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Abstract Estimation of mineral resources and reserves with
low values of error is essential in mineral exploration. The aim
of this study is to compare inverse distance weighted (IDW)
and ordinary kriging (OK) methods based on error estimation
in the Dardevey iron ore deposit, NE Iran. Anisotropic ellip-
soid and variograms were calculated and generated for esti-
mation of Fe distribution by bothmethods. Density, continuity
of ore and waste, the number of points involved, and the
discretization factor in the estimation of ore and waste bound-
aries were determined and the resource estimated by IDWand
OK methods. Estimation errors were classified based on
JORC standard, and both methods were compared due to
distribution of error estimation. Results obtained by the study
indicate that error estimation of OK method is less than IDW
method and that the results of OK method are reliable.

Keywords IDW . OK . Error estimation . Block modeling .
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Introduction

Geostatistical estimation of ore grade is necessary in mine plan-
ning and designing (Asghari and Madani Esfahani 2013;
Monjezi et al. 2013). An important problem in mineral explora-
tion is the estimation of two- or three-dimensional regional vari-
ables in a studied area, especially ore grade distribution.
According to this problem, which is known as spatial interpola-
tion, several methods were proposed which consist of linear and
non-linear kriging methods, inverse distance weighted (IDW),
interpolating polynomials, splines, and power and Fourier series
fitting (Franke 1982; Lam 1983; Cressie 1993; Zimmerman et
al.1999). In many cases, kriging procedure was found to be the
best estimator, while IDW or splines were considered as proper
methods in other cases (Matheron 1967; Marechal and Serra
1971; Rouhani 1986; Laslett and McBratney 1990; Weber and
Englund 1994; Laslett 1994; Phillips et al. 1997; Abed et al.
2013; Arfaoui and HédiInoubli 2012; Laslett et al. 1987; Weber
and Englund 1992; Gallichand and Marcotte 1993; Brus et al.
1996; Declercq 1996; Yasrebi et al. 2009; Zimmerman et al.
1999). Using real data rather than synthetic data has several
advantages: for example, it precludes one method from having
an unfair advantage merely because the data used for the com-
parison are generated under the same model on which the
method is based. On the other hand, only with synthetic data
can the effect of certain data characteristics on interpolation
accuracy be systematically evaluated (Weber and Englund
1992 and 1994; Englund et al. 1992; Zimmerman et al.
1999). Evaluation of ore element distribution is an important
parameter for mine planning and design (Hustrulid and Kochta
2006). Determination of estimation method is essential for
decreasing the error estimation and increasing the accuracy of
resource and reserve evaluation (Dimitrakopoulos et al. 2007;
Parhizkar et al. 2011; Asghari and Madani Esfahani 2013).

The purpose of this paper is to evaluate Fe distribution and
compare the estimation error of two interpolation methods
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based on an analysis of subsurface lithogeochemical data
resulting from drill cores in Dardevey iron ore deposit, NE
Iran. The interpolation methods OK and IDW were used
in this study. The IDW method used in this paper has
been developed by utilizing variography and anisotropic
ellipsoid.

Geological setting of Dardevey deposit

The Sangan iron ore complex is located approximately
300 km SE of Mashhad, NE Iran, which is one of the great
Iranian iron ore resources. The Sangan complex consists of
several ore bodies such as Dardevey, Baghak, A, A′, B, C, and
C North. The Dardevey deposit is situated at about 18 km NE
of Sangan, as shown in Fig. 1. This area is located in Lut
structural zone, which is one of the subdivisions of the Iranian
central structural zone at the northern part of Darouneh fault,
as depicted in Fig. 1. Dardevey iron ore includes Fe skarn
system, and its metallic minerals are magnetite, hematite,
goethite, pyrite, and martite (Hasanipack et al. 2009).

The Dardevey deposit is located in the southern margin of
the Upper Eocene Sar-Nowsar granite (biotite–amphibole
granite) and occurs in an east–west trending sequence of
UpperMesozoic sedimentary rocks. Magnetite skarn is formed
in black limestone and dolomite (Jurassic–Lower Cretaceous).
They are massive and, in some localities, they are about 200 m
in thickness. Mineral paragenesis are magnetite±hematite±
pyrite and some chalcopyrite±garnet (andradite)±actinolite±
chlorite±phlogopite calcite±dolomite. This deposit is Mg-
skarn, the Mg content of magnetite of which is about 1.22–
1.26%. Four stages of skarn formation and ore deposition have
been recognized at the area (stage I, II, III, and IVa, b). Based
on the multi-spectral images and field observation, the
Dardevey deposit was displaced by strike slip fault more than
1 km from Baghak deposit (Ghavi and Karimpour 2010).

Exploration drill cores and surface magnetic surveys in the
study area illustrated that the dips of mineralization zones are
declining towards the south (80–85°). In addition, the main
structural features are two-fault systems trending NW–SE and
E–W, as depicted in Fig. 2 (Ghavi and Karimpour 2010).

Fig. 1 Location of studied area
in structural map of Iran (black
square; Stocklin 1977)
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Fig. 2 Geological and structural map of studied area (Hasanipack et al. 2009)
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Discussion

The success in a mining operation depends on the accuracy of
the reserves evaluation as well as the distribution of ore grades.
Geostatistics techniques such as OK and IDWare widely used
for ore grade estimation (Tahmasebi and Hezarkhani 2010).

Kriging is a group of geostatistical methods for interpola-
tion of the different regional variables' values (e.g., ore element
in this paper) at an unobserved location from observations of

its value at nearby locations, which consist of OK, universal
kriging, indicator kriging, co-kriging, and others (Bayraktar
and Turalioglu 2005; Emery 2005; Hormozi et al. 2012). The
selection of a proper method depends on the particulars of the
data and type of spatial model desired. The most commonly
used method is OK, which is selected for this study (Lefohn
and Knudsen 2011). OK plays a special role because it is
compatible with a stationary model, only involves the
variogram, and is in fact the form of kriging that is most often

Fe  40%

20%  Fe < 40%

Fe < 20%

Fig. 3 2D and 3D grid drilling
in Dardevey deposit
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used (Chile's and Delfiner 1999; Afzal et al. 2011). OK esti-
mates based on the moving average of the variable of interest
satisfying various dispersion forms of data, e.g., sparse sam-
pling points (Goovaerts 1997; Afzal et al. 2011). OK works
under the assumption of a stationary condition. Moreover, it is
a linear model based on local neighborhood structure
(Tahmasebi and Hezarkhani 2010).

IDWis one of themost common techniques for interpolation
of scatter points. IDW has a fundamental assumption that the
interpolating surface should be influenced most by the nearby
points and less by the more distant points. The interpolating
surface is a weighted average of the scatter points, and the
weight assigned to each scatter point diminishes as the distance
from the interpolation point to the scatter point increases. The
values to unknown points are calculated with a weighted aver-
age of the values available at the known points (Homayoon et
al. 2010; Yasrebi et al. 2009; Zimmerman et al. 1999).

The OK method requires the preliminary modeling step
of a variance distance relationship, but IDW does not in-
volve such step and is very simple and quick (Yasrebi et al.
2009; Zimmerman et al. 1999). Estimated values at
unsampled locations are based on the measurements at
surrounding locations with certain assigned weights for each
measurements in both of them (Yasrebi et al. 2009).

However, the IDW method was developed by using results
derived via variography and anisotropic ellipsoid. In this study,
5,500 lithogeochemical samples have been collected at 2-m
intervals from 156 drill cores in the Dardevey deposit. Grid
drilling was 50×50 m, although the network has a number of
boreholes drilled for additional information, as shown in Fig. 3.

After chemical analysis of the collected samples by ICP-
MS method, statistical studies were performed on the raw
data, the results of which are shown in Fig. 4 and Table 1
for Fe values more than 20 %. Since the Gaussian kriging
method was not used in this study, the data were therefore not
normalized and raw data can be utilized. The parameters of
estimation were calculated for both estimation techniques. Fe
grade, tonnage, and estimation error were determined for both
methods, and the IDW and OK techniques were compared
based on the estimation error in the Dardevey iron ore deposit.

Variography and anisotropic ellipsoid

Variogram models and anisotropic ellipsoid are widely used
tools for spatial interpolation, which are the fundamental
parameters for geostatistical modeling (VerHoef and Cressie
1993; Calder and Cressie 2009). In this study, the non-
directional and directional variograms were generated by
Datamine Studio software in the Dardevey deposit, as
shown in Table 2 and Fig. 5. C-value parameter has a range
between 40 and 64 based on the variography (Table 2). In
addition, anisotropic ellipsoid is provided (Fig. 6), and the
axis characteristics are indicated in Table 3.

Determination of evaluation parameters

Four evaluation parameters were calculated as follows:

(a) Determination of density
(b) Continuity of ore and waste
(c) Optimizing the number of points involved in the esti-

mation of ore and waste boundaries
(d) Optimizing the discretization factor in the estimation of

ore and waste boundaries

a) Determination of density. For calculation of den-
sity, 1,100 samples were collected from drill cores,
and their Fe values and densities are measured.

Fig. 4 Histogram of raw data with Fe grades above 20 %

Table 1 Statistical pa-
rameters for raw data
with grades above 20 %

Raw Data (Fe≥20 %)

Sample number 4,417

Mean 45.34

Median 48.08

Std. deviation 11.51

Variance 132.57

Skewness −0.58

Kurtosis −0.75

Minimum 20.00

Maximum 64.00

Table 2 Result of non-directional and directional variograms

Variables Range C-value Sill Nugget
effect

Variogram
model

Non-direction 412.8 45.3 147.2 101.9 Spherical

Axis 1 244.8 64.1 148 83.9 Spherical

Axis 2 113.4 40.2 131.1 90.9 Spherical

Axis 3 45.7 56.7 111.2 54.5 Spherical
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The trend line equation obtained by Fe and density
values of each voxel is calculated (Li and Heap
2008), as shown in Fig. 7.

b) Continuity of ore and waste. Thickness continuity of
ore and waste in reserve estimation plays a neces-
sary role, which is a function of ore grade continuity.
Degree of continuity of grade in the mineralization

is a function of the mineralization type. For exam-
ple, in a sedimentary mineralization with layer ge-
ometry, continuity in directions X and Y (length and
width of the deposit) to Z (the thickness of the
deposit) has a higher degree (Babak et al. 2011).

Fe grade with 20 % was used for determination
of the extent of waste and ore. According to this
criterion, the Fe values measured in each drill cores
have become to waste and ore (0 and 1), and con-
tinuous thickness of ore and waste is measured. The
value of continuity was calculated in the composites
at 1, 2.5, 5, 10, 15, and 20 m (Fig. 8).

Based on these estimates and assessments, voxels
should not be more than 5m in height (Z) because the
stripping (waste/ore) ratio is increased. Consequently,
a composite 5 m in length was selected and used in

A B

C D

Fig. 5 Non-directional and
directional variograms: a non-
directional, b axis 1, c axis 2,
and d axis 3

Fig. 6 Anisotropic ellipsoid in the Dardevey deposit

Table 3 Anisotropic
ellipsoid particulars in
the deposit

Variables Azimuth Dip

Axis 1 119.49 −4.00

Axis 2 209.62 −1.78

Axis 3 323.56 −85.62
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the estimation operation because it is necessary to use
the dataset, which has an equal support, and commu-
nity samples indicate a homogeneous and an equal
probability environment in terms of volume samples.

c) Optimizing the number of points involved in the
estimation of ore and waste boundaries. The min-
imum and maximum numbers of points involved
in the estimation of each voxel are the important
parameters (Sakata and Ashida 2004; Brus and
Heuvelink 2007).

For selection of the optimum number of points,
minimum points of 2, 4, 6, and 8 andmaximum points
of 10, 12, 14, 16, 18, and 20 were used in each case of
estimation. Based on the estimations, the minimum

Fig. 7 Correlation diagram between Fe and density values

Length(m) Raw Data Comp. 5 Comp. 10 Comp. 15 Comp. 20

Ore 10.28 19.93 32.69 47.42 57.24

Waste 10.5 14.99 22.83 29.18 33.27

Ore/Waste 0.98 1.33 1.43 1.63 1.72
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Fig. 8 Continuity of ore and waste in different composites

Table 4 Different models to select the number of points involved in
the estimation of ore and waste boundaries

Row Minimum point no. Maximum point no. Accuracy (%)

1 2 10 81.53

2 2 12 81.47

3 2 14 81.41

4 2 16 81.34

5 2 18 81.29

6 2 20 81.30

7 4 10 81.50

8 4 12 81.46

9 4 14 81.40

10 4 16 81.32

11 4 18 81.28

12 4 20 81.29

13 6 10 81.50

14 6 12 81.46

15 6 14 81.40

16 6 16 81.33

17 6 18 81.28

18 6 20 81.29

19 8 10 81.50

20 8 12 81.46

21 8 14 81.40

22 8 16 81.33

23 8 18 81.28

24 8 20 81.29

Fig. 9 Validation of the number of point’s optimum for the estimation
of ore and waste boundaries
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and maximum number of 2 and 10 points were select-
ed, respectively, with accuracy of 81.53 % as the
number of optimal points for estimation of ore and
waste boundaries. Based on the results, the accuracy of
the estimation decreases with increasing of the mini-
mum andmaximum points (Table 4). Additionally, the
results of the validation are shown in Fig. 9.

d) Optimizing the discretization factor in the estima-
tion of ore and waste boundaries. Discretization
factor in the estimation of 3D block model is an
essential parameter. Therefore, it is necessary to
select the optimal because most geostatistical soft-
wares, e.g. Datamine, are estimated based on
point, and by applying these parameters, the re-
sults are partly closer to the results of the estima-
tion block (Journel 1993; Verly 1984).

In this study, the Fe values were estimated with
different discretization factors and based on the
precious optimal parameters and the results in
three steps (Table 5). The average estimated vari-
ance in the discretization factor 5×5×5 m is less
than that from other states, and therefore this factor
was chosen as the optimal factor (Table 5).

Block modeling

Determination of different dimensions in the 3D block mod-
el is important for reserve estimation and mine planning.
David (David 1970a, b) proposed a general method for the

operation due to the geometrical particulars of the studied
deposit and grid drilling. Based on the method, block di-
mensions were calculated as follows:

(a) The length of each voxel is 25 m, which is equal to half
of the distance between the drill cores, which is along
the least variability (longitudinal direction) deposit.

(b) The width of each voxel is 12.5 m, which is a quarter
of the distance between the drill cores, accords to along
the highest variability (longitudinal direction) deposit.

(c) The height of each block is 5 m, due to the continuity of
ore and tailing thickness and selection of 5-m composite
(see the subsection “Continuity of ore and waste”).

After identification of the optimal size for each voxel, a
3D block model of the deposit was generated. Then, block
modeling is limited by 3D surface topography on the top,
the deepest borehole in the depth, and estimated space
around, as illustrated in Fig. 10.

Evaluation by OK and IDW

According to variography, determination of evaluation param-
eters, and providing block modeling, Fe values in the deposit
were estimated by two methods, including OK and IDW
(Fig. 11). High-grade mineralized zones existed in the NW
part of the area based on results obtained by both estimation
methods (Fig. 11). One of the main problems of estimation is
overestimation and underestimation when there is not enough
data, and especially, there is the evaluation of mineral re-
sources based on information obtained from boreholes, such
as this study, since the density of sampling points along the
boreholes is very high and along the distance between the
holes is very limited (Boniol and Toth 1999).

This problem is obvious in cumulative distribution function
of the estimated Fe. For solving this problem, the cumulative
distribution function of the estimated and the original values
of each variable (composite) got a transfer function that due to
the calculation will be estimated (Fig. 12).

Table 5 Result of opti-
mization of
discretization factor
with the average vari-
ance of the estimations

Discretization
factor

Average of variance

3×3×3 57.59

4×4×4 57.36

5×5×5 57.21

Fig. 10 3D block model of the
Dardevey deposit
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Fig. 11 Evaluation of ore deposit: a OK method and b IDW method
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Fig. 12 Correction of estimated values of Fe variable; a) OK method, b) IDW method
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Fig. 13 Curve of grade tonnage: a OK method and b IDW method

Arab J Geosci (2014) 7:3693–3704 3701



The function will correct the points of overestimation and
underestimation based on the initial amount in the OK

method. This equation showing that Fec is the corrected
values and Fee is the estimated values is as follows:

Fec ¼ −1937014:3þ 2535647:8 Fee
0:5−1418173:4 Fee þ 435411:46 Fee

1:5−77044:283 Fee
2 þ 6973:4109 Fee

2:5

−31:637299 Fee
3−62:705574 Fee

3:5 þ 6:5279055 Fee
4−0:2834302 Fee

4:5 þ 0:0045392155 Fee
5

After correcting the Fe values for both methods, the curve
of grade tonnage was generated for different assays, as
illustrated in Fig. 13. However, in the cutoff grade of high
values, the tonnage of reserve was reduced and the Fe values
of reserves are increased.

The curve of grade tonnage is necessary to error calcula-
tion of each voxel and classification of reserves. The

following formula for the calculation of the estimation error
is used (Noppé 1994):

% Error ¼ Z:S

X :
ffiffiffiffi

N
p

� �

� 100

S, X, and V are standard deviation of each voxel, assay of
each voxel, and the number of samples that participated in grade

Table 6 Reserves classification based on JORC standard

Error Average grade (%) Tonnage (%) Classification

OK method

0–20 % 42.69 99.78 A

20–40 % 21.51 0.12 B

40–60 % 20.27 0.10 C

>60 % – – Possible

Total 42.54 100

IDW method

0–20 % 42.33 81.22 A

20–40 % 40.97 18.77 B

40–60 % 31.79 0.01 C

>60 % – – Possible

Total 42.00 100

Fig. 14 Histogram of estimated data with Fe grades above 20 % obtained by a OK method and b IDW method

Table 7 Statistical parameters for result of OK and IDW methods with
grades above 20 %

OK method IDW method

Sample number 182,210 177,909

Mean 42.54 42.00

Median 44.27 42.42

Std. deviation 11.67 7.682

Variance 135.18 59.04

Skewness −0.29 −0.22

Kurtosis −1.13 −0.52

Minimum 20.01 20.77

Maximum 63.37 62.07
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estimation, respectively, and Z is the integer constant which is
1.96 if the confidence level is 95%or 1.64 if the confidence level
is 90 %. In this study, the confidence level is 90 % and Z=1.64.

The reserve was classified based on calculated estimation
errors by JORC code. Several methods are utilized for classi-
fication of reserves and resources; we used JORC (2012)
method, as shown in Table 6. The classification framework
based on the prepared code by the Joint Ore Reserves
Committee of The Australasian Institute of Mining and
Metallurgy, Australian Institute of Geoscientists and Minerals
Council of Australia (JORC code), which is one of the inter-
national standards for mineral resource and ore reserve
reporting, provides a template system that conforms to inter-
national society requirements (Li et al. 2008; Asghari and
Madani Esfahani 2013).

Most estimated voxels by OK method have low values of
errors, which are lower than 20 %, while several evaluated
voxels by IDW method (about 19 %) have error estimations
between 20 and 40 %. Most parts of the estimated block
model derived via OK method (higher than 99 %) is classi-
fied in A category based on JORC standard. However, about
19 % of the evaluated tonnages by IDW method were
categorized in B class (Table 6).

Moreover, results obtained by the two methods were vali-
dated by statistical methods (Fig. 14; Table 7). The histogram
obtained by estimated data, whichwas derived via OKmethod,
is similar to the Fe histogram obtained by raw data (Fig. 4). In
addition, standard deviation and variance of estimation of each
voxel by OK method are close to the raw data (Table 1).

Conclusion

Choosing the proper method for estimation of reserve with a
minimum error is very important in geostatistical operations in
mining engineering. In this study, ore reserves were evaluated
by OK and IDW methods in an iron ore deposit. The reserves
as calculated by both methods and classified based on the
JORC standard show that the error of OK method is less than
that of IDW technique in A category. High-grade reserves
including 99.78 % of reserve have errors less than 20 % based
on estimation by OK technique. Based on results obtained by
IDW method, parts of the high-grade reserves that include
18.77 % of reserve have an error between 20 to 40 %. A
comparison between statistical processing on results obtained
by both methods and the raw data illustrates that the results of
the OK method are very similar to the raw data due to histo-
gram, variance, standard deviation, mean and median. Based
on the comparison between statistical parameters of estimated
and raw data, results obtained by OK estimation technique
have better correlation with raw data. Therefore, OK method
has higher accuracy than the results derived via IDW technique
for reserve estimation in the Dardevey iron ore deposit.
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