation stress σci, and
crack damage stress σcd. There is no doubt that if we could
construct a quantitative relationship between the uni-
axial compressive strength σucs and any one of these three
stress thresholds, the failure of rock samples could be predict-
ed in advance.

It is well accepted that the macroscopic failure process of
laboratory-scale rock samples is usually accompanied by ac-
cumulated micro-structural damage. In most cases, the cracks
appear to be completely random in the beginning. However,
as the applied load increases, additional cracks will develop
and coalesce around the potential macroscopic fracture plane.
When the rock sample can no longer bear the external load,
ruptures may eventually occur. Numerous studies have indi-
cated that as the stress magnitude gradually approaches the
stress threshold σcd, crack propagation and interaction appear
unstable and crack growth will not be terminated, even if the
stress remains constant at σcd (Bieniawski 1967a, b; Brace
et al. 1966; Eberhardt et al. 1997, 1998, 1999; Lajtai and Lajtai
1974; Martin and Chandler 1994). Conversely, when the
external load is less than σcd, crack growth is stable.
Furthermore, it has also been found that when the external
load approaches the stress threshold σcd, some physical prop-
erties, such as acoustic emissions, permeability, wave velocity,
and resistivity, generate significant responses (Chen and Lin
2004; Schulze et al. 2001; Souley et al. 2001; Sun et al. 2014).

It appears that the stress threshold σcd is a very special
threshold. Therefore, we will attempt to establish a theoretical
quantitative correlation between the crack damage stress
threshold and uniaxial compressive strength. From Fig. 1b, it
appears that rock samples usually suffer a phase transition
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from a stable to unstable state at σcd, which is equivalent to the
critical point in renormalization group (RG) theory. The so-
called critical point is a term describing a singular point at
which different phases or states coexist. In the field of geology
and geophysics, numerous studies have reported on the phase
transition of a system (Abdusalam 2001; Allegre et al. 1982;
Borri-Brunetto et al. 2004; Carpinteri et al. 2001, 2002, 2012;
Chen et al. 2002; Hansen et al. 1997; Iwashita and Nakanishi
2005; Madden 1983; Matsuba 2002; Meng et al. 2009; Saleur
et al. 1996; Smalley et al. 1985). Therefore, the RG method is
introduced in the present study to reveal the theoretical quan-
titative correlation between σcd and σucs.

The structure of the present study is as follows. In second
section, a detailed mathematical derivation of the theoretical
solution of σcd/σucs is described based on RG theory.
Experimental findings and the discussion are presented in
the third section. Finally, concluding remarks are presented
in the fourth section.

Theoretical study of the relationship between the crack
damage stress threshold and uniaxial compressive
strength

The model of two-dimensional RG theory

It is well accepted that as the applied load gradually
increases, cracks will develop and coalesce around the
potential macroscopic fracture plane. Essentially, only
when the crack density of the potential macroscopic frac-
ture plane approaches a certain level will macroscopic
fracture occurs. Therefore, the forming process of the
macroscopic fracture plane is simplified and considered
as a two-dimensional fracture process in the present work,
and two-dimensional RG theory is introduced to describe
the failure process of the rock samples (see Fig. 2). Thus,
the macroscopic fracture plane can be renormalized into

many cells and different order blocks. Here, only the first
three order blocks are shown. For example, the first-order
block comprises four cells, while the second-order block
consists of four first-order blocks. Similarly, the third-
order block is composed of four second-order blocks. In
fact, the same combination can be continued to an infinite
scale. Furthermore, there exist five possible states for each
of the different order blocks, i.e., B4U0, B3U1, B2U2,
B1U3, and B0U4 (see Fig. 2d). The uppercase letter “B”
denotes that the cells or blocks have been broken (colored
box), which is followed by the digit corresponding to the
number of broken cells or blocks. The uppercase letter
“U” means that the cells or blocks have not been broken
(white box), and the following digit corresponds to the
number of unbroken cells or blocks. The correspon-
ding probabilities of the five possible states are listed in
column B of Table 1, where p1 means the broken proba-
bility of each cell.

Methodology of two-dimensional RG theory

As suggested by Smalley et al. (1985), it is assumed that the
strength of each individual cell is σcell, which obeys a Weibull
distribution and depends on the number of microcracks in the
cells. When an external load is applied to a rock sample, it is
assumed that each cell of the rock will be subjected to a
corresponding local stress. When the strength of the cell σcell
is less than its local stress, the cell will fail, and its broken
probability is pα, which can be expressed as follows:

pα ¼ p σcell < ασð Þ ¼ 1−exp − α
σ

σ0

� �m� �
; ð1Þ

where α is a coefficient, σ0 is a reference strength of the cell,
and m is a shape parameter that can be used to evaluate the
discreteness of material strength. As suggested by Tang et al.
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Fig. 1 Illustration of phase
transition of a system. a Typical
stress–strain diagram showing
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development under uniaxial
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(2000) and Wong et al. (2006), the larger the shape parameter
m, the more homogeneous the material. When α is equal to 1,
namely

p1 ¼ p σcell < σð Þ ¼ 1−exp −
σ
σ0

� �m� �
: ð2Þ

By substituting Eq. (2) into Eq. (1), the following expres-
sion can be obtained:

pα ¼ 1− 1−p1ð Þαm

: ð3Þ
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Fig. 2 Illustration of the two-
dimensional RG model of
macroscopic fracture plane. a
Rock sample with two
macroscopic fracture planes after
failure under a uniaxial
compression test. b Sketch
showing two macroscopic
fracture planes. c The two-
dimensional RG model. d The
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Table 1 Various probabilities for cells or blocks

Column A Column B Column C Column D
Block state The corresponding probability

of block neglecting stress transfer
The conditional failure probability of
the unbroken cell or block due to stress transfer

The overall failure probability of
block considering stress transfer

B4U0 C4
4 p1

4 (1−p1)0 / D=B

B3U1 C4
3 p1

3 (1−p1)1 p4,1 D=B×C

B2U2 C4
2 p1

2 (1−p1)2 p2,1
2 + C2

1 p2,1 (1−p2,1)p4,2 D=B×C

B1U3 C4
1 p1

1 (1−p1)3 p34=3;1 þ C2
3 p

2
4=3;1 1−p4=3;1

� �
p4;4=3

þ C1
3 p4=3;1 1−p4=3;1

� �2

p22;4=3 þ C1
2 p2;4=3 1−p2;4=3

� �
p4;2

h i

D=B×C

B0U4 C4
0 p1

0 (1−p1)4 / D=0
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It is worth noting that the broken cells will inevitably
affect neighboring unbroken cells owing to the stress
transfer. To evaluate the influence of the broken cells on
their neighboring unbroken cells, a conditional prob-
ability pm,n is introduced, which can be expressed as
follows:

pm;n ¼
p nσ < σcell < mσð Þ

p σcell > nσð Þ ¼ pm−pn
1−pn

; ð4Þ

where pm and pn can be calculated using Eq. (3). Es-
sentially, the conditional probability pm,n is a probability
that an unbroken cell with local stress nσ will fail when
subjected to an additional stress (m−n)σ from a broken
cell. At that moment, the overall local stress of the
unbroken cell will increase to mσ. The conditional
probabilities and overall broken probabilities of the five
possible states are listed in columns C and D of Table 1,
respectively.

Furthermore, some assumptions were made in this paper,
as suggested in Smalley et al. (1985), namely:

(1) A r+1-th order block will not be regarded as a
broken state unless all the r-th order blocks that
compose this r+1-th order block are broken.

(2) The stress from a r-th order block, which belongs to a
r+1-th order block, will be transferred uniformly to
other r-th order blocks that belong to the same r+1-th

order block.

Taking the first-order block with four cells as an
example, its overall failure probability p1

(2) can be
expressed as follows:

p1
ð2Þ ¼ pb4u0 þ pb3u1 þ pb2u2 þ pb1u3 ; ð5Þ

where pb4u0 ; pb3u1 ; pb2u2 , and pb1u3 are the overall
failure probabilities of the different states of a cell,
which can be obtained as shown in column D of
Table 1.

Expanding Eq. (5) gives the following:

p1
ð2Þ ¼ p41 þ C 3

4 p
3
1 1− p1ð Þ p4;1 þ C 2

4 p
2
1 1− p1ð Þ2 p22;1 þ C 1

2 p2;1 1− p2;1
� 	

p4;2
h i

þC1
4 p1 1− p1ð Þ3

p 3
4=3;1 þ C 2

3 p
2
4=3;1 1− p4=3;1

� �
p4;4=3þ

C1
3 p4=3;1 1− p4=3;1

� �2
p 2
2;4=3 þ C 1

2 p2;4=3 1−p2;4=3

� �
p4;2

h i
8<
:

9=
;

:

ð6Þ

For higher-order blocks, Eq. (6) can also be extended
to an iteration equation between p1

(n+1) and p1
(n), where

n is the order of the block. It can be expressed in the
following form:

p1
nþ1ð Þ ¼ p ðnÞ

1

� �4
þ C 3

4 p ðnÞ
1

� �3
1−p ðnÞ

1

� �
p4;1

ðnÞ þ C 2
4 p ðnÞ

1

� �2
1−p ðnÞ

1

� �2

p2;1
ðnÞ

� �2
þ C1

2 p2;1
ðnÞ 1−p2;1

ðnÞ
� �

p4;2
ðnÞ

� �
þ C1

4 p
ðnÞ
1 1−p ðnÞ

1

� �3

p4=3;1
ðnÞ

� �3
þ C 2

3 p4=3;1
ðnÞ

� �2
1−p4=3;1

ðnÞ
� �

p4;4=3
ðnÞ

þC1
3 p4=3;1

ðnÞ 1−p4=3;1
ðnÞ

� �2
p2;4=3

ðnÞ
� �2

þ C1
2 p2;4=3

ðnÞ 1−p2;4=3
ðnÞ

� �
p4;2

ðnÞ
� �

8><
>:

9>=
>;:

ð7Þ

Based on Eq. (7), a iteration dependent relationship be-
tween p1

(n+1) and p1
(n) is obtained, which is shown in Fig. 3. It

can be seen that there are three points where p1
(n+1) is equal to

p1
(n) for each shape parameter m. Among the three points, 0

and 1 mean completely stable and completely unstable states,
respectively, while the critical point p* is a phase transition
point, i.e., unstable fixed points, where the state changes from
stable to unstable. It appears that the critical point p* is
equivalent to the concept of the stress threshold σcd.

Theoretical relationship between σcd and σucs

The broken probability of a cell can also be written as (Qin
et al. 2006)follows:

p ¼ 1−exp −
ε
ε0

� �m� �
; ð8Þ

where ε0 is a reference strain of the cell.
Then, by substituting p* into Eq. (8),

εcd
ε0

¼ −ln 1−p*
� 	
 � 1

m ; ð9Þ

where εcd is the strain of the rock sample at σcd.
Furthermore, numerous studies have been performed to

investigate the mechanical responses of rock samples (Chen
et al. 2006; Li et al. 2012). Based on the statistics damage
theory and Hooke’s law, Chen et al. (2006) derived a consti-
tutive formula as follows:

σ ¼ Eεe
− ε

ε0

� �m

; ð10Þ

which could be used to describe the stress–strain curves of
uniaxial compression tests.

It is well known that the first order derivative of Eq. (10) is
equal to zero at the peak strength, i.e.
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∂σ
∂ε

¼ Ee
− ε

ε0

� �m

1−m ε=ε0ð Þm½ � ¼ 0: ð11Þ

Rearranging Eq. (11) gives

εucs
ε0

¼ 1

m

� �m−1

; ð12Þ

where εucs is the strain of the rock sample at the peak strength.
Then, calculating the ratio of Eq. (9) and Eq. (12) gives

εucs
εcd

¼ −mln 1−p*
� 	
 �− 1

mð Þ
: ð13Þ

Substitution of Eq. (9) into Eq. (10) yields

σcd ¼ Eεcd 1−p*
� 	

: ð14Þ

Substitution of Eq. (12) into Eq. (10) yields

σucs ¼ Eεucse
− 1 mð Þ: ð15Þ

The ratio of Eq. (14) to Eq. (15) is

σcd

σucs
¼ εcd

εucs
1−p*
� 	

e
1
m : ð16Þ

Then, substituting Eq. (13) into Eq. (16) gives

σcd

σucs
¼ −mln 1−p*

� 	
 � 1
m 1−p*
� 	

e
1
m : ð17Þ

Thus, the theoretical quantitative relationship between the
crack damage stress threshold and the peak strength is even-
tually established. It is found that p* and the ratio of σcd/σucs
gradually decreases as the shape parameter m increases and
the ratio of σcd/σucs gradually tends towards a constant hori-
zontal asymptote that is approximately 0.82 (see Table 2).

Experimental findings and discussion

Experimental findings

Many previous studies have investigated the stress threshold
σcd or ratio of σcd/σucs for different rock types, such as igneous
rocks [involving granite (Cai et al. 2004; Chang and Lee 2004;
Diederichs et al. 2004; Eberhardt et al. 1997, 1998, 1999;
Hidalgo and Nordlund 2013; Liang et al. 2012; Lin et al.
2009; Takarli et al. 2008), gabbro (Hidalgo and Nordlund
2013), diabase (Hidalgo and Nordlund 2013), diorite
(Andersson et al. 2009; Chen et al. 2012; Hidalgo and
Nordlund 2013), and norite (Hidalgo and Nordlund 2013)],
metamorphic rocks [involving marble (Chang and Lee 2004;
Huang et al. 2012), quartzite (Cai et al. 2004; Hidalgo and
Nordlund 2013), and gneiss (Hidalgo and Nordlund 2013)],
and sedimentary rocks [involving sandstone (Cai et al. 2004;
Gatelier et al. 2002; Jiang et al. 2005; Xu et al. 2012), lime-
stone (Eslami et al. 2012; Hidalgo and Nordlund 2013;
Palchik and Hatzor 2002), dolomite (Cai et al. 2004; Hatzor
et al. 1997; Palchik and Hatzor 2002), coal (Ranjith et al.
2010), clay shale (Amann et al. 2011), and rock salt (Liang
et al. 2011)]. The data of σcd or σcd/σucs in the above literature
have been given directly in the form of tables or pictures, thus
greatly aiding our study. Recently, Xue et al. (2013) analyzed
251 sets of test data on different rock types and found that the
average values of σcd/σucs for the low-porosity igneous,
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metamorphic, and sedimentary rocks were ~0.78 (±0.09),
~0.85 (±0.09), and ~0.78 (±0.11), respectively (see Fig. 4).
Meanwhile, the corresponding overall average of σcd/σucs

from the different rock types is equal to ~0.80 (±0.10), which
appears approximately consistent with the theoretical
solution.

Table 2 Chart of theoretical solution based on two-dimensional RG method

Shape parameter
m

Critical probability 
p*

Normalized quantity 
σcd /σucs

1 0.4293 0.8701 

2 0.1707(0.1707) 0.8366 

3 0.0878 0.8286 

4 0.0517 0.8266 

5 0.0322 0.8231 

6 0.0210 0.8204 

7 0.0144 0.8200 
The results listed in parentheses are obtained by Smalley et al. (1985)

Fig. 4 Values of σcd/σucs for different rock types: a igneous rock, b metamorphic rock, and c sedimentary rock (modified after Xue et al. (2013))
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Discussion

Both the experimental results for low-porosity rock samples
and the theoretical solutions (σcd/σucs) are shown in Fig. 5. It is
obvious that the distribution range of experimental results is
wider than that of the RG solutions, which may be attributed
to the following reasons:

Firstly, it has been found that the theoretical solution of σcd/
σucs varies with shape parameter m, which is used to evaluate
the discreteness of the material’s strength. However,
Fig. RefID="Fig5">5 illustrates only the theoretical solutions
based on values of parameter m from 1 to 7, and it is possible
that the actual values of parameterm for the rock samples were
outside this range. Therefore, it is necessary to conduct further
studies to determine the actual shape parameter m of a rock
sample in order that we can perform a strict comparison
between the experimental results and theoretical solutions
based on the same m value. This work is ongoing, in which
the estimation of the shape parameter m relies on the method
developed by Katz and Reches (2002).

Secondly, during the derivation process of the theoretical
solution, it was assumed that the stress from broken blocks was
transferred equally to the adjacent unbroken blocks, which may
be an oversimplification of the real failure process. It may be
more realistic that the stress be assigned according to the
distance between the broken and unbroken blocks. In addition,
other assumptions might also affect the theoretical solutions,
for example, the choice of a two-dimensional RG model rather
than a three-dimensional model. Therefore, we will attempt to
conduct a more intensive theoretical study in future work.

In view of the above, Eq. (17) might be only an approxi-
mate theoretical relationship between σcd and σucs.
Nevertheless, it could be speculated that the ratio of σcd/σucs
might be an intrinsic property of low-porosity rocks, which

could be considered as a reliable indicator for predicting the
failure of laboratory-scale rock samples.

Conclusions

The present study investigated the relationship between the
crack damage stress threshold and uniaxial compressive
strength, based on experimental results and theoretical analy-
sis. The following conclusions can be drawn:

(a) Based on uniaxial compression tests, it is determined that
the overall average and standard deviation of σcd/σucs of
low-porosity rock samples is ~0.80 (±0.10).

(b) Based on the two-dimensional RG method, we eventu-
ally established the theoretical solution of σcd/σucs. It was
found that as the shape parameter m increases, the ratio
σcd/σucs gradually decreases and tends towards a hori-
zontal asymptote that is almost consistent with the over-
all average of experiment results, i.e., ~0.80.

(c) Both the experimental results and theoretical solutions
imply that there exists a certain relationship between σcd
and σucs. The normalized quantity, σcd/σucs, might be an
intrinsic property of low-porosity rocks, which could be
regarded as a potential indicator for predicting the failure
of laboratory-scale rock samples.
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