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Abstract In this day and age, most environmental researchers
use satellite data for monitoring and assessing of water quality
indicators since the traditional methods are both time- and
money-consuming. One of the most important water quality
parameters that can be assessed in coastal waters and river
estuaries using remote sensing techniques is suspended sedi-
ment concentration (SSC). It regulates primary production and
has substantial influence on the migration of pollutants, tem-
perature, and marine life. In this study, Moderate-Resolution
Imagine Spectrometry (MODIS) images were used to retrieve
the SSC along the southern coast of the Caspian Sea. MODIS
of 250 m resolution data were utilized because they have the
highest spatial resolution of all the MODIS bands. In situ data
were gathered with multiple campaigns with fast motor boats,
while the MODIS sensor was passing over the study area. The
goal of this article is to apply artificial neural networks (ANN)
to retrieve SSC from satellite remote sensing imagery. ANN

function as an intelligent structure to model a variety of
nonlinear relationships because iteration-based inversion
methods need long computation times for common usage.
Using a validation data set and a testing data set, the network
could be validated. The learning process was more efficient
which resulted in a shorter learning time. The validation data
set played a vital role as a stopping criterion during the
training procedure to overcome the overtraining problem. A
robust relationship between MODIS bands 1 and 2 and in situ
data was established based on a three-layer ANN with six
neurons in the hidden layer. Root mean squared error and R2

values for this model were 0.853 and 0.969 mg/L, respective-
ly, for all data. Results of this study reveal that the SSC in the
Caspian Sea gradually decreases from west to east.

Keyword Artificial neural network .MODIS . Suspended
sediment . Caspian Sea

Introduction

According to Morel and Prieur (1977), waters can be defined
as belonging to two optical classification types: case I and case
II. Waters that are highly affected by phytoplankton concen-
tration, such as open ocean areas, are called case I waters.
Case II waters, such as inland and coastal waters, are basically
a function of resuspended sediment, colored dissolved organic
matter (CDOM), dissolved matter, and strongly concentrated
phytoplankton blooms (Miller et al. 2004).

Coastal regions are important economic and social zones.
The coastal zones from 200 m above to 200 m below sea level
occupy about 18 % of the globe's surface. They are where
about 60 % of the human population live, they supply around
90 % of the world's fish catch and 25 % of primary produc-
tivity occurs in this area (Cracknell 1999). High-quality
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coastal waters can affect healthy habitat and local usages and
attract local and overseas tourism.

The southern coast of the Caspian Sea is heavily polluted
and thus, the Caspian environment is under tremendous stress
due to extensive exploitation and discharge of large magni-
tudes of human waste, including industrial and agricultural
wastewaters, municipal domestic sewage waters, heavy
metals, oil and petroleum products, nutrients (phosphate and
nitrate), and pesticides (Korshenko and Gul 2005).

The traditional methods for monitoring and assessing water
quality include in situ data measurements or collecting the
samples for analysis subsequently in the laboratory. The con-
ventional methods are also based on the fixed stations. These
methods provide careful measurements for a specific time and
place. However, they are not suitable for water quality mon-
itoring in large water bodies because they are expensive and
do not provide proper observations for water quality assess-
ment and managing purposes (Schmugge et al. 2002).

Remote sensing techniques provide both spatial and tem-
poral views of surface water quality parameters that are not
achieved by in situ measurements. The traditional methods
tend to be time-consuming and do not provide sufficient data
(Kaya et al. 2006). Applying remote sensing for assessing
water quality parameters illustrates clearly the capability of
these synoptic, frequent and relatively cheap measurements
by aircraft and spacecraft instruments.

Suspended sediment monitoring is vital for river manage-
ment and environmental protection (Azamathulla et al. 2013).
Satellite platforms have been used for remote sensing studies
of suspended sediment since the late 1970s (Ritchie and
Schiebe 2000). During the past few years, researchers have
employed different satellite sensors to study the suspended
sediments: Advanced Very High-Resolution Radiometer
(AVHRR) (Myint and Walker 2002; Froidefond et al. 1999;
Kaya et al. 2006; Aguirre-Gomez 2000), Sea-viewing Wide
Field-of-view Sensor (Sea WiFS) (Warrick et al. 2004;
Binding et al. 2003; Figueras et al. 2004), Thematic Mapper
(TM) (Tassan 1998; Östlund et al. 2001), Enhanced Thematic
Mapper (ETM) (Ma and Dai 2005; Wang et al. 2007;
Alparslan et al. 2007), Satellite Pour I'Observation de la Terre
(SPOT) (Doxaran et al. 2002), Indian Remote Sensing (IRS)
Satellite P6 LISS III (Prabaharan et al. 2013), and Medium-
Resolution Imaging Spectrometer (MERIS) (Moore et al.
1999). Some studies have derived case 2 water algorithms
which are based on one sensor. Eleveld et al. (2008), for
instance, presented a single-band algorithm (named POW-
ERS) which calculates the suspended particle matter concen-
tration from SeaWiFS datasets for the turbid water of southern
North Sea. Others benefited from multiple sensors' approach.
In the study of Nechad et al. (2010), a space-based optical
multisensor algorithm was developed to retrieve total
suspended matter concentration in turbid water. This algo-
rithm is suitable for any ocean color sensor including MERIS,

Moderate Resolutions Imagine Spectrometry (MODIS), and
SeaWiFS (Nechad et al. 2010). The innovation of this study is
the hyperspectral calibration which is used to identify the best
spectral interval for total suspended matter retrieval from
remote-sensed reflectance, while the semiempirical approach
takes into account assumptions on spatial and temporal vari-
ability of specific inherent optical properties (IOPs) (Nechad
et al. 2010).

However, some characteristics of remote sensing instru-
ments limit their application to operational monitoring of
suspended sediments in coastal areas. The most common
limitation is the spatial resolution of the instrument (Miller
andMcKee 2004). AVHRR and SeaWiFS sensors are of 1-km
spatial resolution and are thus not suitable for estuaries and
small local zones. While Landsat sensors like TM and ETM
have good spatial resolution (30 m), their temporal resolution
(a low frequency return time of 16 days) is not appropriate for
coastal area monitoring. Cloud cover can reduce temporal
sampling rates from Landsat and other high-resolution instru-
ments even further. Another problem limiting the application
of remote sensing data is related to the instrument's costs.

The MODIS instrument is a sensor on the Terra spacecraft
that has provided comprehensive information about land,
ocean, and atmospheric processes since February 2000. The
global coverage consists of 36 spectral bands from 0.4 to
14.4 μm. Its spatial resolution depends on the wavelength
(250, 500, or 1,000 m). MODIS collects measurements from
the entire Earth surface every 1 to 2 days.

Numerous satellite remote sensing studies have demon-
strated significant relationships between radiance or reflec-
tance from spectral wave bands or combinations of wave
bands and suspended sediments. In addition, they have tried
to determine the optimal portions of the spectrum for tracking
suspended sediment concentration (SSC). The results indicate
that there is strong evidence that reflectance in both the visible
(esp. red) and near-infrared portions of the spectrum can
successfully track SSC (Pavelsky and Smith 2009; Doxaran
et al. 2002; Ritchie et al. 1976, 2003). When the SSC in-
creases, the amount of reflectance will be saturated (Ritchie
et al. 2003). Other remote sensing investigations of suspended
sediments have determined that many wavelengths can be
used, and optimum wavelength is associated with SSC (e.g.,
Curran and Novo 1988).

Among alternatives for the design of a case 2 water algo-
rithm, Doerffer and Fischer (1994) were among the first who
used an optimization technique to extract water constituents
from CZCS data. The proposed inverse modeling technique
encompassed water and atmosphere in one model. Later, they
developed a neural network based on a case 2 water algorithm
for the ground processor of MERIS which has been designed
mainly for ocean and coastal water remote sensing with spe-
cial resolution of 300 m for nine bands in visual domain
together with the revisit period of 1 to 3 days (Doerffer and
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Schiller 2007). The developed algorithm showed that a neural
network can be efficient and accurate for the water color
remote sensing.

The artificial neural network (ANN) has the ability to learn
complex and nonlinear relationships that are difficult to model
with conventional methods. The integration of remote sensing
data is more convenient using neural networks since they
allow the target classes to be defined in relation to their
distribution in the corresponding domain of each data source
(Pradhan and Buchroithner 2010). The ANN technique has
become an increasingly popular tool for water quality model-
ing among environmental researchers during the last two
decades (e.g., Keiner and Yan 1998; Panda et al. 2004). Keiner
and Yan (1998) employed a model of neural network to
monitor the coastal water quality of the mouth of the Delaware
Bay. Their model was constituted by a three-layer neural
network and applied back propagation error (BPE) in the
training procedure.

This paper explores the application of MODIS images to
suspended sediment monitoring in coastal waters of the south-
ern part of the Caspian Sea. Also, a neural network algorithm
was established to model a relationship between SSCs and
MODIS near-infrared bands.

Materials and methods

Case study area

The Caspian Sea is the largest inland water body in the world
(Kosarev and Yablonskaya 1994). It is surrounded by five
countries: Iran, Federation of Russia, Azerbaijan, Turkmeni-
stan, and Kazakhstan (see Fig. 1). The Caspian Sea has a
surface area of ~436,000 km2. It is the world's largest lake,
being 1,200-km long with an average width of 330 km (width
varies between 204 and 566 km; De Mora et al. 2004). The
Caspian Sea is divided into three parts. The shallow area is in
the northern part, with an average depth of ~5 m and a
maximum depth of 20 m. The middle part is relatively deep,
with a maximum depth of ~788 m (De Mora et al. 2004). The
southern part of the Caspian Sea is located north of Iran.
Golestan, Mazanderan, and Guilan are three Caspian coastal
counties of Iran. The deepest zone of the Caspian Sea, with
around 1,025-m depth, was found in the southern part
(Khoshravan 2007). The salinity gradient increases from north
to south (Kosarev and Yablonskaya 1994). The salinity is low
in Caspian Sea surface water but can affect some endemic
zooplankton and phytoplankton species along a gradient from
north to south. The sea level has changed during the past
decades. By increasing around 2.5 m since 1997, the sea level
is now around 27 m below mean global sea level (De Mora
et al. 2004). There are nearly 130 rivers which drain into this
sea (DeMora et al. 2004). The greatest flow input comes from

the Volga, Emba, Ural, and Terek rivers. About 61 rivers are
from the Iranian Caspian coast. Iranian rivers annually trans-
mit around 33 million tons of sediments and 11 km3 of water
into the Caspian Sea. The Sefidrud River has the most impor-
tant role in the transportation of the sediment. The temperature
is variable between different parts of the Caspian Sea. The
surface water temperature in the southern part varies between
9 °C in winter and 26 °C in summer. The quality of the
Caspian Sea water plays a great role in the fishing industry.
Recent environmental changes in the Caspian Sea have
attracted the attention of researchers.

Data

In situ data

The in situ data were collected while the MODIS sensor
onboard the Terra satellite was simultaneously passing over
the study area. The samples were taken by motor boat in
several missions over May 2007. The measurement depth
was 0.5 m. Total suspended sediment concentration (milli-
grams per liter) was determined gravimetrically following the
procedures outlined by Strickland and Parsons (1972). A
known volume of water was filtered through preweighed
0.7-μm GF/F filters. Then, all filters were rinsed with Milli-
Q water to eliminate salts and dried in a drying oven until they
attained a constant weight after which reweighting was done
on a high-precision balance and the new weight recorded.
Samples were stored in acid-washed amber plastic bottles
until filtered in water quality laboratory of Tarbiat Modares
University. Stored samples were filtered within 3 days of
collection. The concentration ranges of sediment samples
were between 5.32 and 24.95 mg/L. The 57 samples were
obtained within 30 min before or after a MODIS Terra over-
pass. The data collection was done in May in which the cloud
cover is relatively minimum over the study area. For each in
situ position, one pixel was taken from the corresponded
satellite image.

Satellite remote sensing data

Because of its high temporal and spectral resolution and
previous successful applications of MODIS images for mon-
itoring coastal areas (Miller and McKee 2004; Katlane et al.
2013), the MODIS sensor was used as satellite data in this
investigation. Also, MODIS data are free of charge and are
readily available from the NASA MODIS website. Table 1
presents a list of 15 analyzed images used in the study.

Geometric and atmospheric corrections were carried out on
the MODIS images. The geometric correction was done using
known coordinate system in the study area (UTM, zone 39
north). The dark pixel approach was used for the atmospheric
correction. This technique, which is based on the concept of
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zero water leaving radiance at near-infrared wavelengths,
determines the pixel in the image with the lowest brightness
value. This pixel is supposed to have zero ground radiance, so
that its radiometric value shows the additional impact of the
atmosphere and should be subtracted from all the pixels. The
land and cloud masking were done using an experimental
algorithm. The initial approach was to use the raw digital
values of band 2 and then determine the minimum value for

land. Anything greater than this value was considered land or
cloud and masked. Since the value of Normalized Difference
Vegetation Index (NDVI) is negative over water surfaces, this
index was also used to check the accuracy of applied empirical
threshold. By applying this simple but effective mask, we
were able to eliminate land and clouds for processing thereby
greatly reducing computation time. Bands 1 and 2 are the most
interesting bands of MODIS images because they have the

Fig. 1 Map of the study area
(source: http://www.
eurodialogue.org/files/fckeditor_
files/caspian-sea_186.jpg)

Table 1 List of MODIS images
used in this study Image date Image ID Acquisition time (GMT)

05/01/2007 MOD02QKM.A2007121.0735.005.2010192164129.hdf 07:35

05/02/2007 MOD02QKM.A2007122.0640.005.2010192175817.hdf 06:40

05/03/2007 MOD02QKM.A2007123.0725.005.2010192195719.hdf 07:25

05/06/2007 MOD02QKM.A2007126.0755.005.2010192234022.hdf 07:55

05/08/2007 MOD02QKM.A2007128.0740.005.2010193014429.hdf 07:40

05/19/2007 MOD02QKM.A2007139.0725.005.2010193113813.hdf 07:25

05/20/2007 MOD02QKM.A2007140.0805.005.2010193125415.hdf 08:05

05/21/2007 MOD02QKM.A2007141.0710.005.2010202043615.hdf 07:10

05/22/2007 MOD02QKM.A2007142.0755.005.2010193133945.hdf 07:55

05/23/2007 MOD02QKM.A2007143.0700.005.2010193141451.hdf 07:00

05/24/2007 MOD02QKM.A2007144.0740.005.2010193154832.hdf 07:40

05/25/2007 MOD02QKM.A2007145.0645.005.2010193163117.hdf 06:45

05/26/2007 MOD02QKM.A2007146.0730.005.2010193173029.hdf 07:30

05/28/2007 MOD02QKM.A2007148.0715.005.2010193184919.hdf 07:15

05/31/2007 MOD02QKM.A2007151.0745.005.2010196130815.hdf 07:45
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highest spatial resolution (250 m) of all MODIS bands. The
wavelength ranges of MODIS bands 1 and 2 are 620–670 and
841–876 nm, respectively. These bands were used for re-
trieving the suspended sediments in coastal areas of the
Caspian Sea.

In this study, regression analyses and artificial neural net-
works were considered to establish an accurate model of SSC
field data and remote sensing reflectance of MODIS bands 1
and 2. A large number of studies have shown a nonlinear
relationship between suspended sediments and their radiance
or reflectance (Ritchie et al. 1976; Curran and Novo 1988).

Linear regression analysis can estimate nonlinear functions
with two limitations: first, linear regression needs perfect
information about the nature of the function's nonlinearity.
Second, it can approximate the nonlinear functions only over
small ranges. However, a neural network can reasonably
approximate the nature of linear and nonlinear transfer func-
tion (Keiner and Yan 1998).

Artificial neural network

Definition and background

In the present investigation, an ANN was also applied, which
is a feed-forwardmultilayer perceptron (MLP). AnMLPANN
has several layers: input layer, hidden layer(s), and output
layer. There are many nodes in each layer, called neurons.

The structure of one neuron is shown in Fig. 2. The overall
behavior of each neuron can be modeled as Eq. (1):

yi ¼ f
Xn

i¼1
wijxi þ bj

� �� �
ð1Þ

where y j is the j th output associated with j th node, x i is i
th

input,w ij is the synaptic weight associated with the i
th input of

the j th node and b j is the bias associated with the j th node.
Here, f is the nonlinear activation function.

The learning process

Learning is a process by which the associated weights of an
ANN change through an environmental function in order to
simulate it. The type of learning is dependent on the change
procedure of the weights. So, the two types of learning are
categorized as error correction learning and memory-based
learning. The network learns through the training procedure.
There are two different styles with which to train a network:
incremental training and batch mode training. The stopping
criterion can be different. For example, the maximum epoch
and/or the minimum root mean squared error (RMSE) are
popular stopping criteria.

The training process

In the training procedure, the network learns to train the input
data set with the correct behavior to give the right output data.
The training data set has pairs of input values and target true
output values. In the present investigation, the training data set
includes pairs of many in situ measurements as target true
output values and MODIS reflectance at the same place and
time as input values.

Generalizing process and preprocessing

In a practical problem, it is important to construct a system that
generalizes well with unseen examples. These data are used to
test the network after the training process. A critical problem
that a neural network faces is overtraining; the network may
never be trained efficiently. A tradeoff between these two
problems was confronted, and an optimized number of neu-
rons was chosen (Haykin 1998).

Result

Regression analysis

Different regression models were applied to obtain a good
relationship between remote sensing reflectance data and in
situ-suspended sediment data. The results are shown in
Table 2. In this table, F is the ratio of mean square regression
to mean square error. All regression models were significant.
For both band 1 and band 2, the best result belonged to the
power regression model because it had the maximum R2 and
the highest F-ratio.

A linear regression model was also established with com-
bination of bands 1 (red, 620–670 nm) and 2 (near-infrared,
841–876 nm) and was presented as Eq. (2). The values of

W1j

W2j

W3j

Wnj

x1

x2

x3

xn

yj

bj

Synaptic

Somatic

Fig. 2 A simple model of neurons that mentions synaptic and somatic
operations
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R2 and RMSE for this equation were 0.855 and 1.834,
respectively.

SSC mg=lð Þ ¼ −16:331þ 2168:067 band1ð Þ þ 784:919 band2ð Þ
ð2Þ

Network architecture

In order tomodel a nonlinear relationship between SSC and its
remote sensing reflectance, a three-layer ANN, including
input layer, one hidden layer, and output layer, was
established. The input layer consisted of band 1 and band 2
from the MODIS sensor, and the output layer consisted of
SSC. Since the number of hidden layer neurons depends on
the complexity of the function that must be modeled, so the
number of hidden layer neurons varied between 1 and 10.
While network training with too many neurons is a time-
consuming procedure, the network using too few neurons
might never converge to a proper solution. Therefore, a hidden
layer with six neurons was employed.

A Tan-sigmoid activation function and a linear function
were used in the hidden layer and output layer, respectively.
Network weights and biases were randomly selected between
−1 and +1. Before presenting data to the network, all data
were normalized to between −1 and +1. So all input values
and corresponding target true output values were passed
through the function as Eq. (3):

y ¼ x−mean xð Þ
F xð Þ ¼ 2 y−min yð Þ½ �= max yð Þ−min yð Þ½ �−1 ð3Þ

where x is the input data vector or corresponding target true
data vector, the mean operator is the average of vector mem-
bers, and the min and max operators are the minimum and
maximum member in each vector. This transformation accel-
erated the learning procedure and decreased the learning time.

Network training

The back propagation algorithm which is based on the gradi-
ent descent method, conjugate gradient, is not efficient enough
to speed up convergence. However, the other popular method,

quasi-Newton, is more efficient, but due to the necessity of
computing the Hessian matrix, it suffers the storage and the
computational requirements. To avoid computing the Hessian
matrix, the Marquardt method was used as a quicker training
algorithm (Hagan and Menhaj 1994) to approach second-
order training speed. Batch training was applied to update
weights and biases once an epoch 57 data points were gath-
ered from the south coastal region of the Caspian Sea. All of
themwere divided randomly into three groups. The first group
of data was selected as training data set. It was 60 % of the
data. Two other groups were validation and testing data sets
which will be introduced in the following sections.

Network validation

Previous studies have attempted to validate the trained net-
work with only test data (Zhang et al. 2002; Keiner and Yan
1998). On the other hand, they used the minimum value of
RMSE and/or the maximum number of epochs as stopping
criteria. This method may not give us adequate answers. Here,
another stopping criterion was used as well as minimum
RMSE and maximum number of epochs that is mentioned
in the following paragraph.

The second group of data was used as validation data set. It
was 20 % of the data. After each training epoch, calculated
error through the network was monitored by this data set.
Validation error was intended to decrease with training error,
while the network was training during the initial epochs.
When the network began to overfit or overtrain the data,
validation error would be increased. When the validation error
was increased after passing a specified number of epochs, the
training process was stopped to control for overfitting. Then
all of weights and biases were chosen before the validation
error had been increased.

Network testing

The rest of sample data was considered as the testing data set.
The model validation was carried out with the testing data set.
For each architecture with a specific number of neurons, the
training process was repeated so that the values of RMSE and
R2 for the training data set were better than the validation data
set and the testing data set. The resulting table of neural
networks (Table 3) shows that the values of RMSE and R2

are functions of the number of hidden layer neurons. With an
increase in the number of hidden layer neurons, RMSE value
is decreased and the R2 value is increased. During the training
process, it was found that when the number of hidden layer
neurons was very low or very high, so it was difficult to
achieve the suitable values of RMSE and R2. These two
conditions occurred because of the network divergence or
network overtraining.

Table 2 The results of the regression analyses between remote sensing
reflectance data and in situ-suspended sediment data

Linear Logarithmic Power

Band 1 R2 0.841 0.810 0.914

F 290.216 233.735 582.869

Band 2 R2 0.749 0.706 0.752

F 163.869 132.297 166.979
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The whole flowchart of retrieving SSC using the proposed
ANN is shown in Fig. 3. As it was shown in this scheme, both
the satellite and ground truth data were prepared as input and

output network data, respectively. Then, they were divided
into three groups: training, validation, and testing data. By
choosing the proper network architecture, including the

Table 3 Comparison of RMSE
and R2 of the training, validation,
and testing data sets with respect
to the number of hidden neurons

RMSE (mg/L) R2

No. of hidden neurons Train Validate Test Train Validate Test

1 2.904 3.812 3.221 0.813 0.721 0.769

2 1.918 3.436 2.237 0.860 0.761 0.838

3 1.503 2.917 1.855 0.919 0.805 0.893

4 1.291 2.578 1.351 0.948 0.830 0.941

5 0.841 2.244 0.976 0.967 0.837 0.953

6 0.509 1.849 0.797 0.985 0.910 0.982

7 0.357 1.514 0.691 0.987 0.923 0.983

8 0.299 1.148 0.562 0.988 0.929 0.984

9 0.264 0.976 0.424 0.990 0.937 0.986

10 0.253 0.819 0.387 0.990 0.941 0.986

Fig. 3 Flowchart of proposed ANN methodology to retrieve SSC
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Fig. 5 The results of ANN on a training, b validation, c testing, and d total example for SSC
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number of hidden layers and the number of hidden neurons,
the learning process began. In each epoch, the training proce-
dure was done by presenting whole training data set and
network weights were changed to a more accurate model. In
order to validate the model, the validation data set was pre-
sented to the network. If the validation data set error was not
increased, next epoch would continue. Eventually, the final
accuracy of the model would be assessed using the testing data
set.

For an ANN with six neurons, the RMSE values of the
training data set, validation data set, and testing data set, with
respect to epoch, were calculated. The simulation of training,
validation, and testing examples by the network during the
training procedure is shown in Fig. 4. Increasing of the vali-
dation data set error occurred at epoch 11, so the training
procedure was stopped at this point. A clear and important
point in this study was that a proper answer could be obtained,
while the number of epochs was effectively decreased. With a
data distribution over the interval of [−1 +1] with a zero mean,
the use of log-sig instead of Tan-sig which produces zero
mean output data, and also the monitoring of training ANN
structure using validation data set error, the number of epochs
was reduced. Consequently, a big problem of ANN,
overtraining, was solved dynamically during the training
procedure.

The result of the comparison between the SSC estimated by
the network and the in situ data was illustrated in Fig. 5. They
clearly indicate that the ANN model has operated well. The
values of RMSE and R 2 obtained from this model with
training, validation, testing, and the whole data set are respec-
tively: 0.509 and 0.985 mg/L, 1.849 and 0.910 mg/L, 0.797
and 0.982 mg/L, and 0.853 and 0.969 mg/L. The average
amount of SSC during May 2007 along the southern coast
of the Caspian Sea is illustrated in Fig. 6.

Discussion

The algorithms developed in this study were compared with
those of band ratios, band differences, and some other possible
combinations of visible and near-IR bands to find the best one
for comparison. These algorithms were quite different in the
selected bands when compared with those used in other stud-
ies (e.g., Keiner and Yan 1998). In order to indicate the
significance of the regression models, the R2 and F-ratio have
been calculated. The most successful combination was power
regression model because it had the maximum R2 and the
highest F-ratio.

However, these statistical results show that regression anal-
ysis is not good enough (in comparison to ANN) to characterize

Fig. 6 A map of suspended sediment concentration in the southern part of the Caspian Sea on May 2007, estimated by the neutral network
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the relationship between both the digital data MODIS and
the suspended sediment parameter in this study. According to
the Keiner and Yan (1998), the main reason is the poor
ability of regression analysis to model the unknown nonlinear
transfer function in surface waters.

In order to obtain surface water suspended sediment con-
centration from satellite remote sensing data, this study shows
that it can be estimated significantly using the empirical neural
network algorithm. The ANN could also be successfully
applied to the other concentrations outside the training range
so that all regions are well covered by the ANN technique
without getting strange results. Consequently, the study also
demonstrated that remote sensing is a valuable tool in
obtaining information on the processes taking place in surface
water suspended sediment monitoring.

Figure 6 shows a map of the SSC in the southern part of the
Caspian Sea that is extended along the north Alborz Moun-
tain, and it has 865-km length. This SSC map is as a result of
more than 100 rivers in this region that discharge water and
sediment to the Caspian Sea and also resuspension near the
shoreline. It indicates that the SSC gradually decreases from
west to east. That is mainly because of the Sefidrud River,
which is located in the southwestern coast, and is the largest
sediment source of the Caspian Sea compared to drainage
area, water, and sediment discharge with 5.2 million ton a
year. The other rivers that contribute in the sediment discharge
along with Sefidrud in this region are Astara, Lisar, Kargarud,
Shafarud, Pasikhan, Polrud, and Chulkrud. Higher values in
this map belong to the shallower waters near the Caspian Sea
coasts due to the resuspension of the bottom sediments and
river inflow and lower values belong to the deeper waters of
the central part.

Southern coast of the Caspian Sea has been steadily pol-
luted with anthropogenic sources (fertilizer and pesticides
used in agriculture and increased nutrient load of river flows
due to deforestation of woodland) since the early 1980s. Thus,
the result of suspended sediment concentration over the
Caspian Sea lacks information on the typical content of algae
and CDOM that can be observed together with SSC. Indeed
algae and CDOM can strongly absorb radiation in the visual
bands (400–710 nm) and therefore in band 1. The technique
still needs to be improved through the addition of new input
layers, which can fully simulate the resuspension of
suspended particles, such as salinity, velocity of flow, sea
surface temperature, and hydrodynamic conditions of coastal
water.

Conclusion

Coastal waters often need special local algorithms to estimate
suspended sediment and to realize differences in their optical
properties in a variety of times and places. These differences

usually occur because of different factors, such as river dis-
charges and their sediment load, phytoplankton, and sediment
resuspension. Thus, it is important to gather field data at the
same time that satellites are passing over the study area. The
use of satellite remote sensing enables efficient monitoring of
spatial and temporal water quality variations in case 2 waters.
Remote-sensing technology was used to retrieve suspended
sediment as one of the most important water quality indicators
in southern coast of the Caspian Sea. This investigation
proved the following: obvious successful application of re-
mote sensing in coastal regions, the great usefulness of
MODIS images to monitor suspended sediment, and the es-
tablishment of ANN methods as efficient for relating remote
sensing reflectance and in situ measurements in the southern
coast of the Caspian Sea. The wide range of SSC is caused by
the many rivers which convey suspended sediment loads from
the Alborz Mountains and discharge into the Caspian Sea,
with different inputs along the shore. Another important rea-
son is human activities that change the natural behavior of
water constituents of the rivers.

Because of the accurate modeling of nonlinear relation-
ships by ANN (in comparison with regression analyses) and
the best art of ANN training algorithms (the Marquardt meth-
od), adding a third stopping criterion as a validation data set to
decrease the learning time and prevent overtraining is advised.
Thus, this methodology is suggested as the cheapest because
MODIS images are free of charge.
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