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Abstract In seismic applications, the bulk modulus of po-
rous media saturated with liquid and gas phases is often
estimated using Gassmann's fluid substitution formula, in
which the effective bulk modulus of the two-phase fluid is
the Reuss average of the gas and liquid bulk moduli. This
averaging procedure, referred to as Wood's approximation,
holds if the liquid and gas phases are homogeneously dis-
tributed within the pore space down to sizes well below the
seismic wavelength and if the phase transfer processes be-
tween liquid and gas domains induced by the pressure vari-
ations of the seismic wave are negligible over the timescale
of the wave period. Using existing theoretical results and
low-frequency acoustic measurements in bubbly liquids, we
argue that the latter assumption of “frozen” phases, valid for
large enough frequencies, is likely to fail in the seismic
frequency range where lower effective bulk modulus and
velocity, together with dispersion and attenuation effects,
are expected. We provide a simple method, which extends
to reservoir fluids a classical result by Landau and Lifshitz
valid for pure fluids, to compute the effective bulk modulus
of thermodynamically equilibrated liquid and gas phases.
For low gas saturation, this modulus is significantly lower
than its Wood's counterpart, especially at the crossing of
bubble point conditions. A seismic reflector associated to a
phase transition between a monophasic and a two-phase
fluid thus will appear. We discuss the consequences of these
results for various seismic applications including fizz water

discrimination and hydrocarbon reservoir depletion and CO2

geological storage monitoring.
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Introduction

Conventional seismic reflectivity measurements are very sen-
sitive to the presence of a free gas phase, but not to its
saturation in the reservoir rock. Low saturations of a free gas
phase in an aquifer, commonly called “fizz”water, give rise to
reflections as strong as those generated by high gas saturations
(i.e., economic gas reservoirs), which is at the origin of a large
number of drilled dry holes (Han and Batzle 2002). As another
example, it is difficult to determine the exact position in the
transition zone of the reflector associated to a gas/water or
gas/oil contact. The quantitative description of the effects on
seismic properties of partial substitution of liquid (oil or water)
by gas is one of the most important challenges in seismic
exploration and time lapse (4D) monitoring of reservoirs.

The poor sensitivity of seismic reflectivity to gas saturation
is to a large extent captured within Gassmann's model
(Gassmann 1951), in which the effective bulk modulus of
the saturating two-phase (liquid and gas) fluid is approximated
by the harmonic (or Reuss) average of the liquid and gas bulk
moduli. This averaging procedure is often referred to as
Wood's or as the effective medium approximation (Wood
1930). Within the above Gassmann–Wood model (GW), the
P-wave velocity and impedance of porous rocks saturated
with contrasted liquid and gas phases (such as water and gas
in shallow reservoirs) are almost insensitive to gas saturation,
except for low gas saturations. In a narrow interval of low gas
saturations (Sg<5–10 %) these parameters vary rapidly but
continuously between a minimum value reached for Sg∼5–
10 % and the maximum value corresponding to the fully
water-saturated (Sg=0) rock.
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Wood's approximation holds if two essential assumptions
are satisfied. First, the liquid and the gas phases are homo-
geneously distributed within the pore space down to scales
much smaller than the seismic wavelength. In other words,
the wave frequency must be low enough and/or the liquid
and the gas domains small enough compared to the wave-
length. The second assumption, which is thoroughly
discussed in this paper, is that the liquid and the gas phases
remain “frozen” or unrelaxed at the passage of the seismic
wave. We argue below that this assumption is very likely to
break down in the seismic frequency band for typical reser-
voir and fluid settings.

In reality, mass transfer processes take place from one
phase to the other when pressure varies at the passage of the
seismic wave. In pure fluids, these processes consist in the
condensation of the gas phase and in the vaporization of the
liquid phase when pressure respectively increases or de-
creases. In multicomponent fluids, there is, in addition, a
variation in phase composition, with the lighter components
being transferred from the gas to the liquid phase (or vice
versa) when pressure increases (or decreases). These pro-
cesses are diffusive in nature and therefore act only when the
wave frequency and/or the size of the phase domains are
small enough. They induce relaxation between phases and
therefore an increased effective compressibility or, equiva-
lently, a lower effective bulk modulus. For very low frequen-
cies and/or very small phase domains (quasistatic limit), the
two fluid phases are thermodynamically equilibrated at any
instant. This limit has been examined long ago by Landau
and Lifshitz (1959), who calculated the adiabatic compress-
ibility (i.e., the reciprocal of the bulk modulus) and sound
velocity of a pure (i.e., one component) fluid at liquid/vapor
equilibrium. Landau and Lifshitz obtained an effective bulk
modulus for the relaxed (i.e., thermodynamically equilibrat-
ed) liquid and gas phases much lower than the effective bulk
modulus of unrelaxed phases (Wood's modulus), especially
for small proportions of the gas phase, i.e., near bubble point
conditions. This modulus varies discontinuously at the cross-
ing of phase boundaries (e.g., at bubble point conditions), in
contrast to the continuous variation of Wood's modulus.
Kieffer (1977) implemented the Landau–Lifshitz approach
with water/steam systems in the context of volcanological
and geothermal applications. Extensions of the Landau–
Lifshitz analysis to multicomponent fluids have been recent-
ly proposed, for instance by Picard and Bishnoi (1987) and
by Firoozabadi and Pan (2000). One important result is that
strong discontinuities in the adiabatic compressibility and
sound velocity of relaxed phases still exist at the crossing
of bubble point conditions in multicomponent fluids, even
though their amplitudes are less important than in the case of
pure fluids. The discontinuity in adiabatic compressibility is
reminiscent of that occurring for isothermal compressibility,
which is well-known to reservoir engineers. For example,

bubble point conditions are routinely determined in PVT
laboratories from the angular point of the pressure vs. vol-
ume curve at constant temperature.

On the experimental side, it is well known that the pres-
ence of a minute amount of “free” gas in a liquid causes a
dramatic decrease in sound velocity, together with an impor-
tant attenuation. Temkin (1992) reports that air bubbles in a
concentration by volume equal to 10−4 can decrease the
speed of sound in water by 40 %. One application of this
behavior is the early detection of vapor bubbles in liquid
(Trammell 1962).

Our first purpose in this paper is to assess which of the
above two regimes holds in representative reservoir/fluid
systems and for seismic frequencies (from 1 to 104 Hz). Is
it Wood's regime of unrelaxed fluid phases, as is commonly
assumed, or the Landau–Lifshitz low-frequency regime of
relaxed phases or an intermediate dispersive regime?

In this paper, we focus on low gas-saturated reservoirs, in
which the differences between the relaxed and unrelaxed
bulk moduli for the saturating two-phase fluid turn out to
be the largest. Low gas-saturated reservoirs are encountered
for instance in the exploration stage (see above the discus-
sion on “fizz”water) or in the production stage as a result of a
pressure drawdown below the fluid's bubble point pressure.
In reservoirs containing initially (i.e., at discovery) an un-
dersaturated oil, this drawdown is responsible for the appa-
rition of secondary gas caps and oil/gas contacts. The satu-
ration state consists in gas bubbles sparsely and homoge-
neously distributed within the liquid (oil or water). Such low
gas-saturated states are stable (i.e., the gas is immobile in the
porous medium) as long as gas saturation does not exceed to
the so-called critical gas saturation, which is usually larger
than 10 % for typical rock/fluid systems.

This saturation state is akin to that in a bubbly liquid, in
which gas bubbles are sparsely and homogeneously dis-
persed in the liquid and bubble dimensions do not exceed a
fewmicrons (i.e., the maximum pore size in most rocks). The
low-frequency acoustic behavior of bubbly (pure) fluids has
been the subject of a number of theoretical (Onuki 1991) and
experimental studies (Coste et al. 1992; Coste and Laroche
1993). These studies, which complemented earlier studies by
Soviet scientists, are used in this paper to gain insight into the
seismic behavior of low gas-saturated reservoirs. Besides the
presence of a rock phase, fluid composition is the most
important difference between the pure (i.e., one component)
fluid situation investigated by Onuki (1991) and Coste
et al. (1992) and the multicomponent reservoir fluids of
interest here. In the seismic frequency band (1–104 Hz),
our analysis shows that Wood's approximation of “frozen”
(or unrelaxed) fluid phases is not likely to hold for describing
the compressive (and acoustic) behavior of typical reservoir
liquids with a small amount of gas bubbles. This is the main
result of this paper, which justifies an examination of the
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“thermodynamic” (Landau–Lifshitz) limit of relaxed fluid
phases and its impact on the seismic behavior of saturated
rocks.

The paper is organized as follows. The next section is a
reminder of the conventional Gassmann–Wood model for
the saturation dependence of the bulk modulus and P-wave
velocity of a partially saturated porous medium. In the
following section, we question Wood's assumption of “fro-
zen” (or unrelaxed) fluid phases on the basis of the current
knowledge on the acoustic properties of bubbly liquids and
we end up with the conclusion that this assumption might
not be verified in the seismic frequency band for typical
reservoir rocks saturated with a liquid (e.g., water or oil)
and a small amount of homogeneously dispersed gas
bubbles.

A section is then devoted to the “thermodynamic” (or
Landau–Lifshitz) limit of relaxed fluid phases and a com-
parison of this limit to the conventional (Wood) regime. A
simplified scheme is proposed for calculating the “thermo-
dynamic” compressibility of the saturating two-phase fluid,
which is implemented on various reservoir/fluid systems:
one contrasted hydrocarbon fluid and two aqueous fluids
containing either CO2 or methane, the latter system being
representative of fizz water. At low gas saturation (i.e., close
to bubble point conditions), the “thermodynamic” compress-
ibility turns out to be significantly higher than that obtained
within the standard Wood's approach, which leads to a lower
bulk modulus and P-wave velocity of the saturated reservoir
rocks. Finally, we present a preliminary analysis of the
impact of these differences on seismic traces, as well as
practical implications relating to fizz water discrimination
and 4D seismic monitoring of producing hydrocarbon reser-
voirs and CO2 geological storage in deep aquifers.

Rocks saturated with unrelaxed fluid phases:
the Gassmann–Wood model

To estimate fluid saturation effects on seismic wave veloci-
ties, Gassmann's fluid substitution model is often used in
combination with Wood's expression for the effective bulk
modulus of the saturating two-phase fluid. Gassmann's equa-
tion relates the bulk modulus of the fluid-saturated rock, Ksat,
to the bulk modulus of the drained (or dry) rock, Kdr, to that
of the rock-forming mineral, Km, and to the adiabatic (or
isentropic) bulk modulus of the saturating fluid, Kf:

Ksat ¼ Kdry þ α2 ϕ
K f

þ α−ϕ
Km

� �−1
≈Kdry þ α2

ϕ
K f ð1Þ

where α=1−Kdr/Km is Biot's coefficient and ϕ is rock poros-
ity. Kf is related to fluid density ρf and sound velocity cf:
Kf=ρfcf

2. Gassmann's equation is applicable when (1) the rock

and its forming mineral(s) are isotropic and homogeneously
distributed, (2) all pores are hydraulically connected, and (3)
there is no relative motion between fluid and solid, which
requires that the wave frequency be low enough (this condi-
tion is usually satisfied in the seismic band). The expression
on the right-hand side of Eq. 1 is an approximation of the bulk
modulus Ksat valid for high porosities (ϕ>15 %; Han and
Batzle 2004; Zinszner and Pellerin 2007).

The P-wave velocity in the fluid-saturated porous rock is
given by

Vp ¼ Ksat þ 4μ=3

ρ

� �1=2

ð2Þ

where ρ=(1−ϕ) ρm+ϕρf is the density of the saturated rock
(ρm and ρf being the mineral and fluid densities, respective-
ly), and μ is the rock shear modulus (μ is independent of the
nature and amount of saturating fluids in Gassmann's
model).

When two fluid phases (e.g., a gas phase and a liquid phase
such as water or oil) are present in the rock, they are assimi-
lated to a single fluid with effective density ρf=Slρl+Sgρg,
where Sl and Sg=1−Sl are the volume fractions or saturations
of the liquid and gas phases. Wood's approximation states that
the modulusKf is the Reuss (isostress) average of the adiabatic
bulk moduli of the gas and liquid phases, noted Kg and Kl,
respectively:

K f ¼ Sg
Kg

þ Sl
Kl

� �−1

ð3Þ

Wood's Eq. 3 follows from the definition of Kf, which is
the reciprocal of the adiabatic compressibility βf of the two-
phase (liquid and gas) fluid, i.e.,

β f ¼ −
1

V l þ Vg

∂ V l þ Vg

� �
∂P

� �
S

¼ −
V l

V l þ Vg

1

V l

∂V l

∂P

� �
S

−
Vg

V l þ Vg

1

Vg

∂Vg

∂P

� �
S

¼ Sl
Kl

þ Sg
Kg

¼ Slβl þ Sgβg

g ð4Þ

where Vl and Vg are the liquid and gas volumes and subscript S
means that the partial derivatives are taken at constant entropy
(adiabatic conditions). In Eq. 4, the quantities βl=1/Kl=1/ρlcl

2

and βg=1/Kg=1/ρgcg
2 are the adiabatic compressibilities of

the liquid and gas phases, respectively, cl and cg being the
sound velocity in the liquid and gas phases.

There are two underlying assumptions in the derivation of
Wood's Eqs. 3 and 4 (Batzle and Wang 1992). First, the
pressures in the liquid and the gas phases are equal (isostress
conditions), which means that the phase domains are homo-
geneously distributed and small compared to the wavelength
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of the acoustic wave. In other words, the wave frequency
must be low enough. Second, the liquid and gas phases are
“frozen”, i.e., they do not have enough time to exchange
matter at the passage of the pressure wave. This assumption
holds only if frequency is high enough and/or phase domains
are small enough. We discuss in the next section the range of
applicability of Wood's approximation.

For completeness, it is worth mentioning here that,
when the first assumption is not satisfied (i.e., when the
liquid and the gas phases form patches not small compared
to the wavelength of the acoustic wave, which occurs for
instance for high enough frequencies), the effective bulk
modulus of the two-phase fluid Kf is higher than Wood's
modulus (Eq. 3). Wood's model thus provides a lower
bound for the modulus Kf only if the assumption of “fro-
zen” (or unrelaxed) phases is satisfied. As we will see
below, lower values than Wood's are obtained when fre-
quency (or phase domains) are small enough to allow
transfer processes to take place between the liquid and
gas domains.

When calculated within the Gassmann–Wood model, the
P-wave velocity of porous rocks saturated with liquid and
gas (or vapor) displays very characteristic saturation depen-
dences. For reasonable rock parameters and contrasted fluid
phases (e.g., Kg/Kl<10

−2, as is often the case with water and
gas in shallow reservoirs), the velocity VP first decreases
sharply, but continuously, with increasing Sg, before
reaching a minimum value for Sg∼5–10 %, and then it in-
creases slowly with Sg. For lower contrasts between liquid
and gas, as is the case between water and gas in deep gas
reservoirs, these trends are less pronounced, and the mini-
mum of the velocity VP is shifted to higher gas saturations
(Han and Batzle 2002).

Breakdown of Wood's model for low gas-saturated rocks
in the seismic frequency band

We are concerned here with the seismic behavior of rocks
saturated with a liquid (water or oil) and a small amount of
gas bubbles homogeneously dispersed in the pore space.
This saturation state is encountered for instance when a
water- or oil-bearing reservoir is drawn down below bubble
point pressure. The dissolved gas then comes out of solution
and forms a distinct phase, whose saturation increases with
decreasing pressure. At the microscopic scale, low gas-
saturated reservoirs are often characterized by gas bubbles
sticking to the pore walls, albeit with a high contact angle,
the liquid being usually the most wetting phase. A significant
proportion of their surface is therefore in contact with the
liquid. It is reasonable to assume that this phase distribution has
acoustic properties equivalent to those of a bubbly fluid with
similar gas volume fraction and bubble sizes not exceeding a

few microns (that is, the maximum pore size in most reservoir
rocks).

The acoustic properties of a bubbly pure (i.e., one com-
ponent) fluid have been extensively studied, both theoreti-
cally (Onuki 1991) and experimentally (Coste et al. 1992;
Coste and Laroche 1993), for frequencies much lower than
the resonance frequency of the individual gas bubbles
(which is typically much larger than tens of kilo-Hertz for
submicron-sized bubbles). At the passage of the pressure
wave, the phase equilibrium between liquid and gas (called
vapor when in thermodynamic equilibrium with the liquid) is
perturbed: condensation of some of the vapor (at pressure
peaks) or vaporization of some of the liquid (at pressure
troughs) take place at liquid/gas interfaces, where therefore
latent heat is generated. The actual state—relaxed or
unrelaxed—of the bubbly fluid is determined by the relative
values of two characteristic timescales: the timescale re-
quired for the perturbed system to reach a new equilibrium
state and the sampling time, i.e., the period of the acoustic
wave. In pure fluids, the former timescale is controlled by
heat diffusion: liquid/vapor equilibrium is attained if enough
time is left for the latent heat to be removed from, or brought
to, the liquid/gas interfaces by heat diffusion. For dilute
vapor bubbles in a liquid, the liquid acts as a heat bath,
providing heat to, or removing it from, the liquid/vapor
interfaces by conduction. From a detailed analysis of these
heat and mass transfer processes, Onuki (1991) derived an
expression for the frequency dependence of the adiabatic
compressibility of pure fluids in two-phase (i.e., liquid and
gas) conditions. This expression reduces to the Landau–
Lifshitz' (relaxed) value at low enough frequency and to
Wood's (unrelaxed) value at high enough frequency. The
resonance, or maximum attenuation, occurs for a character-
istic frequency fc such that the thermal diffusion length in the
liquid phase (Dl/2πfc)

1/2 is of the order of the mean distance
between vapor bubbles l≈R/S g

1/3, where Dl is the liquid
thermal diffusivity and R is the radius of the gas bubbles.
This characteristic frequency is thus given by:

f c≈Dl=l
2≈DlS

2=3
g =R2 ð5Þ

This simple scaling argument is due to Coste and Laroche
(1993) who checked the consistency of Eq. 5 with the max-
imum attenuation extracted from Onuki's dispersion relation.
If the frequency of the acoustic wave f is much higher than
the characteristic frequency fc, the two-phase fluid behaves
as a “frozen” or unrelaxed fluid system, and its effective bulk
modulus is given by Wood's value (Eq. 3). If f is much lower
than the characteristic frequency fc, then the two-phase fluid
is in a relaxed state (i.e., in thermodynamic equilibrium) at
any instant and its effective bulk modulus is given by the
Landau and Lifshitz expression (1959).
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On the experimental side, we are aware of a set of low-
frequency acoustic measurements in liquid diethyl ether
containing a low fraction (Sg<1 %) of vapor bubbles with
radius R ∼1 mm (Coste et al. 1992; Coste and Laroche 1993).
The measurements consisted in observing the standing-wave
behavior of a Helmholtz resonator filled with the bubbly
liquid that allowed resonant frequencies as low as a few
Hertz to be investigated. Coste and his coworkers showed
clear evidence for the failure of Wood's effective medium
model, manifested by strong attenuation effects due to the
liquid/vapor transition, even though frequencies were quite
higher than the characteristic frequency fc, equal to a few
milli-Hertz for that particular system.

The theoretical arguments and the measurements summa-
rized above are for pure (i.e., one component) fluids, in which
the approach to thermodynamic equilibrium is kinetically
controlled by heat diffusion. The reservoir fluids of interest
in this paper are not pure fluids, but multicomponent mixtures
containing at least two components. The approach to equilib-
rium is then a more complex dynamical process, involving
also diffusive transport of the different components from one
phase to the other across the interfaces between phases. A
simplification occurs when the fluid can be described by only
two components (or pseudocomponents) with contrasted vol-
atilities: one nonvolatile component, hence present only in the
liquid phase, and one volatile (light) gas component present in
both gas and liquid phases. This description, which reservoir
engineers refer to as the “black oil” model, is applicable to a
large number of reservoir fluids, including contrasted hydro-
carbon mixtures and aqueous fluids (see next section for a
more thorough presentation of this model). Under thermody-
namic equilibrium conditions, a pressure increase (or de-
crease) is accompanied by an increase (or decrease) in the
amount of dissolved gas component in the liquid. The gas
component, in addition to heat, therefore goes back and forth
across the liquid/gas interface at the passing of the pressure
wave. The rate-controlling factor that governs the approach to
thermodynamic equilibrium in such fluid systems is the dif-
fusivity of the light (or gas) component in the liquid, because
this is the slowest process: gas diffusion coefficients in liquids
are one or two orders of magnitude lower than typical liquid
thermal diffusivities. For instance, the diffusivities of methane
or CO2 in water are in the range of 10

−8–10−9 m2/s (in a porous
medium the effective diffusivity is still lower by a factor equal
to the tortuosity), whereas thermal diffusivities of liquids such
as water or diethyl ether are rather in the range of 10−7 m2/s
(Coste et al. 1992). The pure-fluid analysis by Onuki (1991)
and Coste et al. (1992, 1993) is still applicable, but liquid
thermal diffusivity should be replaced by gas diffusivity in
Eq. 5. Then, for gas bubble sizes typically encountered in low
gas-saturated porous media, smaller than the millimetric bub-
bles in Coste's experiments by, say, 3 or more orders of
magnitude, we end up for comparable gas saturations (Sg

approximately a few parts per thousand) with a characteristic
frequency fc higher by at least 4 orders of magnitude than that
corresponding to Coste's experiments (equal to a few milli-
Hertz, see preceding paragraph). Hence, in the seismic fre-
quency band, Wood's assumption of “frozen” phases is likely
to break down.

The above analysis holds provided gas bubbles are rather
homogeneous in sizes and homogenously dispersed in the
pore space. In a porous medium, this corresponds to a satu-
ration state arising typically from a depletion process, where-
as a gas displacement process would lead to a less uniform
(i.e., more patchy) phase distribution. In addition, Onuki
(1991) and Coste et al. (1992, 1993) considered bubble sizes
large enough to neglect capillary pressure effects, i.e., effects
related to the pressure difference between gas and liquid.
These effects have been examined in the thermodynamic
limit by Firoozabadi and Pan (2000). Near bubble point
pressure conditions, they are found to be negligible if the
overpressure in the gas phase does not exceed a few bar,
which corresponds to gas bubbles larger than about 0.1 μm.
Lastly, the thermal influence of the solid matrix making up
the porous medium on the saturating fluid has been neglected
(i.e., pore walls are considered to be adiabatic: no heat is
transferred between the solid matrix and the fluid at the
passage of the seismic wave). This assumption is implicit
in the standard Gassmann model. In reality, some heat trans-
fer takes place across mineral/fluid interfaces at the passage
of the pressure wave, whose effect is to increase the effective
compressibility of the saturating fluid towards a value inter-
mediate between the adiabatic and isothermal fluid com-
pressibilities. For the class of fluids examined in this paper,
however, it turns out that there are very little differences
between the adiabatic and isothermal compressibilities (see
next section).

To conclude this section, the available theoretical and
experimental evidences suggest that the standard Wood pro-
cedure might not be applicable in the seismic frequency band
for evaluating the effective compressibility or bulk modulus
of two-phase (liquid and gas) contrasted (“black oil”) fluids
saturating a typical porous rock, at least for low gas satura-
tions (i.e., close to bubble point pressure conditions). This
modulus, an essential ingredient in Gassmann's fluid substi-
tution model, is therefore examined in the thermodynamic
limit in the next section.

Rocks saturated with relaxed fluid phases:
the Gassmann–Landau and Lifshitz model

We refer to the regime in which the liquid and gas phases can
be considered as fully relaxed or thermodynamically equili-
brated at the passage of the seismic wave as the thermody-
namic or Landau–Lifshitz regime. In this regime, the
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compressibility of the two-phase fluid is higher than in
Wood's regime, where the fluid phases behave as “frozen”
(or unrelaxed) phases. In the following, we propose a sim-
plified method to compute the “thermodynamic” (or relaxed)
two-phase compressibility, which is appropriate for the class
of reservoir fluids obeying the “black oil” (BO) description.
We then implement this method on three typical reservoir
fluids, including one hydrocarbon mixture and two aqueous
fluid systems, and we calculate by means of Gassmann's
formula (Eq. 1) the bulk modulus and P-wave velocity of a
given porous rock (representative of a porous and poorly
consolidated sand) saturated with those two-phase fluid sys-
tems. The latter modulus and P-wave velocity are compared
to those obtained within the conventional Gassmann–Wood
model.

BO approximation of two-phase compressibility

In the BO approach, the reservoir fluid is described by two
components (or pseudocomponents): one is nonvolatile and,
therefore, present only in the liquid phase, and the other is
volatile and may be present both in the liquid phase (as a
dissolved or associated gas) and in the “free” gas phase. The
liquid phase is conventionally called oil, but this liquid phase
can be water as well. The BO parameters of a given reservoir
fluid at fixed temperature T and pressure P are:

1. The volume ratio of liberated gas to remaining liquid at
standard conditions (288 K and atmospheric pressure),
or solution gas–liquid ratio, denoted Rs.

2. The liquid and gas formation volume factors, denoted by
Bl and Bg, respectively, equal to the volume of liquid and
gas at T and P, relative to the volume at standard
conditions.

These parameters are determined directly from PVT mea-
surements usually carried out in the laboratory under isother-
mal conditions or by using simple methods or correlations
such as those proposed by Batzle and Wang (1992). The
isothermal compressibility βf of the single-phase liquid (P is
higher than bubble point pressure Pb) is

β f ;BO ¼ −
1

Bl

∂Bl

∂P

� �
T

ð6Þ

and that of the two-phase fluid with gas and liquid satura-
tions Sg and Sl (P<Pb), is (see, e.g., McCain 1990)

β f ;BO ¼ Sl −
1

Bl

∂Bl

∂P

� �
T

þ Bg

Bl

∂Rs

∂P

� �
T

� �

þ Sg −
1

Bg

∂Bg

∂P

� �
T

� �
ð7Þ

The expression in the right-hand side bracket of Eq. 7 is
the gas phase compressibility and that in the left-hand side

bracket is the liquid phase compressibility, in which the
second term accounts for the gas evolving from the liquid
under a pressure variation. From Eqs. 6 and 7, it appears that
there is a discontinuity in the fluid compressibility at the
crossing of bubble point pressure Pb:

Δβ f ;BO ¼ Bg

Bl

∂Rs

∂P

� �
T ;P¼Pb

ð8Þ

This expression can be rewritten in terms of the equilib-
rium molar fraction of the gas dissolved in the liquid phase x,
and the molar volumes Vg and Vl of the gas and liquid at T
and Pb:

Δβ f ≈
Vg

V l

∂x
∂P

� �
T ;P¼Pb

ð9Þ

where use has been made of the definitions of Bg=Vg/Vg,st,
Bl=Vl/Vl,st and Rs=xVg,st/(1−x)Vl,st≈xVg,st/Vl,st, where sub-
script st represents standard conditions and x is usually a
small quantity. The meaning of Eqs. 8 and 9 is the following.
Consider one mole of liquid containing a small amount of
“free” gas (i.e., P is slightly lower than Pb) with total volume
V≈Vl, and let the pressure vary from P to P+dP. The total
volume then varies by an amount equal to dV=Vgdx=Vg

(x(P+dP)−x(P)) corresponding to the volume lost (or
gained) by gas dissolution into (or exsolution from) the
liquid phase when pressure increases (or decreases). This
variation, which is absent in Wood's description, comes in
addition to that of the liquid phase. The link between Δβf
(the compressibility enhancement with respect to Wood's
compressibility) and the gas solubility behavior is thus clear-
ly established. This link is still clearer if we examine the low-
pressure behavior of Eqs. 8 and 9. At low pressure Vg=RT/P
(ideal gas law), where R is the perfect gas constant and gas
solubility increases linearly with pressure, i.e., it follows
Henry's law, x=P/H, where Henry's law constant H is spe-
cific to a given liquid/gas system and is temperature-
dependent (tabulations of H(T) are available in the literature
for the most common liquid/gas systems). Hence, when the
bubble point pressure is sufficiently low (say, below a few
bar to a few tens of bar, depending of the liquid/gas system
and temperature), the compressibility jump Δβf at the cross-
ing of bubble point pressure Pb is equal to

Δβ f ≈
1

H Tð Þ
RT

PbV l
ð10Þ

The compressibility enhancement thus decreases with
increasing pressure and decreasing Henry's law constant,
i.e., with decreasing gas solubility. These trends persist at
higher pressures, as shown in the analysis of the compressive
behavior of various reservoir fluid systems presented below.

The previous equations in this section provide isothermal
compressibilities, whereas the compressibilities of interest
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are adiabatic ones. In the case of reservoir fluids obeying the
“BO” description, the difference between isothermal and
adiabatic compressibilities is negligible, both in the one-
phase (liquid) region and in the two-phase region, provided
the amount of gas phase is small, and Eqs. 6 to 8 thus provide
a good approximation of the latter compressibilities. In the
case of the reservoir fluid examples examined below, this
statement can be substantiated by an extensive calculation of
both isothermal and adiabatic compressibilities, which only
require an equation of state for the fluid system (Nichita et al.
2010). The results from this calculation serve here as a
benchmark for our simplified BO approach.

We will envisage two evolutions of reservoir fluid condi-
tions. In one of these, the reservoir fluid with fixed temper-
ature T and composition undergoes a pressure variation
across the bubble point pressure Pb marking the boundary
between the monophasic (liquid) state (P>Pb) and the two-
phase (liquid and gas) conditions (P<Pb). This corresponds
for instance to a depletion process (drawdown) in a reservoir.
The liquid saturation Sl (P<Pb) is related to the BO param-
eters as follows:

Sl T ;Pð Þ ¼ 1þ Bg Rs T ;Pbð Þ−Rs T ;Pð Þð Þ=Bl

� �−1 ð11Þ

The other useful description of fluid conditions is in terms
of Sg, all other conditions such as reservoir temperature and
pressure being fixed. Fluid compressibility variations are
obtained by letting Sg and Sl=1−Sg vary in Eqs. 6 and 7, in
which the other quantities are estimated at the temperature
and pressure of interest. This description, in which only the
fluid composition varies, is for instance needed for inferring
saturation maps from seismic reflectivity data.

Examples

The three chosen examples consist in the same porous me-
dium saturated with three different reservoir fluids. The
porous medium has properties similar to those of the Utsira
sands in the North Sea, namely a quartzitic sand with poros-
ity ϕ=34 %, Biot's coefficient α≈0.92, and dry rock bulk
modulus Kdry≈2.8 GPa (Arts et al. 2004). One fluid is a
contrasted hydrocarbon mixture well-documented in the lit-
erature (Stenby et al. 1996; Nichita et al. 2007), which is in
two-phase (i.e., oil and gas) conditions at the reservoir tem-
perature of 344 K. Its bubble point pressure is equal to
298 bar. The other two fluids are mixtures of water and a
soluble gas, either carbon dioxide (CO2) or methane (CH4),
under typical shallow offshore conditions; they are represen-
tative of fluids resulting from CO2 injection in a shallow
offshore aquifer (Arts et al. 2004) and of “fizz” water (Han
and Batzle 2002). The calculation of the bulk modulus and P-
wave velocity of the saturated rock is carried out in two

steps. First, the method described in the previous subsection
is utilized for calculating the compressibility of the saturating
two-phase fluid. Then Gassmann's formula and Eq. 2 are
used to compute the bulk modulus and P-wave velocity of
the saturated rock, which are compared to those obtained
within the conventional Gassmann–Wood method.

Hydrocarbon-bearing reservoir

The porous medium (see preceding paragraph) is saturated
with a live oil having a bubble point pressure Pb=298 bar at
reservoir temperature T=344 K. This oil is a contrasted
hydrocarbon fluid with an associated gas consisting essen-
tially of methane; its composition, together with the param-
eters of the Peng and Robinson (1976) equation of state that
best match the PVT data, are reported in Stenby et al. (1996)
and in Nichita et al. (2007). The process of interest here is a
depletion process (or drawdown), in which pressure varies
from above Pb (one-phase region) to below Pb (two-phase
region) at constant T=344 K. The BO parameters of this
fluid in the one-phase region (P>Pb), i.e., Bl(P), and in the
two-phase region (P<Pb), i.e., Bg(P), Bl(P), and Rs(P), are
taken from Nichita et al. (2007); in particular, the solution
gas–oil ratio of the monophasic oil at Pb is equal to
Rs(Pb)=110 l of gas per liter of oil (at standard conditions).
The fluid compressibility in the one-phase (i.e., oil) region
slightly above Pb (P>Pb), calculated by Eq. 6, is represented
in Fig. 1 by the circle on the Sl=1 axis. The compressibility
in the two-phase (i.e., oil and gas) region (P<Pb) calculated
from Eqs. 7 and 11 is also depicted in Fig. 1 as a function of
liquid saturation Sl, with Sl varying from 1 to 0.95 or Sg
varying from 0 to 0.05 (corresponding to a drawdown from
Pb=298 bar to P=255 bar). We also calculated two-phase
compressibilities by using the same procedure, but with BO
parameters given by the Batzle and Wang (1992) correla-
tions, in which the only inputs are the specific gravities of the
liquid and gas evolved from the fluid at standard conditions
(equal here to 0.95 and 0.68, respectively): these compress-
ibilities turn out to be undistinguishable from those calculat-
ed with the BO parameters.. In addition, we have depicted
the more exact (adiabatic) compressibilities obtained by the
method described in Nichita et al. (2010).

The discontinuous variation in fluid compressibility that
occurs at the crossing of bubble point conditions is the most
striking result of these calculations, whether performed by
using the simple BO scheme introduced in this paper or by
using the more rigorous scheme presented in the Nichita
et al. (2010). Fluid compressibility jumps from a value
approximately equal to 10−4 bar−1 just above Pb, i.e., in the
one-phase (liquid) region (Sl=1, P>Pb), to a value four to
five times larger (depending on the scheme used) in the two-
phase region (P<Pb, Sl slightly below 1). This discontinuous
variation, reminiscent of that well known in pure fluids
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(Landau and Lifshitz 1959), is marked by the double arrow
in Fig. 1. In contrast, the compressibility of “frozen” (or
unrelaxed) oil and gas phases (i.e., Wood's compressibility,
cf. Eq. 3) varies continuously at the crossing of bubble point
conditions. Wood's (unrelaxed) two-phase compressibilities
are much smaller than their “thermodynamic” (or relaxed)
counterparts at low gas saturation.

We now examine the bulk modulus and P-wave velocity
of the porous medium (whose parameters have been given
above) saturated with the above hydrocarbon fluid. Indeed,
we expect these two parameters to reflect the compressibility
behavior of the saturating fluid, and in particular to exhibit a
discontinuity at the crossing of bubble point conditions and
much lower values at low gas saturation than the values
obtained within the conventional Gassmann–Wood proce-
dure. Injecting in Gassmann's substitution formula (Eq. 1)
the fluid compressibilities calculated either within the “ther-
modynamic” (or Landau–Lifshitz) regime or within Wood's
regime, and then using Eq. 2, we obtain the bulk moduli and
P-wave velocities displayed in Figs. 2 and 3, respectively.
We refer below to these two calculation methods as the

Gassmann–Landau–Lifshitz (GLL) and GW methods. At
very low gas saturation (Sg ∼0 or Sl ∼1), the GLL bulk
modulus and P-wave velocity are lower by approximately
45 and 15 %, respectively, than their GW counterparts. The
difference between the GLL and GW values decreases with
increasing gas saturation and becomes very small when
Sl<0.75 (Figs. 2 and 3).

CO2-bearing aquifer

We consider here an aquifer homogeneously saturated with a
small amount of “free” CO2. This situation corresponds for
example to an aquifer contaminated by CO2 leaking from an
underlying storage formation. In the early stages of leakage,
CO2 is dissolved in water, then a “free” CO2-rich phase
forms when the CO2 dissolution limit is reached. This situ-
ation also corresponds to regions in the storage formation
itself where “free” CO2 is sparsely and homogeneously
distributed in the porous medium, which is the case for
instance in the region behind the rising CO2 plume.

The porous medium is the same as that considered in the
preceding example, with properties very close to those of the
Utsira aquifer in the North Sea in which over 10 millions of
tons of CO2 have been injected since 1996. The temperature is
equal to 335 K. The BO parameters of mixtures of water and
CO2 are easily found in the literature. For instance, values of Rs
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Fig. 2 Bulk modulus Ksat of the porous medium saturated with the
hydrocarbon fluid considered in Fig. 1, computed by the Gassmann–
Wood (GW) method (gray curve) and by the conventional Gassmann–
Landau–Lifshitz (GLL) method (full black curve). The circle indicates
the bulk modulus slightly above the bubble point pressure of the
saturating fluid. The double arrow shows the discontinuity in the
GLL modulus at the crossing of bubble point conditions
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Fig. 1 Compressibility as a function of liquid saturation of the hydro-
carbon fluid Sl at temperature T=344 K and pressure varying below
bubble point pressure Pb=298 bar, calculated for “frozen” (or
unrelaxed) liquid and gas phases (Wood's regime, gray curve) and for
thermodynamically equilibrated (or relaxed) phases (“thermodynamic”
or Landau–Lifshitz' regime). In the latter regime, compressibility is
calculated either from BO parameters (dashed curve) or from an equa-
tion of state (full black curve). The circle on the axis Sl=1 corresponds
to the compressibility of the one-phase (oil) system right above bubble
point pressure. The double arrow shows the discontinuity in the com-
pressibility of relaxed liquid and gas phases at the crossing of bubble
point conditions
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can be found in Chang et al. (1998) or in Hassanzadeh et al.
(2008), and Bg is obtained by using the adaptation of the
Batzle–Wang equations to CO2 proposed by Xu (2006), which
consists in using the true CO2 critical temperature (Tc) and
pressure (Pc) rather than the pseudo-Tc and pseudo-Pc drawn
from the Batzle–Wang correlations. The “thermodynamic” (or
relaxed) compressibilities of these mixtures are calculated in the
one-phase (liquid) and two-phase (liquid and gas) regions by
means of Eqs. 6 and 7. They are depicted as a function of liquid
saturation varying between 0.98 and 1 in Fig. 4a, b. Figure 4a
corresponds to varying pressure conditions (between
Pb=178 bar and P=110 bar) at fixed fluid composition charac-
terized by Rs(Pb)=27 l of CO2 per liter of water at standard
conditions (this value is nothing but the solubility of CO2 in
water at 178 bar and 335 K). Figure 4b corresponds to fixed

temperature (335 K) and pressure (178 bar) and varying fluid
compositions characterized by gas–water volume ratios larger
than 27 l of CO2 per liter of water (standard conditions). In these
figures, the adiabatic compressibilities calculated by the method
described in Nichita et al. (2010) are also depicted, which are
not very different from those obtained within our simplified
BO scheme. There is again at the crossing of bubble point

1.8

1.9

2

2.1

2.2

0.75 0.8 0.85 0.9 0.95 1

Liquid saturation

V
P

 (
km

/s
)

138 298203

Pressure (bar)

Fig. 3 P-wave velocity of the porous medium saturated with the
hydrocarbon fluid considered in Fig. 1, computed by the GW method
(gray curve) and by the GLL method (black curve). The circle indicates
the P-wave velocity slightly above the bubble point pressure of the
saturating fluid. The double arrow shows the discontinuity in the GLL
P-wave velocity at the crossing of bubble point conditions

Fig. 4 a and b Compressibility as a function of liquid saturation of
mixtures of water and CO2 at T=335 K, calculated by assuming “fro-
zen” (or unrelaxed) liquid and gas phases (Wood's regime, gray curve)
and thermodynamically equilibrated (or relaxed) phases (“thermody-
namic” or Landau–Lifshitz regime). In the latter regime, compressibil-
ity is calculated either from BO parameters (dashed curve) or from an
equation of state (full black curve). The circle on the axis Sl=1 corre-
sponds to the compressibility of the one-phase (liquid) CO2-saturated
water slightly above Pb=178 bar. The double arrow shows the discon-
tinuity in the “thermodynamic” compressibility at the crossing of bub-
ble point conditions. Figure 4a corresponds to a fixed composition and
pressures varying below bubble point pressure Pb=178 bar. Figure 4b
corresponds to varying compositions (or gas–water volume ratios,
GWR, at standard conditions) at fixed P=178 bar
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conditions a discontinuity in “thermodynamic” (or relaxed)
compressibility, marked by the double arrow in Fig. 4a, b.
This discontinuity is less pronounced than in the preceding

example. Fluid compressibility is enhanced by a factor of 2.5
when this aqueous fluid turns biphasic, instead of a factor of
4–5 in the case of the hydrocarbon fluid examined above. In
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Fig. 5 a and b Bulk modulus Ksat of the porous medium saturated with
the mixtures of water and CO2 considered in Fig. 4a, b, respectively,
computed by the GW method (gray curve) and by the GLL method
(black curve). The circle indicates the bulk modulus of the reservoir
rock saturated with the one-phase (liquid) CO2-saturated water slightly
above Pb=178 bar. The double arrow shows the discontinuity in the
GLL bulk modulus at the crossing of bubble point conditions
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Fig. 6 a and b P-wave velocity in the porous medium saturated with
the mixtures of water and CO2 considered in Fig. 4a, b, respectively,
computed by the GW method (gray curve) and by the GLL method
(black curve). The circle indicates the P-wave velocity in the reservoir
rock saturated with the one-phase (liquid) CO2-saturated water slightly
above Pb=178 bar. The double arrow shows the discontinuity in the
GLL P-wave velocity at the crossing of bubble point conditions
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contrast, Wood's (unrelaxed) compressibilities (Eq. 3), also
plotted in Fig. 4a, b, vary continuously at the crossing of
bubble point conditions, and are significantly smaller than
their “thermodynamic” (or relaxed) counterparts.

The bulk moduli of the porous medium saturated with the
above mixtures of water and CO2 have been calculated by the
GLL and GW methods, i.e., by injecting in Gassmann's for-
mula (Eq. 1) the “thermodynamic” and Wood's compressibil-
ities. They are depicted as a function of liquid saturation in
Fig. 5, b, which correspond respectively to the fluid conditions
of Fig. 4a, b. The P-wave velocities are shown in Fig. 6a, b. At
very low gas saturation, the GLL bulk modulus and P-wave
velocity are lower, respectively, by about 36 and 13 %, than
their GW counterparts. As is apparent in Fig. 6a, b, the
differences between both approaches decrease when gas sat-
uration increases and becomes negligible when Sg is larger
than around 5 % (fixed composition and decreasing pressure,
Figs. 5a and 6a) and 15 % (varying composition and fixed
pressure, Fig. 6a, b). These differences are significant at low
gas saturation, yet they are less pronounced, both in ampli-
tudes and in saturation extent, than in the preceding example.

Fizz water-bearing reservoir

In this last example, illustrative of a reservoir saturated with
fizz water, the porous medium, temperature and bubble point
conditions are identical to those of the preceding example.
The light component that is mixed with water is methane
(CH4) instead of CO2. At 178 bar and 335 K, the solubility of
CH4 in water is 1 order of magnitude below that of CO2: 2.7 l
of CH4 vs. 27 l of CO2 per liter of water at standard condi-
tions. We envisage again two situations: (a) one in which
pressure varies below bubble point pressure Pb (=178 bar) at
fixed fluid composition and (b) the other in which fluid
composition varies at fixed pressure (equal to Pb).

The “thermodynamic” (or relaxed) compressibilities of
these fluids calculated in the one-phase (liquid) and two-
phase (liquid and gas) regions by means of Eqs. 6 and 7 are
depicted as a function of liquid saturation varying between
0.98 and 1 in Fig. 7a, b, corresponding respectively to situa-
tions (a) and (b) described in the preceding paragraph. The

values of Rs(P) or ∂Rs/∂P used in this calculation have been
found in Ramey (1964) or in Batzle and Wang (1992), who
also provide a method for estimating the volume factors Bg

and Bw of pure methane and water (these factors can also be
inferred from the NIST data base). These compressibilities are
very close to the adiabatic compressibilities computed by the
method described in Nichita et al. (2010). The discontinuity in

Fig. 7 a and b Compressibility as a function of liquid saturation of
mixtures of water and CH4 representative of “fizz” water, calculated by
assuming “frozen” (or unrelaxed) liquid and gas phases (i.e., Wood's
regime, gray curve) and thermodynamically equilibrated (or relaxed)
phases (i.e., “thermodynamic” or Landau–Lifshitz regime, black
curve). The circle on the axis Sl=1 corresponds to the compressibility
of the one-phase (liquid) CH4-saturated water slightly above Pb=178-
bar (T=335 K). The double arrow shows the discontinuity in the
“thermodynamic” compressibility at the crossing of bubble point con-
ditions. Figure 7a corresponds to a fixed composition and pressures
varying below bubble point pressure Pb=178 bar. Figure 7b corre-
sponds to varying compositions (or gas–water volume ratios, GWR, at
standard conditions) at fixed P=178 bar
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“thermodynamic” (or relaxed) compressibility at the crossing
of bubble point conditions (Sl=1), marked by the double
arrow in Fig. 7a, b, is smaller than in the case of the

water+CO2 systems with identical bubble point temperature
and pressure. Fluid compressibility is enhanced by a factor of
2 when the first bubble of free CH4 appears in the aqueous
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Fig. 8 a and b Bulk modulus Ksat of the porous medium saturated with
the “fizz” water considered in Fig. 7a, b, respectively, computed by the
GW method (gray curve) and by the GLL method (black curve). The
circle indicates the bulk modulus of the reservoir rock saturated with the
one-phase (liquid) CH4-saturated water slightly above Pb=178 bar. The
double arrow shows the discontinuity in the GLL bulk modulus at the
crossing of bubble point conditions
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Fig. 9 a and b P-wave velocity in the porous medium saturated with
the “fizz” water considered in Fig. 7a, b, respectively, computed within
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wave velocity at the crossing of bubble point conditions
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phase. In contrast, Wood's compressibilities (Eq. 3) vary con-
tinuously at the crossing of bubble point conditions and are
smaller than their “thermodynamic” (or relaxed) counterparts.

The GLL and GW bulk moduli of the porous medium
saturated with this fizz water are depicted as a function of
liquid saturation in Fig. 8a, b, corresponding respectively to
the fluid conditions of Fig. 7a, b. The P-wave velocities are
shown in Fig. 9a, b. At low gas saturation, the GLL bulk
modulus and P-wave velocity are lower by ∼32 and 12 %,
respectively, than their GW counterparts. The differences
between both approaches decrease when gas saturation in-
creases and become negligible when Sg is larger than about
4 % (situation a) and 10 % (situation b). These differences
are less pronounced than those obtained with CO2, which is
again an effect of the lesser solubility in the saturating liquid
(i.e., water) of methane as compared to CO2.

Discussion and conclusions

The previous analysis shows that the drops in bulk modulus
and P-wave velocity caused by small gas saturation in a
liquid-bearing porous medium are likely to be underestimated
by the conventional Gassmann–Wood approach, in which the
effects of phase changes between liquid and gas are neglected.
As shown above from a simple argument valid for low pres-
sures (Eq. 10) and from calculations with reservoir examples,
this underestimation is more important, both in amplitude and
saturation extent, for liquid/gas systems in which gas solubil-
ity in the liquid is higher. The difference between the GWand
GLL velocities (and impedances) is thus larger when the
reservoir fluid is a live oil with a small amount of gas than

when it is water with gas, and in the latter aqueous systems
when the gas is CO2 rather than methane.

We expect this difference to be apparent in the seismic
traces of low gas-saturated reservoirs. We focus in this pre-
liminary analysis on normal (zero offset) reflections, which
are known to be the most sensitive to the value of VP. We defer
to a subsequent work a more complete AVO analysis. The
synthetic seismic traces correspond here to a 40 Hz Ricker
wavelet, impinging on a 100 m thick reservoir layer encased
in shales with density 2.27 g/cm3 and VP=2.4 km/s, con-
volved with the reflectivity coefficient profiles at zero-offset
conditions. They have been calculated for the three reservoir
examples with various low gas saturations described in the
previous section. Depending on whether the GW or GLL
methods are used for modeling velocities and impedances,
very different seismograms are expected as a consequence of
the difference between the zero-offset reflectivities, or imped-
ance contrasts, at reservoir/shale interfaces. Figure 10 repre-
sents vertical impedance profiles of the chosen shale/reservoir
geological setting, in which the reservoir is fully saturated
with liquid (oil or water) and partially saturated with gas
(Sg=0.01). The liquid/gas systems and the temperature and
pressures are those considered in the previous section (Figs. 1,
4a, and 7a). The corresponding traces are plotted in Figs. 11
and 12. The traces corresponding to Sg=0.05 are also plotted
in Fig. 11. Clearly, reflection amplitudes at shale/reservoir
interfaces are larger when calculated by using the GLL veloc-
ity model rather than the GW model, especially at lower
saturation (Sg=0.01) and when the gas is CO2 (Fig. 11). This
difference however decreases with increasing gas saturation,
as shown for instance in Fig. 10 (hydrocarbon-bearing reser-
voir). Upon further approaching bubble point conditions (i.e.,
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Fig. 10 Vertical profiles of the
GWand GLL P-wave impedance
of the shale/reservoir geological
setting, corresponding to
reservoirs fully liquid saturated
(Sg=0) and partially saturated
with gas (Sg=0.01). The fluid
systems are those considered in
Figs. 1, 4a, and 7a
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Sg<0.01) in those formations, the GLL traces are almost
unchanged from their values for Sg=0.01, whereas the GW
traces tend to the traces of the corresponding fully liquid-
saturated formation (data not shown here). For values of Sg
exceeding about 0.1, the differences between the GW and
GLL amplitudes are hardly detectable (data not shown).
Another interesting feature of these traces is the stronger
velocity pushdown effect at the bottom reservoir/shale inter-
face obtained when using the GLL velocity model compared
to the effect obtained when using the GW model. For a given
low gas saturation, the pushdown effect is larger when the gas
is more soluble.

The GLL method introduced in this paper is valid at “low
enough” frequency, corresponding to thermodynamically
equilibrated (or relaxed) liquid and gas phases saturating
the porous rock. The conventional GW model holds if the
frequency is “high enough”, corresponding to “frozen” (or
unrelaxed) liquid and gas phases. As argued above, the
characteristic frequency fc delineating the two frequency re-
gimes is likely to fall in the seismic band for typical low gas-
saturated reservoirs, and therefore dispersion–attenuation ef-
fects may occur in practice, with a frequency dependent P-
wave (phase) velocity having values intermediate between the
GLL and GW velocity values and an associated attenuation

(by virtue of Kramers–Krönig relation). An extension of
this work would be to examine both from a theoretical
point of view and experimentally how these effects,
which have been thoroughly investigated in pure bubbly
fluids (Onuki 1991; Coste et al. 1992), compare and add up to
the other acoustic dispersion-attenuation mechanisms (Bourbié
et al. 1987).

According to our analysis, even minute amounts of “free”
gas corresponding to the immediate vicinity of bubble point
conditions in the reservoir should give rise to strong seismic
reflections (bright spots). Interfaces between two porous
layers, one fully saturated with liquid and the other with
the same liquid with a minute amount of gas, should thus
be associated to seismic reflectors. This kind of reflectors,
associated to a phase change between a monophasic liquid
and a two-phase (liquid and gas) fluid in the reservoir, is
analogous to the so-called bottom simulating reflectors as-
sociated to another type of phase transition, namely that
between a solid (hydrate) phase and a two-phase (water
and gas) fluid. As another example, the 400–700 km deep
reflectors observed at seismological frequencies (<1 Hz)
have recently been shown to be associated to pressure-
induced phase transitions in the earth's minerals (Li and
Weidner 2008). The reflectors of interest in this paper, when
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Fig. 12 Zero-offset synthetic
seismic traces of a shale-encased
100 m thick fizz water-bearing
and water/CO2-bearing reservoir
layer. The poroelastic properties
given by the GLL and GW
models (the impedance vertical
profiles for Sg=0.01 and 0) are
plotted in Fig. 10
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Fig. 11 Zero-offset synthetic
seismic traces of a shale-encased
100 m thick hydrocarbon-
bearing reservoir layer with
various low gas saturations:
Sg=0.05, 0.01, 0 (from left to
right). The poroelastic properties
given by the GLL and GW
models are plotted in Fig. 10
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they appear in time lapse seismic studies of a producing
hydrocarbon reservoir are the manifestation of the crossing
of bubble point conditions in the reservoir. In some aquifers
containing dissolved methane, the solubility of which often
goes through a minimum as a function of depth in off-shore
conditions (Haacke et al. 2007), depletion may cause the
apparition of a horizontal gas bubble curtain at the loca-
tion of this minimum, which should also be clearly appar-
ent in time lapse seismic studies.

In the context of the rising interest for CO2 geological
storage, our suggestion is to utilize the strong sensitivity of
seismic velocity to very low saturations of free CO2 (see,
e.g., Fig. 6a, b) for monitoring purposes, not only of the
plume CO2 frontiers (where Sg has a nonvanishing values),
and also of shallow aquifers overlying the storage formation.
The contamination of the latter aquifers by CO2 leaking from
the storage formation could be detected as soon as CO2

reaches the solubility limit, i.e., as soon as it forms a free
phase in the shallow aquifer.

As mentioned in the “Introduction” section, discriminat-
ing between “fizz” water and commercial gas saturation is
one of the most important challenges in seismic exploration.
The conventional Gassmann–Wood method predicts that the
P-wave velocity and impedance strongly vary with gas sat-
uration only in a narrow interval, from Sg=0 to Sg=5–10 %,
depending on reservoir depth. This strong variation is very
likely to be overestimated, as demonstrated in this paper (see
Fig. 9a, b); there is thus less hope to infer gas saturations
from seismic reflectivity, since even a minute amount of free
gas gives rise to an impedance contrast with the fully liquid-
saturated zone comparable to that with a commercial gas
saturation.
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