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Abstract Pre-existing cracks in brittle substances seem to be
the main cause of their breakage under various loading con-
ditions. In the present paper, a coupled numerical–experimen-
tal analysis of crack propagation, cracks coalescence, and
breakage process of brittle substances such as rocks and
rock-like samples have been studied. The numerical analyses
are accomplished using a numerical code based on the Higher
order Displacement Discontinuity Method for Crack
(HDDMCR2D) analysis. A quadratic displacement disconti-
nuity variation along each boundary element is assumed to
evaluate the Mode I and Mode II stress intensity factors.
Based on the linear elastic fracture mechanics theory, the
maximum tangential stress criterion (i.e., a mixed mode frac-
ture criterion) is implemented in the HDDMCR2D code for
predicting the crack initiation and its direction of propagation
(cracks propagation path). Some numerical and analytical
problems in finite and infinite planes are solved numerically
by the proposed numerical method, and the results are com-
pared in different tables illustrating the accuracy and validity
of the numerical results. Experimental tests are also being
done to evaluate the final breakage path and cracks initiation
and cracks coalescence stresses in rock-like specimens

containing two random cracks. The numerical and experimen-
tal results obtained from the tested specimens show a good
agreement between the corresponding values and demonstrate
the accuracy and effectiveness of the approach.

Keywords Cracks . Breakage path . Rock-like specimen .
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Introduction

The mechanical properties and breakage mechanisms of the
pre-existing fractures and discontinuities may play a vital role
to understand the physico-mechanical characteristics of a rock
mass surrounding rock structures such as surface and under-
groundmines, tunnels, rock slopes, etc. (Ke et al. 2008; Verma
and Singh 2010; Ma et al. 2012; Al Fouzan and Dafalla 2013).

One of the most effective issues on the mechanical behav-
iors of brittle materials (such as rocks) is the presence of pre-
existing cracks (Golshani et al. 2005). Although the mechan-
ical behavior of rocks may depend on their mechanical struc-
ture, the extension of pre-existing cracks depends on the
properties such as size, position, orientation, and loading
condition. The cracks typically nucleate at the places of stress
concentrations like pores, inclusions, sharp cracks, and triple
connections (Haeri et al. 2013).

Ichikawa et al. (2001) indicated that the production and
propagation of cracks play an important role in predicting the
cyclic breakage process of rocks. The resulted cracks may be
further extended in kinked or curved forms (Marji and
Dehghani 2010). The breakage mechanism of brittle sub-
stances with randomly orientated cracks depends on the de-
gree of interaction between cracks and their coalescence path
(Li and Yang 2001). There are generally two mechanisms of
quasi-static crack propagation and cracks coalescence, which
may be observed in the experimental and numerical studies of
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the brittle materials specimens under various loading condi-
tions (Manouchehrian and Marji 2012; Afifipour and
Moarefvand 2013).

The pre-existing cracks in rocks are normally under com-
pressive loading rather than under tension, shear, or mixed
mode loading (Ke et al. 2008). In compressive loading, one
might therefore expect that crack initiation will follow in the
direction (approximately) parallel to the major principal com-
pressive stress (Hoek and Bieniawski 1965). In the breakage
process of the brittle substances under uniaxial compression,
two types of cracks may be observed originating from the
original tips of pre-existing cracks (i.e., wing cracks and
secondary cracks as shown in Fig. 1). Wing cracks may
generally be considered as the emanating tensile cracks that
initiate at or near the original tips of the pre-existing cracks in
a specimen under loading. These tensile cracks may propagate
in a curved path form and parallel to the direction of major
principal compressive stress. The secondary cracks may be
considered as shear cracks that may initiate from the original
tips of the pre-existing cracks and propagate in a stable man-
ner. These shear cracks may initiate in two different directions,
i.e., coplanar (quasi-coplanar) and/or oblique to the direction
of pre-existing cracks (Bobet and Einstein 1998a, b).

Many experimental procedures have been reported on var-
ious types of rock or rock-like substances under compressive
loading (Ingraffea 1985; Horii and Nemat-Nasser 1985;
Huang et al. 1990; Reyes and Einstein 1991; Shen et al.
1995; Wong and Chau 1998; Wong et al. 2001; Sahouryeh
et al. 2002; Sagong and Bobet 2002; Li et al. 2005; Wong and
Einstein 2006; Park 2008; Park and Bobet 2009; Yang et al.
2009). Recently, Park and Bobet (2010) conducted experi-
mental tests on rock-like samples, each containing three
cracks and explored differences and similarities between open
and closed cracks. According to their findings, different
modes of initiation and propagation of cracks were recog-
nized. Moreover, various types of cracks coalescence were
observed for specimens containing open or closed cracks. In
another research work, Janeiro and Einstein (2010) conducted
uniaxial compression tests to investigate the cracking behavior
of prismatic gypsum specimens containing one or two inclu-
sions. In addition, Yang (2011) studied the effect of coplanar
crack angle on the strength and deformation behavior in
sandstone samples. The crack initiation and coalescence of
samples containing two coplanar cracks were observed using
photographic monitoring from the tips of pre-existing copla-
nar cracks. As a result of this research, a relationship between
the coplanar crack angle and the crack coalescence stress was
presented. Lee and Jeon (2011) applied uniaxial compression
test on three different materials to experimentally analyze the
crack initiation, propagation, and coalescence of pre-existing
single and double cracks. In addition, the crack initiation and
coalescence stresses were investigated in their study showing
that the crack initiation and propagation depends on the type
of material. Ghazvinian et al. (2012) experimentally studied
the effect of crack inclination angle and crack length on
fracturing processes of brittle materials under diametrical
compression.

Despite the improvements made in the experimental obser-
vation of the various types of rock or rock-like substances under
compression, several numerical or analytical–numerical ap-
proaches (due to their high accuracy, reliability, and lower
costs) were also used for modeling the rock breakage mecha-
nism (Haeri 2011). In this respect, various numerical methods
have been developed for the simulation of crack propagation in
brittle substances, e.g., finite element method (FEM) (Oliver
et al. 2006; Li and Wong 2012), boundary element method
(BEM) (Crouch and Starfield 1983), discrete element method
(Manouchehrian and Marji 2012), discontinuous Galerkin
method (Sukumar et al. 1997; Stan 2008), and mesh-free
methods (Rabczuk et al. 2007; Bordas et al. 2008). Based on
these numerical methods, several computer codes have also
been developed formodeling the breakagemechanism of brittle
materials such as rocks, e.g., FROCK code (Park 2008), Rock
Failure Process Analysis (RFPA2D) code (Wong et al. 2002),
and 2D Particle Flow Code (PFC2D) (Lee and Jeon 2011;
Manouchehrian and Marji 2012; Ghazvinian et al. 2012).Fig. 1 A propagated center slant crack under uniaxial compression
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Oguni et al. (2009) developed a new method, called parti-
cle discretization scheme finite element method (PDS–FEM),
which can be used for the quasi-static analysis of crack
propagation.

Three important breakage initiation criteria were proposed
to study the crack propagation mechanism of brittle materials:
(1) the maximum tangential stress criterion (σ-criterion)
(Erdogan and Sih 1963), (2) the maximum energy release rate
criterion (G-criterion) (Hussian et al. 1974), and (3) the min-
imum energy density criterion (S-criterion) (Sih 1974). Some
modified form of the mentioned criteria, e.g., F-criterion,
which is a modified energy release rate criterion proposed
by Shen and Stephansson (1994), may also be used to study
the breakage behavior of brittle substances (Marji et al. 2006;
Marji 2013). Recently, Behnia et al. (2011) have compared the
σ-criterion and S-criterion for crack propagation analysis in
rocks (for a Poisson’s ratio of 0.2) and obtained almost the
same results for both criteria.

Methodology

In this study, a comprehensive analytical, numerical, and
experimental approach is developed for the analyses of cracks
initiation, propagation, and coalescence in rocks and rock-like
substances. For this purpose, a modified indirect boundary
element method based on displacement discontinuities along a
straight-line crack is developed. Then a computer code
(HDDMCR2D) is prepared using a quadratic variation of
displacement discontinuities with three equal sub-elements.
This numerical approach may be regarded as a mesh reducing
dual boundary element method (Chen and Hong 1999;
Aliabadi 1998) for solving two-dimensional elastostatic prob-
lems where the cracks are discretized as straight lines (not as
two separate overlapped lines as considered in the conven-
tional direct dual boundary element method). It should be
noted that the Mode I and Mode II strain energy release rate
and the Mode I and Mode II stress intensity factors are
interrelated for the brittle substances such as rocks. The G-

criterion and its modified form (F-criterion) have also been
used in the literature. The differences between these criteria
may be evident for the case of ductile substances such as
steels. Recently, Behnia et al. (2011) have compared the
σ-criterion and S-criterion for crack propagation analysis
in layered rocks (for a Poisson’s ratio of 0.2) and obtained
almost the same results for both criteria. Therefore, the
σ-criterion may be used for the crack propagation analysis
of brittle rocks (as have been used by many researchers
such as Whittaker et al. 1992; Haeri et al. 2013; Behnia
et al. 2013).

Results of the numerical analysis are compared with the
existing analytical results or with the performed experimental
work results. The breakage mechanism of brittle substances
due to the propagation and coalescence of random cracks have
been studied. The linear elastic fracture mechanics (LEFM)
concepts [by computing the Mode I and Mode II stress inten-
sity factors (SIFs)] and σ-criterion have been implemented in
the computer code to predict the possibility of crack propaga-
tion and estimate the crack initiation direction. An iterative
method explained by Marji (1997) has been used to investi-
gate the crack propagation direction and path after each crack
extension, Δb =0.1b , successively. To investigate the cracks
coalescence phenomenon, two small random cracks are con-
sidered at the central part of a finite plate under uniaxial
compression. The crack propagation path of each crack has
been estimated by the iterative method and the coalescence of
the cracks has been observed. Some experimental works are
also accomplished by testing specially prepared rock-like
samples [prepared by mixing Portland Pozzolana Cement
(PPC), fine sand, and water] containing central single and
double cracks. The specially prepared rock-like specimens
were tested under compressive loading in a rock mechanics
laboratory to visualize the cracks propagation and cracks
coalescence processes. Comparing the numerical results with
both the analytical and experimental results demonstrates the
accuracy and effectiveness of the proposed numerical method
in the study of the rock breakage process under compressive
loading conditions.

Fig. 2 Discretization of a center
slant crack into quadratic DD
elements

Arab J Geosci (2015) 8:809–825 811



Higher order displacement discontinuity method

Higher order displacement discontinuitymethod (HDDM) is a
category of the broad indirect BEM for solving the elastostatic
problems with specified boundary conditions by assuming
continuous stress and discontinuous displacement fields at
the discretized boundaries. In this method, the boundaries
are discretized into a proper number of line crack elements
(Guo et al. 1990, 1992; Scavia 1990; Aliabadi and Rooke
1991; Aliabadi 1998; Marji et al. 2006; Haeri and Ahranjani
2012; Marji 2013; Haeri et al. 2013).

In this research, in order to obtain a higher accuracy of the
displacement discontinuities (DDs) along the boundary of the
problem, a two-dimensional HDDM employing quadratic
elements is used. A quadratic DD element is divided into three
equal sub-elements that each sub-element contains a central
node for which the nodal DDs are evaluated numerically
(Marji et al. 2006).

Based on this definition of DD, it can be formulated as:

DD j δð Þ ¼
X
i¼1

3

Γ i δð ÞDDi
j ; j ¼ x; y ð1Þ

where DDj
1, DDj

2, and DDj
3 are the quadratic nodal displace-

ment discontinuities in x and y directions. Considering a
quadratic element of length, 2‘ , with equal sub-elements
‘1 ¼ ‘2 ¼ ‘3ð Þ and a quadratic shape function, Γ i(δ ) for −

Fig. 3 A special crack tip
element with three equal
sub-elements

Fig. 4 A center slant crack in an infinite plane
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‘≤δ≤‘ , the following shape functions can be defined (Marji
et al. 2006).

Γ 1 δð Þ ¼ − 3‘31−‘
2
1δ−3‘1δ

2 þ δ3
� �

= 48‘1
3

� �
;

Γ 2 δð Þ ¼ 9‘31−9‘
2
1δ−‘1δ

2 þ δ3
� �

= 16‘1
3

� �
;

Γ 3 δð Þ ¼ 9‘31 þ 9‘21δ−‘1δ
2−δ3

� �
= 16‘1

3
� � ð2Þ

A quadratic element has three nodes, which are at the
centers of its three sub-elements as shown in Fig. 2. The
derivation of shape functions for a quadratic variation of
displacement discontinuity along the boundary element and
their implementation in the modified HDDMCR2D code is
explained in Appendix 1 for both infinite and finite plane
problems.

Since the singularities of the stresses and displacements
near the crack ends may reduce their accuracies, special crack
tip elements are used to increase the accuracy of the DDs near
the crack tips (Marji et al. 2006). As shown in Fig. 3, the DD
variation for three nodes can be formulated using a special
crack tip element containing three nodes (or having three
special crack tip sub-elements)

DD j δð Þ ¼ ΓC1 δð Þ½ �DD1
j ‘ð Þ þ ΓC2 δð Þ½ �DD2

j ‘ð Þ þ ΓC3 δð Þ½ �DD3
j ‘ð Þ
ð3Þ

where the crack tip element has a length ‘ ¼ ‘1 þ ‘2 þ ‘3 .
Considering a crack tip element with the three equal sub-

elements ‘1 ¼ ‘2 ¼ ‘3ð Þ , the shape functions ΓC1(δ), ΓC2(δ)
and ΓC3(δ) can be obtained as equations:

ΓC1 δð Þ ¼ 15δ
1
2

8‘
1
2
1

−
δ
3
2

‘
3
2
1

þ δ
5
2

8‘
5
2
1

;

ΓC2 δð Þ ¼ −5δ
1
2

8‘
1
2
1

þ 3δ
3
2

2
ffiffiffi
3

p
‘
3
2
1

−
δ
5
2

4
ffiffiffi
3

p
‘
5
2
1

;

ΓC3 δð Þ ¼ 3δ
1
2

8
ffiffiffi
5

p
‘
1
2
1

−
δ
3
2

2
ffiffiffi
5

p
‘
3
2
1

þ δ
5
2

8
ffiffiffi
5

p
‘
5
2
1

ð4Þ

The derivation of these shapes functions and their imple-
mentation in the modified HDDMCR2D code is explained in
Appendix 2 for completeness.

Based on the LEFM principles, the Mode I and Mode II
stress intensity factors K I and K II (MPam1/2) can be written in
terms of the normal and shear displacement discontinuities
(Shou and Crouch 1995; Marji 2013; Behnia et al. 2013)
obtained for the last special crack tip element as:

KI ¼ μ
4 1−νð Þ

2π
‘1

� �1
2

DDy ‘1ð Þ; and KII ¼ μ
4 1−νð Þ

2π
‘1

� �1
2

DDx ‘1ð Þ ð5Þ

where μ is the shear modulus and ν is Poisson’s ratio of the
brittle material.

Table 1 Mechanical properties of the rock-like specimens (obtained
experimentally in a rock mechanics laboratory)

Description Parameter Value Unit

Crack length 2b 10 mm

Uniaxial compression strength σ 26 MPa

Modulus of elasticity E 17 GPa

Poisson’s ratio ν 0.2 –

Fracture toughness K IC 2 MPa m1/2
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Fig. 6 The normalized SIFs K
N

I ¼ K
N

II

� �
for the 45° center crack

(φ =45°) using different number of elements and a constant L /b =0.2
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Fig. 7 The normalized SIFs, K
N
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, for the 45° center crack

(φ =45°), using different L /b ratios

Fig. 5 Variation of ϖ I and ϖ II with crack inclination angles
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Verification of the modified HDDM

Verification of the modified HDDM is made through the
solution of the center slant cracks problems in finite and
infinite planes under uniaxial compression. The analytical
solution for a center slant crack in an infinite body is given
in the rock fracture mechanics literature (Park 2008). Due to
simplification of this analytical solution, the validity of the
HDDMCR2D code can be obtained by comparing the numer-
ical results with their corresponding analytical results as ex-
plained in the following sub-sections.

Center slant crack in an infinite plane

Verifying the center slant crack in an infinite body, a schematic
crack with length of 2b is considered in a 2D infinite plane as
shown in Fig. 4. The crack inclination angle, φ , changes
counterclockwise from the x axis, and the compressive stress
is acting parallel to the y axis at infinity.

According to the analytical solution (Park 2008), the Mode
I and Mode II fracture toughness of an infinite specimen can
be estimated from

KI ¼ −σ
ffiffiffiffiffiffi
πb

p
ϖI

KII ¼ −σ
ffiffiffiffiffiffi
πb

p
ϖII

ð6Þ

where σ is the compressive stress at crack initiation (MPa), b
is half of the crack length (mm), and ϖ I and ϖ II are the non-
dimensional coefficients (depending on the crack inclination
angle, φ ) which can be defined as:

ϖI ¼ 1þ cos 2φ
2

ϖII ¼ sin 2φ
2

ð7Þ

As it can be seen in Eqs. (6) and (7), the SIFs of crack tips
are affected by the crack geometry such as crack length, b , and
crack inclination angle, φ .

Variations ofϖ I andϖ II for the assumed infinite specimen
are illustrated in Fig. 5 with changes in the φ angles. As
shown in this figure, ϖ I decreases monotonically with in-
creasing φ angle, while ϖ II has a global maximum value at
φ =45°. Furthermore, Fig. 5 implies that pure Mode I loading
is achieved only at φ =0 (ϖ I=1, ϖ II=0), whereas pure Mode
II loading is obtained at φ =45 (ϖ I=0.5, ϖ II=0.5).

The normalized Mode I and Mode II SIFs are simplified as

K
N

I ¼ KI

σ
ffiffiffiffiffiffi
πb

p

K
N

II ¼
KII

σ
ffiffiffiffiffiffi
πb

p
ð8Þ

The mechanical properties of the rock-like specimens
(obtained experimentally in a rock mechanics laboratory and

used in all of the analysis conducted in this research) are
presented in Table 1. The fracture toughness, K IC, for the
tested specimens has beenmeasured in the laboratory by using
the well-known formula given in Eq. (5).

Fig. 8 A center slant crack in a finite plate with ratio L /w =2

Table 2 The calculated values of the K
N

I and K
N

II for different φ angles

φ
K

N

I K
N

II

Analytic HDDMCR2D Analytic HDDMCR2D

10 0.9698 0.9699 0.1710 0.1710

20 0.8830 0.8831 0.3213 0.3214

30 0.7500 0.7511 0.4330 0.4320

40 0.5868 0.5861 0.4924 0.4928

50 0.4131 0.4132 0.4924 0.4924

60 0.2500 0.2500 0.4330 0.4330

70 0.1169 0.1170 0.3213 0.3214

80 0.0301 0.0301 0.1710 0.1710
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The problem shown in Fig. 4 is numerically solved
(considering a 45° center slant crack, i.e., φ =45°) by the
proposed boundary element method (HDDMCR2D code).

The normalized stress intensity factors K
N

I and K
N

II are the

same for this problem, i.e., K
N

I ¼ K
N

II ¼ 0:5
� �

. Figure 6

compares the numerical and analytical values of the normal-

ized SIFs, K
N

I ¼ K
N

II

� �
, using different number of elements

along the crack. The figure illustrates the high accuracy of the
proposed boundary element method by using a relatively
small number of elements (about 10 quadratic displacement
discontinuity elements).

Effect of the ratio of crack tip element length, L , to the half
crack length, b (L /b ratio), for φ =45° is shown in Fig. 7. As
shown in this figure, the L /b ratios between 0.1 and 0.2 give
accurate results, and throughout this text a constant L /b ratio
equal to 0.2 has been used.

The numerical and analytical results of K
N

I and K
N

II are
given in Table 2 considering a center slant crack with different
inclinations. This table illustrates the accuracy and usefulness
of HDDMCR2D code for crack analysis.

In the numerical analysis of the present problem, 10 qua-
dratic elements along the pre-existing crack, three special
crack tip elements, and L /b =0.2 are used.

Table 2 demonstrates that HDDMCR2D code gives very
accurate results for the center slant crack problem. Thus, the
proposed numerical method may be considered as a suitable
tool for the analysis of cracks propagation and breakage
process in brittle materials.

Center cracks in a finite plane

Consider a rock-like specimen with a center slant crack in a
finite plate having a ratio of length, h , to the width,w, equal to 2
(as shown in Fig. 8). Details of the mechanical properties of this
finite specimen are the same as those already given in Table 1.

Effect of the specimen boundary on the crack propagation
mechanism of a single crack in a finite plate is studied using
HDDMCR2D code by choosingφ angles as 10°, 30°, and 45°.

The numerical values of K
N

I and K
N

II for different b /w ratios
are presented in Tables 3, 4, and 5. The ratios of b to w are
taken as: b

w ¼ 0:01; 0:03; 0:06; 0:09; 0:2; 0:4; 0:6; 0:9

Table 3 The numerical values of

the K
N

I and K
N

II using different
b /w ratios (φ=10°)

b /w HDDMCR2D (finite) Analytic (infinite) Difference of finite and infinite planes

K
N

I K
N

II K
N

I K
N

II K
N

I (finite)–K
N

I (infinite) K
N

II (finite)–K
N

II (infinite)

0.01 0.9733 0.1710 0.9698 0.1710 0.0035 0.0000

0.03 0.9744 0.1711 0.9698 0.1710 0.0046 0.0001

0.06 0.9780 0.1716 0.9698 0.1710 0.0082 0.0006

0.09 0.9840 0.1724 0.9698 0.1710 0.0142 0.0014

0.2 1.0264 0.1781 0.9698 0.1710 0.0566 0.0071

0.4 1.1821 0.1975 0.9698 0.1710 0.2123 0.0265

0.6 1.4363 0.2249 0.9698 0.1710 0.4665 0.0539

0.9 2.2251 0.3872 0.9698 0.1710 1.2553 0.2162

Table 4 The numerical values of

the K
N

I and K
N

II using different
b /w ratios (φ=30°)

b /w HDDMCR2D (finite) Analytic (infinite) Difference of finite and infinite planes

K
N

I K
N

II K
N

I K
N

II K
N

I (finite)–K
N

I (infinite) K
N

II (finite)–K
N

II (infinite)

0.01 0.7538 0.4322 0.75 0.4330 0.0038 −0.0008
0.03 0.7546 0.4326 0.75 0.4330 0.0046 −0.0004
0.06 0.7573 0.4338 0.75 0.4330 0.0073 0.0008

0.09 0.7617 0.4357 0.75 0.4330 0.0117 0.0027

0.2 0.7930 0.4494 0.75 0.4330 0.0430 0.0164

0.4 0.9137 0.4984 0.75 0.4330 0.1637 0.0654

0.6 1.1297 0.5757 0.75 0.4330 0.3797 0.1427

0.9 1.7236 0.7853 0.75 0.4330 0.9736 0.3523
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According to the results presented in Tables 3, 4, and 5, it
can be concluded that with enhancing the b /w ratio more than
about 0.2, the normalized SIFs also increase sharply. Alterna-
tively, for the b /w ratios lower than about 0.2, the SIFs tend to
their corresponding analytical values for the infinite body case
(as it is physically expected). It is found that when the cracks
approach to the left and right sides of the specimen, the SIFs
increased. It should be noted that the difference between the

values of K
N

I and K
N

II for the finite and infinite bodies may be
negligible for the b /w ratios lower than about 0.2.

Experimental investigation

Preparation of specimen

Initiation, propagation, and coalescence of the pre-existing
cracks in rocks have been experimentally investigated by
many researchers (Park 2008; Park and Bobet 2009, 2010).

One of the most difficult tasks in experimental investiga-
tions is the preparation of specimens containing cracks. In this
study, some rock-like specimens are prepared by mixing PPC,
fine sand, and water (which are mixed in suitable ratios). The
diameter and length of the specimens prepared for experimen-
tal tests are 58 and 116 mm, respectively (Fig. 9).

It should be noted that the mechanical properties of the
rock-like specimens are obtained from the laboratory tests as
presented in Table 1.

Uniaxial compression tests are conducted on rock-like spec-
imens containing two random cracks. The positions of the
random cracks may be different in various specimens. These
cracks are generated by inserting two thin steel shims with
10 mm width and 1 mm thickness in a mold before casting the
specimens. The loading rate was kept at 0.004 mm/min.

A schematic view of the geometry of two random cracks
(studied in this research) is depicted in Fig. 10. The crack tips
are located on the right and left sides of the crack and indicated

by the symbols R and L, respectively. The locations of cracks
are also determined by the position of the crack tips.

Table 5 The numerical values of

the K
N

I and K
N

II using different
b /w ratios (φ=45°)

b /w HDDMCR2D (finite) Analytic (infinite) Difference of finite and infinite planes

K
N

I K
N

II K
N

I K
N

II K
N

I (finite)–K
N

I (infinite) K
N

II (finite)–K
N

II (infinite)

0.01 0.5043 0.4991 0.5000 0.5000 0.0043 −0.0009
0.03 0.5048 0.4995 0.5000 0.5000 0.0048 −0.0005
0.06 0.5065 0.5008 0.5000 0.5000 0.0065 0.0008

0.09 0.5092 0.5047 0.5000 0.5000 0.0092 0.0047

0.2 0.5428 0.5242 0.5000 0.5000 0.0428 0.0242

0.4 0.6083 0.5719 0.5000 0.5000 0.1083 0.0719

0.6 0.7588 0.6619 0.5000 0.5000 0.2588 0.1619

0.9 1.2296 0.8805 0.5000 0.5000 0.7296 0.3805

Fig. 9 A typical rock-like specimen prepared for the laboratory test

816 Arab J Geosci (2015) 8:809–825



Two random cracks, 1 and 2, with different locations are
shown in Fig. 11. The crack geometries are defined by three
parameters namelyα andφ showing the crack inclination angles
of the two cracks (crack 1 and crack 2), respectively, and spacing
(S) is the vertical distance between the centers of two cracks
expressed inmillimeters. The pre-existing random cracks 1 and 2
considered here may have the following parameters (Fig. 11).

Crack inclination angle (α): 40°, 80°, 92°, 110°, 160°, 130°
Crack inclination angle (φ): 24°, 40°, 42°, 110°, 155°, 159°
Spacing (S ): 25, 27, 28, 30

Experimental results

Wing and secondary cracks

In this section, the uniaxial compressive tests are carried out
on rock-like specimens containing two random cracks. Two

types of cracks are observed in these tests: wing cracks and
secondary cracks (Fig. 12). Most of the wing cracks observed
in these figures are initiated near or at the original tips of the
cracks and propagated in a curved path. In addition, these
wing cracks are propagated in a stable manner and are ap-
proximately propagated parallel to the loading direction. In
the experimental tests, the secondary cracks do not always
appear, but the wing cracks appeared instantaneously. Sec-
ondary cracks are usually initiated after the wing crack prop-
agation and appear at or nearby the tips of the original cracks.

Wing cracks may start their initiation at stress levels of
about one half of the specimen’s strength. Secondary cracks
occurred approximately near the peak strength of the speci-
mens and may extend in an unstable manner. In fact, the stress
incremental rate may have a great influence on the propaga-
tion of the secondary cracks. In addition to the load incremen-
tal rate, the extension of secondary cracks can also depend on
the materials types. Figure 12 shows the observed wing cracks

Fig. 10 Schematic view of the
geometry of two random cracks

Fig. 11 Crack geometries with
different crack inclination
angles and spacings

Arab J Geosci (2015) 8:809–825 817



and the two types of secondary cracks for the specimens
containing two random cracks with different inclination an-
gles. In some cases, the two different secondary crack types
are observed at the same time. Examples of the quasi-coplanar
and oblique secondary cracks are also shown in Fig. 12.

Crack coalescence and breakage process of rock-like
specimens

A specific fracture pattern has been occurred in rock-like
specimens under uniaxial compression. It means that the wing

Fig. 12 Specimens showing the
propagation of wing crack and
two different types of secondary
cracks
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and secondary cracks that are initiated and developed from
two pre-existing cracks are coalesced leading to the final
specimen breakage.

In the current experiments, as the loading condition is
quasi-static, the wing cracks are instantaneously initiated
(Fig. 13). Therefore, the development and coalescence of
wing cracks may be the main cause of the breakage process
in rock-like specimens before the secondary cracks can be
developed and coalesced with the wing cracks. Figure 13
illustrates six final breakage paths due to the linkage of the
wing cracks that are observed in the experiments.

Numerical results

Since the experimental analysis of crack propagation is some-
what time consuming, expensive, difficult, and complex, thus,
in this study, the numerical simulation of crack propagation
process is also accomplished by HDDMCR2D code.

The same rock-like specimens containing two random
cracks (studied experimentally in “Crack coalescence and
breakage process of rock-like specimens” section) are also
modeled by HDDMCR2D code. The SIFs near the tips of the
original cracks and the breakage paths have been estimated

Fig. 13 Experimental modeling results illustrating the final breakage path of rock-like specimens
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numerically. The proposed code has also the potential of
predicting the wing cracks and specimen breakage due to
cracks coalescence.

In the coalescence process of the two random cracks, the
crack propagation angle θ for each crack has been calculated
in different steps in which the incremental crack length in the
direction of θ is extended about 2 mm in each step. In the
numerical modeling, the ratio of crack tip length to the crack
length equals 0.2 (L /b = 0.2). In addition, the discretization of
the cracking boundaries have been accomplished by using 10
quadratic elements along each pre-existing crack, two qua-
dratic elements along each crack increment, and a crack tip
element is also added to the last crack increment. Figure 14
shows the final breakage paths of the specimens predicted by
the numerical simulation.

The experimental observations of the final specimen break-
age path (Fig. 13) are used for verifying the numerical simu-
lation of the modeled specimens (Fig. 14). As depicted in
these figures (Figs. 13 and 14), there is a good agreement
between the experimental and numerical breakage paths pre-
dictions for the rock-like specimens.

In the numerical analysis, the values of K
N

I and K
N

II , and
the wing crack initiation angle (θ ) near the original tips of the
two random cracks are estimated (in addition to the final
breakage paths of rock like-specimens). The values of K

N

I ,
K

N

II , and θ are obtained for the first step of crack propagation
process. Table 6 presents the values of K

N

I , K
N

II , and θ at each
of the four tips of the two cracks.

Interaction between the two random cracks may cause
changing in the values of K

N

I and K
N

II at different locations

Fig. 14 2D final breakage paths in numerical modeling in different steps

820 Arab J Geosci (2015) 8:809–825



of the cracks (especially at the crack tip). The numerical
results demonstrate that the final specimen breakage
paths are strongly dependent on the crack location
(i.e., for parallel and non-parallel cracks). It is also
concluded that for the closer crack tips, the values of K

N

I

and K
N

II increases.
Table 7 compares the numerical and experimental results

considering the cracks initiation and cracks coalescence
stresses. The wing crack initiation stresses for various samples
changes from 8.3 to 15.8 MPa for the numerical approach and
from 7.3 to 14.1 MPa for the experimental works. The cracks
coalescence stress changes from 21.8 to 25.3 MPa for the
numerical analysis and from 20.3 to 23.2 for the experimental
analysis.

Discussions and conclusions

Brittle substances such as rocks may break quasi-statically due
to the initiation, propagation, and coalescence of the pre-
existing cracks within the body under various loading condi-
tions. In this research, a combined phenomenological frame-
work is presented for rock breakage mechanism in rock-like
specimens as the brittle materials. A simultaneous numerical–
experimental analysis of crack propagation and cracks coales-
cence process of rock-like samples have been studied. The
Mode I and Mode II stress intensity factors (SIFs) of the pre-
existing cracks and propagating wing cracks have been esti-
mated numerically using a numerical code based on the
HDDMCR2D analysis. The maximum tangential stress

Table 6 Numerical values of K
N

I , K
N

II , and θ for four crack tips of two pre-existing cracks

Crack geometry Spacing (mm)
K

N

I K
N

II

Wing crack initiation angle θ (°)

Left Right Left Right Left Right

A α=80° 28 0.0398 0.0392 0.1565 0.1631 −75.45 75.17

φ=159° 0.8947 0.8498 0.2189 0.3839 132.34 −110.86
B α=110° 30 0.1242 0.1258 0.3284 0.3280 77.87 −77.97

φ=110° 0.1289 0.1288 0.3279 0.3281 78.16 −78.15
C α=40° 27 0.5797 0.5876 0.4812 0.4780 −93.86 94.31

φ=155° 0.8250 0.8312 0.3887 0.3806 109.48 −110.41
D α=92° 30 0.0115 0.0140 0.0295 0.0267 78.08 −80.76

φ=24° 0.8597 0.8583 0.3764 0.3785 −111.90 111.66

E α=160° 27 0.8768 0.8746 0.3180 0.3275 118.37 −117.25
φ=42° 0.5581 0.5415 0.4824 0.4818 −92.96 92.34

F α=130° 25 0.4107 0.3982 0.4796 0.4764 87.23 −86.83
φ=40° 0.5880 0.5789 0.4872 0.4920 −93.90 93.33

Table 7 Comparison of wing
crack initiation and cracks coa-
lescence stresses (using the
HDDMCR2D code and the
experiments works)

Crack geometry Spacing (mm) Wing crack initiation stress (MPa) Cracks coalescence stress (MPa)

HDDMCR2D Experiments HDDMCR2D Experiments

A α=80° 28 15.8 14.1 25.3 23.2
φ =159° 8.3 7.8

B α=110° 30 15.2 13.4 25 23.1
φ =110° 15.2 13.6

C α=40° 27 11.3 9.8 23.7 21.5
φ =155° 9.6 7.3

D α=92° 30 14.5 12.4 24.4 22.5
φ =24° 9.4 8.6

E α=160° 27 8.6 7.8 23.5 21.8
φ =42° 10.4 8.9

F α=130° 25 12.4 10.6 21.8 20.3
φ =40° 10.3 8.5
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criterion is used to estimate the crack propagation angle and its
direction of propagation (crack propagation path). The final
breakage path of the rock-like specimens with two random
cracks has been studied experimentally and it has been dem-
onstrated (in various tables and figures) that these experimen-
tal results are in good agreement with the corresponding
numerical results estimated by the proposed computer code.

The accuracy of the numerical results is verified by solving
some numerical and analytical problems in finite and infinite
planes. The corresponding experimental, numerical, and ana-
lytical results obtained for some specific problems are com-
pared in several tables and figures showing the validity and
reliability of the numerical results.

Six breakage path patterns are observed in the experimental
results on rock-like specimens (with two cracks). These patterns
are mainly produced through the linkage of two wing cracks
(stable breakage path). Breakage patterns of rock-like speci-
mens containing two random cracks are also predicted well by
the numerical models through a standard iterative method.

Comparing the parallel and non-parallel cracks, the effect
of original crack inclinations of two cracks shows thatK

N

I and
K

N

II (normalized SIFs) have a strong influence on the final
specimen breakage path. The normalized SIFs increase with
decreasing of the distance between the two crack tips in a
specimen. Finally, the numerical results of cracks initiation
and cracks coalescence stresses are also compared with the
corresponding experimental results for various cases and
shown in Table 7.

The numerical and experimental results presented in
this study may be very useful for the recognition of
propagation and coalescence mechanism of cracks in the
rock mass.

The framework can be extended to the fracture mechanism
of rock materials under various loading conditions (e.g., tri-
axial compressive, tensile, and shear loading) and experiments
on different rock materials.

Appendix 1

The integrals and their derivatives used for quadratic displace-
ment discontinuity elements (with equal sub-elements) for
finite and infinite plane fracture mechanics problems

Starting from the common potential function F (x ,y )
expressed by Marji et al. (2006) for the solution of stress
and displacement fields at the discretized boundaries using
the displacement discontinuity function, DD j(δ ) given in
Eq. (1):

F x; yð Þ ¼ −1
4π 1−νð Þ

Z
−‘

‘

DD j δð Þln x−δð Þ2 þ y2
h i1

2
dδ; j ¼ x; y ð9Þ

Inserting the common displacement discontinuity function
DD j(δ ) (Eq. 1) in Eq. (9) gives:

F x; yð Þ ¼ −1
4π 1−νð Þ

Z
−‘

‘

Γ 1 δð Þln x−δð Þ2 þ y2
h i1

2
d δ

2
4

3
5

8<
: DD1

j

þ
Z
−‘

‘

Γ 2 δð Þln x−δð Þ2 þ y2
h i1

2
dδ

2
4

3
5DD2

j

þ
Z
−‘

‘

Γ 3 δð Þln x−δð Þ2 þ y2
h i1

2
d δ

2
4

3
5DD3

j ; j ¼ x; y

ð10Þ

Inserting the shape functions Γ1(δ ), Γ2(δ ), and Γ3(δ ) in
Eq. (10) after some manipulations and rearrangements the
following three special integrals are deduced:

I1 x; yð Þ ¼
Z
−‘

‘

ln x−δð Þ2 þ y2
h i12

dδ ¼ y ϕ1−2ð Þ− x−‘ð Þln η1ð Þ þ xþ ‘ð Þln η2ð Þ−2‘

ð11Þ

I2 x; yð Þ ¼
Z
−‘

‘

δ ln x−δð Þ2 þ y2
h i12

dδ

¼ xy ϕ1−ϕ2ð Þ þ 0:5 y2−x2 þ ‘2
� �

ln
η1
η2
−‘x ð12Þ

I3 x; yð Þ ¼
Z
−‘

‘

δ 2ln x−δð Þ 2 þ y2
	 
 1

2

dδ ¼ y

3
3x2−y2
� �

ϕ1−ϕ2ð Þ

þ 1

3
3xy2−x3 þ a3
� �

ln η1ð Þ− 1

3
3xy2−x3−‘3
� �

ln η2ð Þ

−
2‘

3
x2−y2 þ ‘2

3

� �

ð13Þ

Where ϕ1, ϕ2, η1, and η2 can be defined as:

ϕ1 ¼ arctan
y

x−‘

� �
; ϕ2 ¼ arctan

y

xþ ‘

� �
; η1 ¼ x−‘ð Þ2 þ y2

h i1
2

and η2 ¼ xþ ‘ð Þ2 þ y2
h i1

2

ð14Þ

Appendix 2

The integrals and their derivatives used for three special crack
tip elements of equal length for finite and infinite plane
fracture mechanics problems
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Starting from the common special potential functionFC(x ,y)
expressed by Marji et al. (2006) for the solution of stress and
displacement fields at the crack tip using the displacement
discontinuity function, DDj(δ) given in Eq. (4):

FC x; yð Þ ¼ −1
4π 1−νð Þ

Z
−‘

‘

DD j δð Þln x−δð Þ2 þ y2
h i1

2
dδ; j ¼ x; y ð15Þ

Inserting the common displacement discontinuity function,
DD j(δ ) (Eq. 3) in Eq. (15) gives:

FC x; yð Þ ¼ −1
4π 1−νð Þ

Z
−‘

‘

ΓC1 δð Þln x−δð Þ2 þ y2
h i1

2
dδ

2
4

3
5DD1

jþ
8<
:

Z
−‘

‘
ΓC2 δð Þln x−δð Þ2 þ y2

h i1
2

dδ

2
4

3
5DD2

j

þ
Z
−‘

‘

ΓC3 δð Þln x−δð Þ2 þ y2
h i1

2
dδ

2
4

3
5DD3

j ; j ¼ x; y

ð16Þ
Inserting the shape functions ΓC1(δ ), ΓC2(δ ), and ΓC3(δ )

in Eq. (16) after some manipulations and rearrangements the
following three special integrals are deduced:

IC1 x; yð Þ ¼
Z
−‘

‘

δ
1
2 ln x−δð Þ2 þ y2
h i1

2
dδ ;

IC2 x; yð Þ ¼
Z
−‘

‘

δ
3
2 ln x−δð Þ2 þ y2
h i1

2
dδ

IC3 x; yð Þ ¼
Z
−‘

‘

δ
5
2 ln x−δð Þ2 þ y2
h i1

2
dδ

ð17Þ

The derivatives of the integrals, IC1, IC2, are given by
Marji et al. (2006) and the first two derivatives of IC3 (for
three special crack tip element case) can be expressed as:

I3C;x ¼ x

Z2‘
0

δ
5
2

x−δð Þ2 þ y2
h i dδ−Z

2‘

0

δ
7
2

x−δð Þ2 þ y2
h i

dδ ¼ xΩ3−Ω4 I
3
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0

δ
5
2
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Where

Ω3 ¼
Z2‘
0

δ
5
2

x−δð Þ2 þ y2
h i dδ ¼ 2

3
2að Þ32 þ 2xΩ2− x2 þ y2

� �
Ω1 ð19Þ

whereΩ1,Ω2, and the derivatives ofΩ1, are defined byMarji
et al. (2006) as:
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where λ ¼ x2 þ y2ð Þ14; and β ¼ 0:5 arctan y=xð Þ ,
and finally

Ω4 ¼
Z2‘
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δ
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