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Abstract Construction of embankments in engineering struc-
tures on soft clay soils normally encounters problems related
to excessive settlement issues. The conventional methods are
inadequate to analyze and predict the surface settlement when
the necessary parameters are difficult to determine in the field
and in the laboratory. In this study, artificial neural network
systems (ANNs) were used to predict settlement under em-
bankment load using soft soil properties together with various
geometric parameters as input for each stone column (SC)
arrangement and embankment condition. Data from a high-
way project called Lebuhraya Pantai Timur2 in Terengganu,
Malaysia, were investigated. The FEM package of Plaxis v8
program analysis was utilized. The actual angle of internal
friction, spacing between SC, diameter of SC, length of SC,
and height of embankment were used as the input parameters,
and the settlement was used as the main output. Non cross
validation (NCV) and tenfold cross validation (TFCV) were
used to build the ANNmodel. The results of the TFCVmodel
were more accurate than those of the NCV model. Com-
parisons made with the predictions of the Priebe model
showed that the proposed TFCV model could provide better
predictions than conventional methods.

Keywords Artificial neural network . Tenfold cross neural
network . Soil improvement . Stone column behavior

Introduction

The special nature of soft soil deposits is the most crucial for
geotechnical engineering. Soft soils are widespread all over
the world, some of which are located in important cities. Civil
engineering constructions in soft soil deposits are limited by
their tendency to conduct excessive settlement because of low
shear strength quality. Consolidation and displacements can
be noticeable under construction loads because of the large
void ratio and inherent compressibility of clays, which can be
time consuming and tedious for the structure engineer.
Persisting low shear strength is particularly hazardous when
constructing a large embankment on a soft clay base, facili-
tating potential circular or sliding failure planes. Therefore,
ground improvement schemes are necessary. In this study, a
ground improvement method by stone columns (SC) is con-
sidered because it has shown to be effective in improving soft
soil properties. Many studies on SC-reinforced soft soil have
been carried out all over the world (Guetif et al. 2007; Kousik
et al. 2008; Zhou et al. 2002; Cimentada et al. 2011;
Zahmatkesh and Choobbasti 2010). However, only a few have
discussed the enhancing effect of SC on soft soil properties. In
general, SC can increase the bearing capacity of soft soils and
enhance the drainage and dissipation of excess pore water
pressure (Bo and Choa 2004). S.R. Lo et al. (2010) compared
numerical results and field measurements of several ground
structures and found that the usage of the finite element
program yields highly accurate results.

Artificial intelligent methods are computational models
capable of executing complex input–output mapping (Tien
Bui et al. 2011; Pradhan and Pirasteh 2010). The calculative
simplicity of the processing elements makes the network
much easier than dealing with rigorous mechanistic computa-
tional methods. The capability of neural networks to perform
precise modeling of complex systems lies in linking the dif-
ferent neurons in the network. However, artificial neural
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networks (ANNs) cannot provide accurate results. Rumelhart
et al. (1986) developed the back-propagation algorithm for
artificial neurons, which was later considered an acceptable
model. It was an important step that enabled many studies to
improve in many applications in various scientific disciplines.
The most widely used neural network is the back-propagation
neural network (BPN), which uses sigmoid function in pro-
cessing input signals and back-propagation algorithm in pre-
diction error correction. BPN has a superior function approx-
imation capability over the radial basis function network, which
has superior capability in pattern classification (Haykin 1998).
However, the downside of BPN is the limited dynamic range of
sigmoid function, which sometimes makes use of a large
number of neurons necessary to achieve the desired accuracy.

Various approaches such as ANN have been applied in
wide areas of research because of their capability to represent
any nonlinear processes given the sufficient complexity of the
trained networks (Shahin and Indraratna 2006; Choobbasti
et al. 2009; Kasa et al. 2011a, b; Zarea et al. 2012; Kia et al.
2011; Tien Bui et al. 2012). In this study, non cross validation
(NCV) and tenfold cross validation (TFCV) neural network
models were applied to predict the settlement of soft soil clay
reinforced by SC under a highway embankment. A compari-
son between these two proposed models and the predicted
results of settlement soil was further discussed.

Methodology

Settlement prediction of soft clay soil improved by stone
column

Currently, there are a number of available methods used for
predicting and calculating settlement. These methods can be
classified as either approximate methods which make impor-
tant simplifying assumptions and complex methods based on
fundamental elasticity and plasticity theory which model ma-
terial and boundary conditions, such as finite element method.
The approaches considered are as follows:

Equilibrium method

The equilibrium method is one of the simple approximate
methods to calculate the settlement of sand compaction piles,
as described by Aboshi et al. (1979, Barksdale and Bachus
(1983), and Barksdale and Takefumi (1990). This method is
quite simple and used by engineers to calculate reduction
settlement for ground improvement of stone columns. This
particular method as well as others is derived from one unit
cell idealization, whereby stone column is modeled to be a
concentric body in a composite soil mass. The applied load on
a composite soil mass develops stress and causes the occur-
rence of stress concentration in the column. The stone column

will be stiffer than the surrounding soft soil (Bergado et al.
1996). The relative stiffness of the stone column and the
surround soil is affected by the magnitude of the stress con-
centration. The stress in surrounding clayey ground (σ c) is
then given by Eq. (1).

σc ¼ n:σ
1 þ n − 1ð Þ:as½ � ¼ μcσ ð1Þ

Where n = stress concentration factor, as = area replace-
ment ratio, μc = ratio of stress in cohesive soil to average
stress, and σ = applied stress.

The settlements occurring below the stone column rein-
forced ground is generally calculated in the normal method.

The level of improvement of soft soil by stone column is
dependent upon the stress concentration factor n (as reflected
in μc), the initial effective stress in the clay, and the magnitude
of applied stress σ . The Eq. (2) indicates that if other factors
are constant, a greater reduction in settlement is achieved for
longer columns and smaller applied stress increments. The
reduction settlement is calculated from conventional one-
dimensional consolidation theory.

St
S

¼
log10

σoþμc

σo

 !

log10
σoþσ

σo

 ! ð2Þ

Where St is the total settlement, σc is the change in stress in
clay soil, σ is the acting stress, σo is the initial effective stress,
Cc is the compression index, eo is the initial void ratio, andH
is the vertical height of stone column.

When using the equilibrium method, settlements occurring
beneath the reinforced ground must be considered separately
using conventional consolidation or elastic settlement analysis.

The Priebe method

Priebe (1991), Arukrajah andAffendi (2002), and Bo and Choa
(2004) provides a design procedure for vibro-replacement con-
struction of stone columns. Priebe (1995) adapted, extended,
and provided design procedures with design charts for various
aspects of stone column design, including settlement reduction,
bearing capacity, shear strength values of improved ground,
and liquefaction. An equation is provided below for predicting
the improvement factor no based on the cross-sectional area of
the column, the area of the unit cell, and the coefficient of active
earth pressure. The series of equations used to calculate settle-
ment depend on the basic improvement factor, no, and consider
the coefficient of earth pressure to be one as presented below.

no ¼ 1 þ Ac

A

1=2 þ f μs;Ac=Að Þ
Kac f μs;Ac=Að Þ − 1

� �
ð3Þ
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Where;

f μs;Ac=Að Þ ¼ 1 − μsð Þ 1 − Ac=Að Þ
1 − 2μs þ Ac=A

� �
− 1 ð4Þ

kac ¼ tan2 45 − ϕc=2ð Þ ð5Þ

no ¼ St=S ð6Þ

Where no = basic improvement factor, Ac = area of col-
umn, A = unit cell area, μ s = Poisson’s ratio, Kac = Rankine’s
active earth pressure, and ∅c = stone column material friction
angle.

The Priebe method quantifies the improvement that results
from the inclusion of the stone column without densification
of the soil between stone columns. This design method refers
to the improving effect of stone column in a soil.

Fig. 1 Location plan of the LPT2
Expressway project in Malaysia

Table 1 Soil parameters adopted
and input parameters used in
ANN

Parameter Embankment Soft clay Crushed stone columns (types)

A B C

Material model – MC SCM MC

Loading – Drained Undrained Drained

Soil unit weight (kN/m3) γunsat 20 15 18 18 12

γsat 20 16 20 20 22

Permeability (m/day) kh 1 7.36x10-5 6.5 7.5 8.5

kv 1 3.68x10-5 3.5 4.2 5.6

Young’s modulus(kN/m2) E 20,000 1,200 40,000 100,000 120,000

Poisson’s ratio – 0.33 0.4 0.33 0.33 0.33

Cohesion (kN/m2) c′ 0 10 0 0 0

Friction angle φ° 35 23 32 37.5 42

High of embankment(m) H 1, 3, 5.5, 9.5 – – – –

Diameter of stone column(m) D – – 1, 1.2, 2

Length of stone column(m) L – – 4, 8

Spacing between stone column (m) s – – 2, 3, 4
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Greenwood and Kirsch (1984) concluded that the simplic-
ity of the Priebe method applying an improvement ratio to
conventional consolidation is attractive to engineers, which
results as the method being widely used. The Priebe method is
a common method of design in practice.

Description of data

A highway project called Lebuhraya Pantai Timur2, which
has a length of 173 km, is currently being constructed between
Kuantan and Kula Terengganu in the state of Terengganu in
Malaysia. The map in Fig. 1 indicates the location of the two
project sites. The geotechnical design works include ground
improvement of the existing foundation to sustain the imposed
dead and traffic loads for highways. A proposal for the im-
provement of soft clay soil requires borehole information
acquired from several stretches of soft soils to be analyzed
thoroughly. This information provides details of the soil
layers, water content, and position of the ground water level.
Piezometer tubes are installed into the ground to measure
changes in the ground water level for a specific period.
Ground site investigations also involve in situ and laboratory
tests, area photographs, and geological maps. The probable
soil conditions and limits to which method can be employed in
the design can be determined from the data.

These data were also used to calibrate and validate the
neural network models obtained from the FEM package of
Plaxis v8 program analysis (PLAXIS 2002). Each condition
had 288 cases.

Neural network modeling

ANN is a system formed by computational units called
neurons, which can highly interconnect with each other.
The ANN system can learn, recall, and generalize from
training data (Attoh-Okine 2002). In this study, ANNs
with TFCV and NCV models were used to predict set-
tlement. The models were divided into two sets: training
and test. Table 1 and Fig. 2 show the values of some
variables used in ANN and the structure of ANN used in
this research for predicting settlement. To design a neural
network, several architectures of ANN models were ex-
amined by varying the number of hidden layers and
neurons in each hidden layer and the training function
parameters (Beale and Jackson 1990; Flood and Kartam
1994a, b). The powerful neural network model was
obtained after a number of trials using three layers (i.e.,
input, hidden, and output). A total of 30 nodes, 15
nodes, and 1 node were found distributed in the neurons
of the input, hidden, and output layers, respectively. In
the structure of a neural network, the number of neurons
in each hidden layer is trained once the error of the
network reaches a minimum value (Banimahd et al.
2005). All neural models use three types of algorithm,
namely trainlm, trainscg, and traingdx. The mean square
error (MSE) and the coefficient of determination (R 2) of
the parameters in both training and testing are defined as
follows:

MSE ¼ 1

n

Xn

1
yp − ym
� �2

ð7Þ

Settlement

Input Layer Hidden Layer Output Layer

Angle friction
( )

Spacing between
column(s)

Daimeter column
(D)

High embankment
(H)

Length column
(L)

Fig. 2 Structure of ANN used in
this research for predicting
settlement

Table 2 Summary of training and testing results of NCVmodel (30 15 1)

Training algorithm Training Testing

MSE Efficiency MSE Efficiency

Trainlm 0.0006711 0.9909 0.0024 0.9691

Trainscg 0.0009865 0.9866 0.0048 0.9372

Traingdx 0.0053 0.9276 0.0114 0.8510
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The coefficient of determination R is a measure of scatter or
the lack of it between two sets of data and is given as follows:

R2 ¼
n
Xn

1
ymyp −

Xn

1
ym

� � Xn

1
yp

� �� �2
n
Xn

1
y2m

� �
−

Xn

1
ym

� �2� �
n
Xn

1
y2p

� �
−

Xn

1
yp

� �2� � ð8Þ

Efficiency ¼ 1 −
MSE

σ2

� �
ð9Þ

Where ym and yp are measured and predicted parameters,
respectively, and σ is the standard deviation.

Multiple linear regression model

A multiple linear regression (MLR) model of settlement was
built to test the relationship between settlement of SC and its
determinants. This model was compared with the ANN

model. The following multiple regression equation was used
to predict the settlement SC for the dataset as follows:

yi ¼ β0 þ β1x1i þ β2x2i þ ⋯þ βpxpi þ ei ð10Þ

Where for a set of i successive observations, the pre-
dicted and variable y is a linear combination of an offset
β o , a set of k predictor variables x with matching β
coefficients, and a residual error e . The β values are
commonly derived through the ordinary least squares
method. When the regression equation is used in a predic-
tive mode, e is omitted because its expected value is zero.
Regression models are inherently linear, although curvilin-
ear relationships can be incorporated through polynomial
terms in the regression. Known relationships can be
prespecified by transforming a nonlinear predictor variable
into a more linear form before using it in the model.
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Fig. 3 Input data before and after training for NCV model (training algorithm trainlm)
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Network training and validation

NCV model

The settlement soft soil data were partitioned into training and
validation data, with the former being used to develop the
network and the latter to verify the predictive quality of the
trained model. Up to 75 % of the database was used for
training; the remaining 25 % of the data were used for testing
the network prediction. As much as possible, the training data
were made to capture the widest variations in input and output
patterns in the database. This process is performed to avoid
having extreme data in the testing set, which could make the
true generalization capability of the model impossible to as-
sess within the domain of the training data, as in the case of
completely randomized selection (Shahin et al. 2004). The
MSE values after using three types of training algorithm (i.e.,
trainlm, trainscg, and traingdx) as an indicator of the accuracy
of the results are shown in Table 2.

TFCV model

The standard machine learning method TFCV is used to train
and test ANN models. The test sample dataset should never be

used with the training process of ANN. In TFCV, the data were
separated into ten sections that were roughly equal in size. In the
first iteration, nine of these subsets were combined and used for
training. The remaining set was used for testing the performance
of our ANN on unnoticed cases. We repeated this process for
ten iterations until all subsets were used once for testing. The
TFCV model was also used to assess the robustness of ANN.

The early stopping procedure was used to prevent the ANN
model from overfitting and to keep it generalizable to future
cases (Bishop 1995; Mitchell 1997). Generalizability is the
capability of a model to prove a similar predictive effect and
gives the right results of input data not seen during the training
process. It can be measured by the performance of error
frequency for training data or error frequency for novel data.
When the model (i.e., the network) is powerful, the risk
increases in that it learns peculiarities specific for the training
samples where losing generalization occurs; therefore, train-
ing prematurely (“early stopping”) must be stopped to avoid
the overfitting phenomenon (Haykin 1999).

The ANN model is designed to have a large number of
hidden nodes, as ANNs with a large number of hidden nodes
generalize better than networks with a small number of hidden
nodes when trainedwith back propagation and “early stopping”
(Caruana et al. 2001; Lawrence et al. 1997; Weigend 1994).

The TFCV neural network model is an alternative neural
network type with a trainable activation classified date and
a capability to achieve the desired accuracy. In this study,
the capability of the TFCV neural network model in simu-
lating the settlement behavior of reinforced soft clay under
high way embankment was investigated. In the training
process, the model attempts to distinguish and recognize
the data and makes the forecasting values very close to the
actual event (Figs. 3 and 4).

Table 3 Summary of training and testing results of TFCVmodel (30 15 1)

Training algorithm Training Testing

MSE Efficacy MSE Efficacy

Trainlm 0.0004964 0.9935 0.0022 0.9716

Trainscg 0.0009963 0.9870 0.002 0.9739

Traingdx 0.0071 0.9069 0.0082 0.8926
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Relation importance of input (RI)

In 1991, Garson invented a simple technique to interpret the
important relation between input parameters by examining the
connected weights of the training network (Goh 1994; Shahin
et al. 2002a). A connection weight approach was used to
evaluate the importance of inputs (i.e., SC and embankment
parameters) to predict output (settlement) in ANNs. The con-
nection weight method is used to sum up the products of the
input-hidden and hidden-output connection weights between

each input neuron and output neuron for all input variables
(Olden et al. 2004). The relative importance of input variable i
is determined from the following formula:

RIi ¼
Xm

j¼1
WijW jkXn

i¼1

Xm

j¼1
WijW jk

� 100%

i ¼ 1; 2; 3;…; n j ¼ 1; 2; 3;…;m

ð11Þ
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Fig. 6 Comparison of actual
versus predicted settlement. a
Non cross validation ANN and b
tenfold cross validation ANN
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Where RIi is the relative importance (expressed in percent-
age) of the variable i in the input layer on the output variable, j
is the index number of the hidden node,Wij is the connection
weight between input variable i and hidden node j , andWjk is
the connection weight between hidden node j and the output
node k .

Results and discussion

Result comparisons

The capability of ANN to conform to learning is supported by
the degree of acceptability of the model training and testing.
The convergence of the testing data with the forecasting data

is represented as standard for quality and robustness model.
The MLR model was developed using the same input and
output parameters and then compared with the ANN model.
The results indicate that the estimated R is relatively low
(R =0.9117).

Figures 3a, b and 4a, b show the training data of the BPN
using the training algorithm (trainlm) for each TFCV and
NCVmodels. Before the training process, all the points’ dates
appeared isolated, and no matching with the field data was
performed. However, after training, the model appeared to
make all the points’ dates close to the actual dates.

The BPN that uses training algorithm (trainlm) provided
good quality of the network’s prediction compared with an-
other algorithm for each TFCVandNCVmodels. As shown in
Tables 2 and 3, TFCV produced higher efficiency for training

Fig. 7 Performance comparison
of various settlement prediction
methods

Fig. 8 Relative importance of
input variables of the TFCV
artificial neural model using
Eq. (11)
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(0.9935) and testing (0.9716) than did NCV (0.9909 and
0.9691, respectively).

In Fig. 5a, b, the BPN network outputs are compared with
the training of TFCV and NCV models, respectively. TFCV
simulations had better correlation and exceeded the training
data (R =0.996771 for TFCVand 0.99605 for NCV).

The predictions of the TFCV and NCV models are com-
pared with the measured and predicted data in Fig. 6a, b,
respectively. After tracking and monitoring all data points,
all measured and predicted data points matched, except for a
few points along the curve (Fig. 6a). The NCV model in
Fig. 6b had a different data behavior (measured with predicted
data). However, a difference was noted in the third plot. This
result indicates that the TFCV model has a high level of
learning and a high quality of prediction. Further comparison
of forecasting values of ANN, MLR, and Priebe models was
also made against the measured values (Fig. 7). The figure
clearly shows that ANN (TFCV model) provides the closest
estimate of settlement and is therefore the most accurate.

Parametric study and sensitivity analysis

An attempt was made to identify which of the input parame-
ters has the most effect on the settlement behavior of SC
bedded in soft clay (model output). Thus, a sensitivity analysis
was carried out on the neural network. The whole computation
was repeated for each output neuron. Figure 8 demonstrates
the summary of determining the relative importance of the
input variables of the TFCV model.

The results of the parametric study carried out to assess the
generalization ability of the TFCV model are presented in
Fig. 8. Results showed a good agreement between the TFCV
model response and the expected settlement behavior of SC
when subjected to embankment loading. The angle of internal
friction had the highest importance (72 %), whereas the

diameter of SC had the lowest importance (2 %) when com-
pared with the other input variables. The predicted settlement
decreased as the angle of internal friction of material SC and
as the diameter and length of SC increased (Fig. 9). The
predicted settlement increased with increasing spacing be-
tween SC and the height of the embankment. The consistent
decrease in the predicted settlement with increment in param-
eters (Fig. 9) and the increase with increment in another two
parameters indicate a good agreement between the TFCV
model and the actual settlement. Soft clay with SC shows
improved settlement behavior, and soft soil properties affect
the settlement behavior of soft clay (Priebe 1991, 1995). The
settlement varied proportionally with spacing between SC and
height of the embankment. With regard to the behavior of
foundation soil, the height of the embankment varied inverse-
ly with settlement. The settlement started with small values
under light load (1 to 3 m fill embankment), after which a
heavy load of embankment material produced high values of
settlement. This result agrees with the study carried out.

Conclusions

In this study, two geotechnical applications were performed
using ANN to simulate the settlement curve. The development
of the twomodels TFCVand NCVwas based on the use of the
proposed simple input data. The input data consisted of the
angle of internal friction, spacing between SC, diameter,
length of SC, and height of the embankment. The other
parameters were soil types and installation methods. Based
on R2, MSE, and settlement quality, a significant improve-
ment was observed in the comparison of the results of the
models using variance algorithms. The trainlm algorithm gave
better results than the other models. The ANN model had the
lowest RMSE values for in-sample and out-of-sample
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forecasting. These results indicate that the nonlinear ANN
model can generate a better fit than the MLR model.

The proposed TFCV model was more accurate in predic-
tion than the NCV model. The sensitivity analysis indicates
that the prediction of the settlement by the TFCV model is in
agreement with the underlying physical behavior of settlement
prediction based on documented prior knowledge. The prop-
erties of material on SC in this case had high relative impor-
tance (72 %) compared with the other parameters. Based on
the parametric study, the TFCV model responded reasonably
well to various input parameters in a manner consistent with
the anticipated behavior of soft clay soil reinforced with SC in
a highway embankment in the LPT2 project.
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